1
|
Cano-Argüelles AL, Oleaga A, González-Sánchez M, Vizcaíno-Marín R, Pérez-Sánchez R. Vaccinomics-driven selection and validation of protective salivary antigens from the argasid tick Ornithodoros moubata. Ticks Tick Borne Dis 2025; 16:102483. [PMID: 40306020 DOI: 10.1016/j.ttbdis.2025.102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 04/21/2025] [Accepted: 04/23/2025] [Indexed: 05/02/2025]
Abstract
Ornithodoros moubata serves as primary vector of African swine fever and tick-borne human relapsing fever in Africa. Developing an effective vaccine targeting this argasid tick would significantly enhance disease control measures. To identify potential vaccine targets, the recently characterised sialome of O. moubata was analysed using a vaccinomics approach. This led to the identification of a set of salivary secreted proteins predicted to be antigenic and implicated in the regulation of blood-feeding and host immune defences. The objective of this study was to evaluate the protective potential of seven of these proteins, namely Complement inhibitor (OmCI), Cyclophilin (OmCPH), Hypothetical protein 275 (OmH275), Peroxiredoxin (OmPXR), Calreticulin (OmCLR), Neprilysin (OmNEP), and Superoxide dismutase (OmSOD). These candidates were produced as recombinant proteins, formulated with Montanide adjuvant, and administered individually to different groups of rabbits. Adult and nymphal-3 specimens of O. moubata and Ornithodoros erraticus (the Mediterranean vector of ASF and TBRF) were allowed to feed on the vaccinated rabbits, and the ticks' feeding performance, survival, and reproduction rates were assessed. OmH275, OmPXR, OmCPH, and OmCLR conferred 20 %-32 % protection against O. moubata and/or O. erraticus, whereas OmCI, OmNEP, and OmSOD afforded 2 %-17 % protection against one or both tick species. Consequently, OmH275, OmPXR, OmCPH, and OmCLR were deemed suitable candidates for inclusion in the development of anti-Ornithodoros cocktail vaccines, while OmCI, OmNEP, and OmSOD were considered less promising for tick vaccine development. These findings validate the vaccinomics pipeline, identifying four of seven candidates (57 %) as viable antigens for Ornithodoros tick vaccines.
Collapse
Affiliation(s)
- Ana Laura Cano-Argüelles
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| | - Ana Oleaga
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| | - María González-Sánchez
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| | - Rocío Vizcaíno-Marín
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| | - Ricardo Pérez-Sánchez
- Parasitología Animal, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| |
Collapse
|
2
|
Manjunathachar HV, Kumar B, Parthasarathi BC, Chigure GM, Saravanan BC, Sankar M, Harish DR, de la Fuente J, Ghosh S. Cocktail vaccine for the management of Hyalomma anatolicum and Rhipicephalus microplus. Front Immunol 2024; 15:1471317. [PMID: 39628484 PMCID: PMC11611848 DOI: 10.3389/fimmu.2024.1471317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/21/2024] [Indexed: 12/06/2024] Open
Abstract
Introduction Globally, ticks rank second only to mosquitoes as vectors of deadly pathogens affecting humans and first in transmitting animal pathogens, presenting a significant challenge to human wellness and sustainability of livestock-based industries. Traditional tick control via chemical acaricides impacts on the environment and has led to the emergence of multi-acaricide-resistant tick populations. Use of immunoprophylactic, along with other components of integrated tick management, holds the potential to mitigate tick infestations in a sustainable manner. To control multi-species tick infestations, the concept of a cocktail vaccine comprising of more than one antigens has emerged as a viable solution due to the inconsistent efficacy of single antigen-based immunization protocol. Methods In this study, a dual antigen cocktail immunization protocol was developed targeting ferritin2 (FER2) and tropomyosin (TPM) proteins, which are associated with ticks' essential cellular and physiological functions, like blood iron homeostasis and muscle contractions. Results Dual gene silencing of FER2 and TPM genes in Hyalomma anatolicum resulted in a 75.3% reduction in infested ticks, a 95.4% decrease in egg masses, and a complete loss of egg hatching when compared to control ticks. Microscopically, an altered ovarian cellular architecture, marked by vacuolation and reduced nucleus-to-cytoplasmic ratio were noted in the gene knocked down ticks. An immunization with cocktails of 300 µg dose of each protein, rHaFER2 and rHaTPM was standardized in a rat model and was used to immunize cross-bred (Bos indicus x B. taurus) male cattle with Montanide ISA 50V2 adjuvant on days 0, 28, and 49. A significant (p < 0.001) IgG and IgG2 antibody response was observed in the immunized animals with high IgG levels sustained until day 119 post-primary immunization, showing a 4.1-fold increase over the pre-immunization period. The animals were challenged with larvae and adults of H. anatolicum and larvae of Rhipicephalus microplus. Immunization with the cocktail antigen resulted an efficacy of 70% and 76% against H. anatolicum larvae and adults, respectively, and 54% against R. microplus infestations. Compared to single-antigen immunization, the immunization with cocktail antigens demonstrated higher protection against R. microplus and H. anatolicum ticks. The results advance the development of cocktail vaccines to control multiple tick species.
Collapse
Affiliation(s)
- Haranahally Vasanthachar Manjunathachar
- Entomology Laboratory, Division of Parasitology, Indian Council of Agricultural Research (ICAR)- Indian Veterinary Research Institute (IVRI)-Izatnagar, Bareilly, Uttar Pradesh, India
| | - Binod Kumar
- Entomology Laboratory, Division of Parasitology, Indian Council of Agricultural Research (ICAR)- Indian Veterinary Research Institute (IVRI)-Izatnagar, Bareilly, Uttar Pradesh, India
| | - Balasamudram Chandrasekhar Parthasarathi
- Entomology Laboratory, Division of Parasitology, Indian Council of Agricultural Research (ICAR)- Indian Veterinary Research Institute (IVRI)-Izatnagar, Bareilly, Uttar Pradesh, India
| | - Gajanan M. Chigure
- Entomology Laboratory, Division of Parasitology, Indian Council of Agricultural Research (ICAR)- Indian Veterinary Research Institute (IVRI)-Izatnagar, Bareilly, Uttar Pradesh, India
| | - Buddhi Chandrasekaran Saravanan
- Entomology Laboratory, Division of Parasitology, Indian Council of Agricultural Research (ICAR)- Indian Veterinary Research Institute (IVRI)-Izatnagar, Bareilly, Uttar Pradesh, India
| | - Muthu Sankar
- Entomology Laboratory, Division of Parasitology, Indian Council of Agricultural Research (ICAR)- Indian Veterinary Research Institute (IVRI)-Izatnagar, Bareilly, Uttar Pradesh, India
| | - Darasaguppe Ramachandra Harish
- Division of Animal Biotechnology, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute (IVRI)-Izatnagar, Bareilly, Uttar Pradesh, India
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Srikanta Ghosh
- Entomology Laboratory, Division of Parasitology, Indian Council of Agricultural Research (ICAR)- Indian Veterinary Research Institute (IVRI)-Izatnagar, Bareilly, Uttar Pradesh, India
- Indian Veterinary Research Institute (IVRI)-Eastern Regional Centre, Kolkata, West Bengal, India
| |
Collapse
|
3
|
de la Fuente J, Ghosh S, Lempereur L, Garrison A, Sprong H, Lopez-Camacho C, Maritz-Olivier C, Contreras M, Moraga-Fernández A, Bente DA. Interventions for the control of Crimean-Congo hemorrhagic fever and tick vectors. NPJ Vaccines 2024; 9:181. [PMID: 39353956 PMCID: PMC11445411 DOI: 10.1038/s41541-024-00970-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a zoonotic disease associated with its principal tick vector, Hyalomma spp. with increasing fatal incidence worldwide. Accordingly, CCHF is a World Health Organization-prioritized disease with the absence of effective preventive interventions and approved vaccines or effective treatments. This perspective raised from a multidisciplinary gap analysis considering a One Health approach beneficial for human and animal health and the environment exploring international collaborations, gaps and recommendations.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, 13005, Ciudad Real, Spain.
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - Srikant Ghosh
- Entomology Laboratory, Parasitology Division, ICAR-Indian Veterinary Research Institute, Bareilly, 243122, Uttar Pradesh, India
- Eastern Regional Station, Indian Veterinary Research Institute, Kolkata, 700037, West Bengal, India
| | - Laetitia Lempereur
- One Health & Disease Control Group (NSAH-CJW), Food and Agriculture Organization of the United Nations, 00153, Rome, Italy
| | - Aura Garrison
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, MD, 21702, USA
| | - Hein Sprong
- Centre for Infectious Disease Control (CIb), National Institute of Public Health and Environment (RIVM), 3720 MA, Bilthoven, The Netherlands
| | | | - Christine Maritz-Olivier
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, 13005, Ciudad Real, Spain
| | - Alberto Moraga-Fernández
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, 13005, Ciudad Real, Spain
| | - Dennis A Bente
- Galveston National Laboratory, Institute for Human Infection and Immunity, Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
4
|
Nepveu-Traversy ME, Fausther-Bovendo H, Babuadze G(G. Human Tick-Borne Diseases and Advances in Anti-Tick Vaccine Approaches: A Comprehensive Review. Vaccines (Basel) 2024; 12:141. [PMID: 38400125 PMCID: PMC10891567 DOI: 10.3390/vaccines12020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
This comprehensive review explores the field of anti-tick vaccines, addressing their significance in combating tick-borne diseases of public health concern. The main objectives are to provide a brief epidemiology of diseases affecting humans and a thorough understanding of tick biology, traditional tick control methods, the development and mechanisms of anti-tick vaccines, their efficacy in field applications, associated challenges, and future prospects. Tick-borne diseases (TBDs) pose a significant and escalating threat to global health and the livestock industries due to the widespread distribution of ticks and the multitude of pathogens they transmit. Traditional tick control methods, such as acaricides and repellents, have limitations, including environmental concerns and the emergence of tick resistance. Anti-tick vaccines offer a promising alternative by targeting specific tick proteins crucial for feeding and pathogen transmission. Developing vaccines with antigens based on these essential proteins is likely to disrupt these processes. Indeed, anti-tick vaccines have shown efficacy in laboratory and field trials successfully implemented in livestock, reducing the prevalence of TBDs. However, some challenges still remain, including vaccine efficacy on different hosts, polymorphisms in ticks of the same species, and the economic considerations of adopting large-scale vaccine strategies. Emerging technologies and approaches hold promise for improving anti-tick vaccine development and expanding their impact on public health and agriculture.
Collapse
Affiliation(s)
| | - Hugues Fausther-Bovendo
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 75550, USA;
| | - George (Giorgi) Babuadze
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 75550, USA;
| |
Collapse
|
5
|
Parizi LF, Githaka NW, Logullo C, Zhou J, Onuma M, Termignoni C, da Silva Vaz I. Universal Tick Vaccines: Candidates and Remaining Challenges. Animals (Basel) 2023; 13:2031. [PMID: 37370541 DOI: 10.3390/ani13122031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/29/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023] Open
Abstract
Recent advancements in molecular biology, particularly regarding massively parallel sequencing technologies, have enabled scientists to gain more insight into the physiology of ticks. While there has been progress in identifying tick proteins and the pathways they are involved in, the specificities of tick-host interaction at the molecular level are not yet fully understood. Indeed, the development of effective commercial tick vaccines has been slower than expected. While omics studies have pointed to some potential vaccine immunogens, selecting suitable antigens for a multi-antigenic vaccine is very complex due to the participation of redundant molecules in biological pathways. The expansion of ticks and their pathogens into new territories and exposure to new hosts makes it necessary to evaluate vaccine efficacy in unusual and non-domestic host species. This situation makes ticks and tick-borne diseases an increasing threat to animal and human health globally, demanding an urgent availability of vaccines against multiple tick species and their pathogens. This review discusses the challenges and advancements in the search for universal tick vaccines, including promising new antigen candidates, and indicates future directions in this crucial research field.
Collapse
Affiliation(s)
- Luís Fernando Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | | | - Carlos Logullo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Misao Onuma
- Department of Infectious Diseases, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Carlos Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre 90040-060, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre 91540-000, Brazil
| |
Collapse
|
6
|
Nandi A, Solanki V, Tiwari V, Sajjanar B, Sankar M, Saini M, Shrivastava S, Bhure SK, Ghosh S. Protective Efficacy of Multiple Epitope-Based Vaccine against Hyalomma anatolicum, Vector of Theileria annulata and Crimean-Congo Hemorrhagic Fever Virus. Vaccines (Basel) 2023; 11:vaccines11040881. [PMID: 37112793 PMCID: PMC10143353 DOI: 10.3390/vaccines11040881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Hyalomma anatolicum is the principal vector for Theileria annulata, T. equi, and T. Lestoquardi in animals and the Crimean-Congo hemorrhagic fever virus in humans. Due to the gradual loss of efficacy of the available acaricides against field tick populations, the development of phytoacaricides and vaccines has been considered the two most critical components of the integrated tick management strategies. In the present study, in order to induce both cellular and humoral immune responses in the host against H. anatolicum, two multi-epitopic peptides (MEPs), i.e., VT1 and VT2, were designed. The immune-stimulating potential of the constructs was determined by in silicoinvestigation on allergenicity (non-allergen, antigenic (0.46 and 1.0046)), physicochemical properties (instability index 27.18 and 35.46), as well as the interaction of constructs with TLRs by docking and molecular dynamics analysis. The immunization efficacy of the MEPs mixed with 8% MontanideTM gel 01 PR against H. anatolicum larvae was determined as 93.3% and 96.9% in VT1- and VT2-immunized rabbits, respectively. Against adults, the efficacy was 89.9% and 86.4% in VT1- and VT2-immunized rabbits, respectively. A significant (p < 0.001) reduction in the anti-inflammatory cytokine (IL-4) and significantly higher IgG response was observed in a VT1-immunized group of rabbits as compared with the response observed in the control group. However, in the case of the VT2-immunized rabbits, an elevated anti-VT2 IgG and pro-inflammatory cytokine (IL-2) (>30 fold) along with a decreased level of anti-inflammatory cytokine IL-4 (0.75 times) was noted. The efficacy of MEP and its potential immune stimulatory responses indicate that it might be useful for tick management.
Collapse
Affiliation(s)
- Abhijit Nandi
- Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Vandana Solanki
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer 305817, India
| | - Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer 305817, India
| | - Basavaraj Sajjanar
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Muthu Sankar
- Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Mohini Saini
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Sameer Shrivastava
- Veterinary Biotechnology Division, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| | - S K Bhure
- Division of Biochemistry, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| | - Srikant Ghosh
- Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, India
| |
Collapse
|
7
|
Esperante D, Flisser A, Mendlovic F. The many faces of parasite calreticulin. Front Immunol 2023; 14:1101390. [PMID: 36993959 PMCID: PMC10040973 DOI: 10.3389/fimmu.2023.1101390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/23/2023] [Indexed: 03/16/2023] Open
Abstract
Calreticulin from parasites and its vertebrate hosts share ~50% identity and many of its functions are equally conserved. However, the existing amino acid differences can affect its biological performance. Calreticulin plays an important role in Ca2+ homeostasis and as a chaperone involved in the correct folding of proteins within the endoplasmic reticulum. Outside the endoplasmic reticulum, calreticulin is involved in several immunological functions such as complement inhibition, enhancement of efferocytosis, and immune upregulation or inhibition. Several parasite calreticulins have been shown to limit immune responses and promote infectivity, while others are strong immunogens and have been used for the development of potential vaccines that limit parasite growth. Furthermore, calreticulin is essential in the dialogue between parasites and hosts, inducing Th1, Th2 or regulatory responses in a species-specific manner. In addition, calreticulin participates as initiator of endoplasmic reticulum stress in tumor cells and promotion of immunogenic cell death and removal by macrophages. Direct anti-tumoral activity has also been reported. The highly immunogenic and pleiotropic nature of parasite calreticulins, either as positive or negative regulators of the immune response, render these proteins as valuable tools to modulate immunopathologies and autoimmune disorders, as well as a potential treatment of neoplasms. Moreover, the disparities in the amino acid composition of parasite calreticulins might provide subtle variations in the mechanisms of action that could provide advantages as therapeutic tools. Here, we review the immunological roles of parasite calreticulins and discuss possible beneficial applications.
Collapse
Affiliation(s)
- Diego Esperante
- Plan de Estudios Combinados en Medicina (PECEM), Facultad de Medicine, Universidad Nacional Autonóma de México (UNAM), Mexico City, Mexico
| | - Ana Flisser
- Plan de Estudios Combinados en Medicina (PECEM), Facultad de Medicine, Universidad Nacional Autonóma de México (UNAM), Mexico City, Mexico
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autonóma de México (UNAM), Mexico City, Mexico
| | - Fela Mendlovic
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autonóma de México (UNAM), Mexico City, Mexico
- Facultad de Ciencias de la Salud, Universidad Anahuac Mexico Norte, Huixquilucan, Mexico
- *Correspondence: Fela Mendlovic,
| |
Collapse
|
8
|
Co-Immunization Efficacy of Recombinant Antigens against Rhipicephalus microplus and Hyalomma anatolicum Tick Infestations. Pathogens 2023; 12:pathogens12030433. [PMID: 36986356 PMCID: PMC10058648 DOI: 10.3390/pathogens12030433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
The immunoprophylactic management of ticks is the most effective option to control tick infestations and counter spread the acaricide resistance problem worldwide. Several researchers reported an inconsistent efficacy of the single antigen-based immunization of hosts against different tick species. In the present study, to develop a multi-target immunization protocol, proteins from Rhipicephalus microplus BM86 and Hyalomma anatolicum subolesin (SUB) and tropomyosin (TPM) were targeted to evaluate the cross-protective potential. The sequence identities of the BM86, SUB, and TPM coding genes amongst Indian tick isolates of targeted species were 95.6–99.8%, 98.7–99.6%, and 98.9–99.9%, respectively, while at the predicted amino acid level, the identities were 93.2 to 99.5, 97.6 to 99.4, and 98.2 to 99.3%. The targeted genes were expressed in the eukaryotic expression system, pKLAC2-Kluyveromyces lactis, and 100 µg each of purified recombinant protein (Bm86-89 kDa, SUB-21 kDa, and TPM-36 kDa) mixed with adjuvant was injected individually through the intramuscular route at different sites of the body on days 0, 30, and 60 to immunize cross-bred cattle. Post-immunization, a statistically significant (p < 0.001) antibody response (IgG, IgG1, and IgG2) in comparison to the control, starting from 15 to 140 days, against each antigen was recorded. Following multi-antigen immunization, the animals were challenged twice with the larvae of R. microplus and H. anatolicum and theadults of H. anatolicum, and a significant vaccine efficacy of 87.2% and 86.2% against H. anatolicum larvae and adults, respectively, and 86.7% against R. microplus was obtained. The current study provides significant support to develop a multi-antigen vaccine against cattle tick species.
Collapse
|
9
|
Bonnet SI, Vourc’h G, Raffetin A, Falchi A, Figoni J, Fite J, Hoch T, Moutailler S, Quillery E. The control of Hyalomma ticks, vectors of the Crimean–Congo hemorrhagic fever virus: Where are we now and where are we going? PLoS Negl Trop Dis 2022; 16:e0010846. [PMCID: PMC9671348 DOI: 10.1371/journal.pntd.0010846] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
At a time of major global, societal, and environmental changes, the shifting distribution of pathogen vectors represents a real danger in certain regions of the world as generating opportunities for emergency. For example, the recent arrival of the Hyalomma marginatum ticks in southern France and the concurrent appearance of cases of Crimean–Congo hemorrhagic fever (CCHF)—a disease vectored by this tick species—in neighboring Spain raises many concerns about the associated risks for the European continent. This context has created an urgent need for effective methods for control, surveillance, and risk assessment for ticks and tick-borne diseases with a particular concern regarding Hyalomma sp. Here, we then review the current body of knowledge on different methods of tick control—including chemical, biological, genetical, immunological, and ecological methods—and the latest developments in the field, with a focus on those that have been tested against ticks from the genus Hyalomma. In the absence of a fully and unique efficient approach, we demonstrated that integrated pest management combining several approaches adapted to the local context and species is currently the best strategy for tick control together with a rational use of acaricide. Continued efforts are needed to develop and implement new and innovative methods of tick control. Disease-bearing Hyalomma ticks are an increasingly emerging threat to humans and livestock worldwide. Various chemical, biological, genetic, and ecological methods for tick control have been developed, with variable efficiencies. Today, the best tick control strategy involves an integrated pest management approach.
Collapse
Affiliation(s)
- Sarah I. Bonnet
- Animal Health Department, INRAE, Nouzilly, France
- Ecology and Emergence of Arthropod-borne Pathogens Unit, Institut Pasteur, CNRS UMR 2000, Université Paris-cité, Paris, France
- * E-mail:
| | - Gwenaël Vourc’h
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, Saint-Genès-Champanelle, France
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, Marcy l’Etoile, France
| | - Alice Raffetin
- Reference Centre for Tick-Borne Diseases, Paris and Northern Region, Department of Infectious Diseases, General Hospital of Villeneuve-Saint-Georges, 40 allée de la Source, Villeneuve-Saint-Georges, France
- EA 7380 Dynamyc, UPEC, Créteil, France
- Unité de recherche EpiMAI, USC ANSES, Ecole Nationale Vétérinaire d’Alfort, Maisons-Alfort, France
| | - Alessandra Falchi
- UR7310, Faculté de Sciences, Campus Grimaldi, Université de Corse, Corte, France
| | - Julie Figoni
- Santé publique France, 94410 Saint-Maurice, France
| | - Johanna Fite
- French Agency for Food, Environmental and Occupational Health & Safety, 14 rue Pierre et Marie Curie, Maisons-Alfort Cedex, France
| | | | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Elsa Quillery
- French Agency for Food, Environmental and Occupational Health & Safety, 14 rue Pierre et Marie Curie, Maisons-Alfort Cedex, France
| |
Collapse
|
10
|
Zeb I, Almutairi MM, Alouffi A, Islam N, Parizi LF, Safi SZ, Tanaka T, da Silva Vaz I, Ali A. Low Genetic Polymorphism in the Immunogenic Sequences of Rhipicephalus microplus Clade C. Vaccines (Basel) 2022; 10:1909. [PMID: 36423005 PMCID: PMC9697226 DOI: 10.3390/vaccines10111909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 02/06/2024] Open
Abstract
Rhipicephalus microplus tick highly affects the veterinary sector throughout the world. Different tick control methods have been adopted, and the identification of tick-derived highly immunogenic sequences for the development of an anti-tick vaccine has emerged as a successful alternate. This study aimed to characterize immunogenic sequences from R. microplus ticks prevalent in Pakistan. Ticks collected in the field were morphologically identified and subjected to DNA and RNA extraction. Ticks were molecularly identified based on the partial mitochondrial cytochrome C oxidase subunit (cox) sequence and screened for piroplasms (Theileria/Babesia spp.), Rickettsia spp., and Anaplasma spp. PCR-based pathogens-free R. microplus-derived cDNA was used for the amplification of full-length cysteine protease inhibitor (cystatin 2b), cathepsin L-like cysteine proteinase (cathepsin-L), glutathione S-transferase (GST), ferritin 1, 60S acidic ribosomal protein (P0), aquaporin 2, ATAQ, and R. microplus 05 antigen (Rm05Uy) coding sequences. The cox sequence revealed 100% identity with the nucleotide sequences of Pakistan's formerly reported R. microplus, and full-length immunogenic sequences revealed maximum identities to the most similar sequences reported from India, China, Cuba, USA, Brazil, Egypt, Mexico, Israel, and Uruguay. Low nonsynonymous polymorphisms were observed in ATAQ (1.5%), cathepsin-L (0.6%), and aquaporin 2 (0.4%) sequences compared to the homologous sequences from Mexico, India, and the USA, respectively. Based on the cox sequence, R. microplus was phylogenetically assembled in clade C, which includes R. microplus from Pakistan, Myanmar, Malaysia, Thailand, Bangladesh, and India. In the phylogenetic trees, the cystatin 2b, cathepsin-L, ferritin 1, and aquaporin 2 sequences were clustered with the most similar available sequences of R. microplus, P0 with R. microplus, R. sanguineus and R. haemaphysaloides, and GST, ATAQ, and Rm05Uy with R. microplus and R. annulatus. This is the first report on the molecular characterization of clade C R. microplus-derived immunogenic sequences.
Collapse
Affiliation(s)
- Ismail Zeb
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia
| | - Nabila Islam
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Luís Fernando Parizi
- Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Campus do Vale, Porto Alegre 91501-970, RS, Brazil
| | - Sher Zaman Safi
- Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Malaysia
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Campus do Vale, Porto Alegre 91501-970, RS, Brazil
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| |
Collapse
|
11
|
Song R, Zhai X, Fan X, Li Y, Ge T, Li C, Li M, He W, Zheng H, Gan L, Zhang Y, Chahan B. Prediction and validation of cross-protective candidate antigen of Hyalomma asiaticum cathepsin L between H. asiaticum and H. anatolicum. EXPERIMENTAL & APPLIED ACAROLOGY 2022; 86:283-298. [PMID: 35133525 DOI: 10.1007/s10493-022-00689-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/12/2022] [Indexed: 05/24/2023]
Abstract
Hyalomma asiaticum and H. anatolicum are tick species in Eurasia and Africa with major medical and veterinary significance. Beside their direct pathogenic effects, H. asiaticum and H. anatolicum are vectors of important diseases of livestock and in some instances of zoonoses. In search of ways to address the increasing incidence of global acaricide resistance, tick control through vaccination is regarded as a sustainable alternative approach. Cathepsin L-like cysteine protease (CPL) is a potent hemoglobinase, and plays important roles in the digestion of blood acquired from a host. CPL from H. anatolicum (HanCPL) with high similarity (> 90%) for H. asiaticum CPL (HasCPL) were aligned by in silico analysis. After further in vitro validation, the anti-HasCPL sera have cross-reactivity between the different total native protein of life stages and tissues for H. asiaticum and H. anatolicum. Furthermore, we further confirmed that recombinant HasCPL (rHasCPL) immunized rabbits were partially cross-protected (54.8%) by H. anatolicum infestation.
Collapse
Affiliation(s)
- Ruiqi Song
- School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang Uygur Autonomous Region, China
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang Uygur Autonomous Region, China
| | - Xuejie Zhai
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang Uygur Autonomous Region, China
| | - Xinli Fan
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang Uygur Autonomous Region, China
| | - Yongchang Li
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang Uygur Autonomous Region, China
| | - Ting Ge
- School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang Uygur Autonomous Region, China
| | - Caishan Li
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang Uygur Autonomous Region, China
| | - Min Li
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang Uygur Autonomous Region, China
| | - Wenwen He
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang Uygur Autonomous Region, China
| | - Huizhen Zheng
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang Uygur Autonomous Region, China
| | - Lu Gan
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang Uygur Autonomous Region, China
| | - Yang Zhang
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang Uygur Autonomous Region, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Bayin Chahan
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
12
|
Ferreira Leal B, Sanchez Ferreira CA. Ticks and antibodies: May parasite density and tick evasion influence the outcomes following immunization protocols? Vet Parasitol 2021; 300:109610. [PMID: 34735848 DOI: 10.1016/j.vetpar.2021.109610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/07/2021] [Accepted: 10/19/2021] [Indexed: 11/30/2022]
Abstract
Ticks are a major concern to human health and livestock worldwide, being responsible for economic losses that go beyond billions of US dollars per year. This scenario instigates the development of vaccines against these ectoparasites, emphasized by the fact that the main method of controlling ticks still relies on the use of acaricides, what increases costs and may affect the environment as well as human and animal health. The first commercial vaccines against ectoparasites were produced against the tick Rhipicephalus microplus and their efficacy were based on antibodies. Many additional attempts have been conducted to produce protective immune responses against ticks by immunization with specific antigens and the antibody response has usually been the main target of evaluation. But some controversy still populates the roles possibly performed by humoral responses in tick-mammalian host relationships. This review focuses on the analysis of specific aspects concerning antibodies and ticks, especially the influence of parasite density and evasion/modulation. The immunization trials already described against R. microplus were also compiled and analyzed based on the characteristics of the molecules tested, protocols of immunization and tick challenge. Within these issues, it is discussed if or when antibody levels can be directly correlated with the development of tick resistance, and whether anti-tick protective immune responses generated by infestations may become ineffective under a different tick density. Also, higher titers of antibodies can be correlated with protection or susceptibility to tick infestations, what may be altered following continuous or repeated infestations and differ greatly comparing hosts with distinct genetic backgrounds. Regarding evasion, ticks present a sophisticated mechanism for dealing with antibodies, including Immunoglobulin Binding Proteins (IGBPs), that capture, transport and inject them back into the host, while keeping their properties within the parasite. The comparison of immunization protocols shows a total of 22 molecules already tested in cattle vaccination trials against R. microplus, with the predominance of concealed and dual antigens as well as marked differences in tick challenge schemes. The presence of an antibody evasion apparatus and variable levels of tick resistance when facing different densities of parasites are concerns that should be considered when testing vaccine candidates. Ultimately, more refinement may be necessary to effectively design a cocktail vaccine with tick molecules, which may be needed to be altered and combined in non-competing immune contexts to be universally secure and protective.
Collapse
Affiliation(s)
- Bruna Ferreira Leal
- Laboratório de Imunologia e Microbiologia, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, 90619-900, Porto Alegre, RS, Brazil.
| | - Carlos Alexandre Sanchez Ferreira
- Laboratório de Imunologia e Microbiologia, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. Ipiranga, 6681, 90619-900, Porto Alegre, RS, Brazil.
| |
Collapse
|
13
|
Mendoza-Martínez N, Alonso-Díaz MA, Merino O, Fernández-Salas A, Lagunes-Quintanilla R. Protective efficacy of the peptide Subolesin antigen against the cattle tick Rhipicephalus microplus under natural infestation. Vet Parasitol 2021; 299:109577. [PMID: 34560320 DOI: 10.1016/j.vetpar.2021.109577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
The cattle tick Rhipicephalus microplus affect animal health, welfare, and cattle production in tropical and subtropical zones of the world. Anti-tick vaccines have been an effective alternative for cattle tick control instead of traditional chemical products. To date, Subolesin antigen has shown efficacy for the control of tick infestation in cattle, and previous studies showed that one peptide derived from this protein has demonstrated to elicit a strong and specific humoral immune response. Based on these findings, herein we characterized the efficacy of the peptide Subolesin for the control of cattle tick, R. microplus infestation under field conditions. Twenty-four female calves were assigned to four experimental groups and immunized with three subcutaneous doses of the peptide Subolesin, Bm86, both antigens (dual vaccine) and adjuvant/saline alone, respectively. Serum antibody levels (IgG) were assessed by ELISA and confirmed by Western blot; also, reproductive performance of naturally infested R. microplus was determined. The results showed that immunizations with the experimental antigens reduced tick infestations with vaccine's efficacy of 67 % (peptide Subolesin), 56 % (Bm86), and 49 % (dual vaccine) based on adult tick numbers, oviposition, and egg fertility between vaccinated and control animals. Peptide Subolesin-immunized calves developed a strong humoral immune response expressed by high anti-pSubolesin IgG levels, and the Western blot analysis confirmed that it is immunogenic. Cattle receiving Bm86 and dual vaccine showed less protection, although Bm86 was within the range reported previously. The negative correlation between antibody levels and reduction of naturally infested R. microplus strongly suggested that the effect of the vaccine was the result of the antibody response in immunized cattle. In conclusion, it was demonstrated that the peptide Subolesin induced a specific immune response in cattle under field conditions, resulting in reduced R. microplus populations in subsequent generations. Finally, integrated tick control must consider anti-tick vaccines as a cost-effective, sustainable, and successful tool for controlling cattle tick infestations.
Collapse
Affiliation(s)
- Nancy Mendoza-Martínez
- Centro de Enseñanza, Investigación y Extensión en Ganadería Tropical, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Km. 5.5 Carretera Federal Tlapacoyan-Martínez de La Torre, C.P. 93600, Martínez de La Torre, Veracruz, Mexico
| | - Miguel Angel Alonso-Díaz
- Centro de Enseñanza, Investigación y Extensión en Ganadería Tropical, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Km. 5.5 Carretera Federal Tlapacoyan-Martínez de La Torre, C.P. 93600, Martínez de La Torre, Veracruz, Mexico
| | - Octavio Merino
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Km. 5, Carretera Victoria‑Mante, CP 87000, Ciudad Victoria, Tamaulipas, Mexico
| | - Agustín Fernández-Salas
- Centro de Enseñanza, Investigación y Extensión en Ganadería Tropical, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Km. 5.5 Carretera Federal Tlapacoyan-Martínez de La Torre, C.P. 93600, Martínez de La Torre, Veracruz, Mexico
| | - Rodolfo Lagunes-Quintanilla
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad - INIFAP, Carretera Federal Cuernavaca - Cuautla 8534, Col. Progreso, C.P. 62550, Jiutepec, Morelos, Mexico.
| |
Collapse
|
14
|
Identification and Characterization of Immunodominant Proteins from Tick Tissue Extracts Inducing a Protective Immune Response against Ixodes ricinus in Cattle. Vaccines (Basel) 2021; 9:vaccines9060636. [PMID: 34200738 PMCID: PMC8229163 DOI: 10.3390/vaccines9060636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/26/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
Ixodes ricinus is the main vector of tick-borne diseases in Europe. An immunization trial of calves with soluble extracts of I. ricinus salivary glands (SGE) or midgut (ME) previously showed a strong response against subsequent tick challenge, resulting in diminished tick feeding success. Immune sera from these trials were used for the co-immunoprecipitation of tick tissue extracts, followed by LC-MS/MS analyses. This resulted in the identification of 46 immunodominant proteins that were differentially recognized by the serum of immunized calves. Some of these proteins had previously also drawn attention as potential anti-tick vaccine candidates using other approaches. Selected proteins were studied in more detail by measuring their relative expression in tick tissues and RNA interference (RNAi) studies. The strongest RNAi phenotypes were observed for MG6 (A0A147BXB7), a protein containing eight fibronectin type III domains predominantly expressed in tick midgut and ovaries of feeding females, and SG2 (A0A0K8RKT7), a glutathione-S-transferase that was found to be upregulated in all investigated tissues upon feeding. The results demonstrated that co-immunoprecipitation of tick proteins with host immune sera followed by protein identification using LC-MS/MS is a valid approach to identify antigen–antibody interactions, and could be integrated into anti-tick vaccine discovery pipelines.
Collapse
|
15
|
Analysis of Genetic Diversity in Indian Isolates of Rhipicephalus microplus Based on Bm86 Gene Sequence. Vaccines (Basel) 2021; 9:vaccines9030194. [PMID: 33652549 PMCID: PMC7996562 DOI: 10.3390/vaccines9030194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022] Open
Abstract
The control of cattle tick, Rhipicephalus microplus, is focused on repeated use of acaricides. However, due to growing acaricide resistance and residues problem, immunization of animals along with limited use of effective acaricides is considered a suitable option for the control of tick infestations. To date, more than fifty vaccine candidates have been identified and tested worldwide, but two vaccines were developed using the extensively studied candidate, Bm86. The main reason for limited vaccine commercialization in other countries is genetic diversity in the Bm86 gene leading to considerable variation in vaccine efficacy. India, with 193.46 million cattle population distributed in 28 states and 9 union territories, is suffering from multiple tick infestation dominated by R. microplus. As R. microplus has developed multi-acaricide resistance, an efficacious vaccine may provide a sustainable intervention for tick control. Preliminary experiments revealed that the presently available commercial vaccine based on the BM86 gene is not efficacious against Indian strain. In concert with the principle of reverse vaccinology, genetic polymorphism of the Bm86 gene within Indian isolates of R. microplus was studied. A 578 bp conserved nucleotide sequences of Bm86 from 65 R. microplus isolates collected from 9 Indian states was sequenced and revealed 95.6-99.8% and 93.2-99.5% identity in nucleotides and amino acids sequences, respectively. The identities of nucleotides and deduced amino acids were 94.7-99.8% and 91.8-99.5%, respectively, between full-length sequence (orf) of the Bm86 gene of IVRI-I strain and published sequences of vaccine strains. Six nucleotides deletion were observed in Indian Bm86 sequences. Four B-cell epitopes (D519-K554, H563-Q587, C598-T606, T609-K623), which are present in the conserved region of the IVRI-I Bm86 sequence, were selected. The results confirm that the use of available commercial Bm86 vaccines is not a suitable option against Indian isolates of R. microplus. A country-specific multi-epitope Bm86 vaccine consisting of four specific B-cell epitopes along with candidate molecules, subolesin and tropomyosin in chimeric/co-immunization format may provide a sustainable option for implementation in an integrated tick management system.
Collapse
|
16
|
Song R, Zhai X, Fan X, Ge T, Li M, Cheung AKL, Hao Y, Chen S, Wei L, Ma Y, Fan S, Zhang Y, Chahan B, Guo Q. Recombinant interferon-gamma promotes immunoglobulin G and cytokine memory responses to cathepsin L-like cysteine proteinase of Hyalomma asiaticum and the efficacy of anti-tick. Vet Immunol Immunopathol 2021; 235:110201. [PMID: 33735822 DOI: 10.1016/j.vetimm.2021.110201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/15/2021] [Accepted: 02/02/2021] [Indexed: 11/19/2022]
Abstract
Among bloodsucking arthropods, hard tick is a vector of transmitting the most diverse human and animal pathogens, leading to an increasing number of manifestations worldwide. The development of the anti-tick vaccine has the potential to be an environmentally friendly and cost-effective option for tick management. We have previously demonstrated the induction of both humoral and cellular response against Hyalomma asiaticum (H. asiaticum) following immunization with recombinant cathepsin L-like cysteine protease from H. asiaticum tick (rHasCPL), and could control tick infestations. Interferon-gamma (IFN-γ), is an immunomodulatory factor that plays an important role in the regulation of adaptive immunity against infection. In the present study, recombinant BALB/c mouse IFN-γ (rMus-IFN-γ) was cloned and expressed using a prokaryotic expression system, and verified by Western blotting and IFN-γ-ELISA kit analysis. Female BALB/c mice (n = 12) were used for immunization using rHasCPL (100 μg) plus IFN-γ as adjuvant (10 μg). In immunized female BALB/c mice, the levels of anti-CPL antibodies as well as cytokines were determined using ELISA analysis. Protective efficacy of immunization was evaluated by larvae H. asiaticum challenge of immunized female BALB/c mice. Using rMus-IFN-γ as an adjuvant to rHasCPL vaccine (CPL + IFN-γ) promoted specific antibody IgG (IgG1 > IgG2a) and increased production of IFN-γ and IL-4 compared to immune rHasCPL group (CPL). The protected rate of immunized mice from tick challenge was significantly higher after immunization with CPL + IFN-γ (85.11 %) than with CPL (63.28 %). Immunization using CPL + IFN-γ promoted the activation of anti-HasCPL humoral and cellular immune responses, and could provide better protection against H. asiaticum infestation. This approach may could help develop a candidate vaccine for control tick infestations.
Collapse
Affiliation(s)
- Ruiqi Song
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China; Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Xuejie Zhai
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Xinli Fan
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Ting Ge
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Min Li
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Allen Ka Loon Cheung
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, 999077, Hong Kong Special Administrative Region
| | - Yunwei Hao
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Songqin Chen
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Liting Wei
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Ying Ma
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Shilong Fan
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Yang Zhang
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Bayin Chahan
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China.
| | - Qingyong Guo
- Parasitology Laboratory, Veterinary College, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China.
| |
Collapse
|
17
|
Kumar B, Manjunathachar HV, Ghosh S. A review on Hyalomma species infestations on human and animals and progress on management strategies. Heliyon 2020; 6:e05675. [PMID: 33319114 PMCID: PMC7726666 DOI: 10.1016/j.heliyon.2020.e05675] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/23/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
The Hyalomma species of ticks have gained additional attention due to their role in the transmission of Theileria annulata infection in animals and the Crimean-Congo Haemorrhagic Fever (CCHF) virus in humans. Apart from these, many other pathogens viz., other species of Theileria, a few species of Babesia, Rickettsia and viruses are either maintained or transmitted by this tick species. The medium to large size species with longer proboscis has inflicted additional burden on the overall impact of tick infestations. Being a multi-host species, management of the species is very challenging. Presently, the traditional method of tick management using chemical acaricides is found insufficient and unsustainable. Henceforth, the overall burden of tick infestations and tick-borne diseases are increasing gradually. After the successful development of vaccines against cattle tick, Rhipicephalus microplus, the anti-Hyalomma vaccine is considered a feasible and sustainable management option. In the recent past research on herbal acaricides and its possible application for tick control seems promising. Other eco-friendly methods are still under experimental stage. The present review is focused on impact of Hyalomma species infestation on human and animal health with special emphasis on progress on its sustainable management.
Collapse
Affiliation(s)
- Binod Kumar
- Department of Veterinary Parasitology, College of Veterinary Science & Animal Husbandry, Junagadh Agricultural University, Junagadh 362001, Gujarat, India
| | | | - Srikanta Ghosh
- Entomology Laboratory, Division of Parasitology, ICAR-Indian Veterinary Research Institute (IVRI), Izatnagar, 243122, Bareilly, India
| |
Collapse
|
18
|
Ndawula C, Amaral Xavier M, Villavicencio B, Cortez Lopes F, Juliano MA, Parizi LF, Verli H, da Silva Vaz I, Ligabue-Braun R. Prediction, mapping and validation of tick glutathione S-transferase B-cell epitopes. Ticks Tick Borne Dis 2020; 11:101445. [PMID: 32354639 DOI: 10.1016/j.ttbdis.2020.101445] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 04/02/2020] [Accepted: 04/10/2020] [Indexed: 10/24/2022]
Abstract
In search of ways to address the increasing incidence of global acaricide resistance, tick control through vaccination is regarded as a sustainable alternative approach. Recently, a novel cocktail antigen tick-vaccine was developed based on the recombinant glutathione S-transferase (rGST) anti-sera cross-reaction to glutathione S-transferases of Rhipicephalus appendiculatus (GST-Ra), Amblyomma variegatum (GST-Av), Haemaphysalis longicornis (GST-Hl), Rhipicephalus decoloratus (GST-Rd) and Rhipicephalus microplus (GST-Rm). Therefore, the current study aimed to predict the shared B-cell epitopes within the GST sequences of these tick species. Prediction of B-cell epitopes and proteasomal cleavage sites were performed using immunoinformatics algorithms. The conserved epitopes predicted within the sequences were mapped on the homodimers of the respective tick GSTs, and the corresponding peptides were independently used for rabbit immunization experiments. Based on the dot blot assay, the immunogenicity of the peptides and their potential to be recognized by corresponding rGST anti-sera raised by rabbit immunization in a previous work were investigated. This study revealed that the predicted conserved B-cell epitopes within the five tick GST sequences were localized on the surface of the respective GST homodimers. The epitopes of GST-Ra, GST-Rd, GST-Av, and GST-Hl were also shown to contain a seven residue-long peptide sequence with no proteasomal cleavage sites, whereas proteasomal digestion of GST-Rm was predicted to yield a 4-residue fragment. Given that a few proteasomal cleavage sites were found within the conserved epitope sequences of the four GSTs, the sequences could also contain a T-cell epitope. Finally, the peptide and rGST anti-sera reacted against the corresponding peptide, confirming their immunogenicity. These data support the claim that the rGSTs, used in the previous study, contain conserved B-cell epitopes, which elucidates why the rGST anti-sera cross-reacted to non-homologous tick GSTs. Taken together, the data suggest that the B-cell epitopes predicted in this study could be useful for constituting epitope-based GST tick vaccines.
Collapse
Affiliation(s)
- Charles Ndawula
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marina Amaral Xavier
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bianca Villavicencio
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fernanda Cortez Lopes
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Aparecida Juliano
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Luís Fernando Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Hugo Verli
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Rodrigo Ligabue-Braun
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Farmacociências, Universidade Federal das Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
19
|
Manjunathachar HV, Kumar B, Saravanan BC, Choudhary S, Mohanty AK, Nagar G, Chigure G, Ravi Kumar GVPPS, de la Fuente J, Ghosh S. Identification and characterization of vaccine candidates against Hyalomma anatolicum-Vector of Crimean-Congo haemorrhagic fever virus. Transbound Emerg Dis 2018; 66:422-434. [PMID: 30300470 DOI: 10.1111/tbed.13038] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/27/2018] [Accepted: 09/30/2018] [Indexed: 12/24/2022]
Abstract
Crimean-Congo haemorrhagic fever (CCHF) is a tick borne viral disease reported from different parts of the world. The distribution of the CCHF cases are linked with the distribution of the principal vector, Hyalomma anatolicum in the ecosystem. Presently, vector control is mainly dependent on repeated application of acaricides, results in partial efficacy and generated acaricide resistant tick strains. Amongst the different components of integrated management programme, immunization of hosts is considered as one of the sustainable component. To restrict CCHF virus spreading, use of anti-Hyalomma vaccines appears as a viable solution. Accordingly, present study was under taken to characterize and evaluate vaccine potential of two conserved molecules, ferritin2 (FER2) and tropomyosin (TPM). Silencing of the genes conferred a cumulative reduction (rejection + unable to engorge) of 61.3% in FER2 and 70.2% in TPM respectively. Furthermore, 44.2% and 72.7% reduction in engorgement weight, 63.6% and 94.9% reduction in egg masses in FER2 and TPM silenced ticks in comparison to LUC-control group was recorded. The recombinant protein, rHaFER2 was characterized as 35 kDa protein with pI of 5.84 and possesses iron binding domains. While rHaTPM is a 51kDa protein with pI of 4.94 having calcium binding domains. Immunization of cross-bred calves by rHaFER2 conferred 51.7% and 51.2% protection against larvae and adults of H. anatolicum challenge infestations. While rHaTPM conferred 63.7% and 66.4% protection against larvae and adults infestations, respectively. The results were comparable with the data generated by RNAi and it clearly showed the possibility for the development of anti-hyalomma vaccine to manage CCHF virus and Theileria annulata infection in human and animals.
Collapse
Affiliation(s)
| | - Binod Kumar
- Entomology Laboratory, Division of Parasitology, Indian Veterinary Research Institute (IVRI)-Izatnagar, Bareilly, India
| | | | - Suman Choudhary
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | - Ashok K Mohanty
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, Haryana, India
| | - Gaurav Nagar
- Entomology Laboratory, Division of Parasitology, Indian Veterinary Research Institute (IVRI)-Izatnagar, Bareilly, India
| | - Gajanan Chigure
- Entomology Laboratory, Division of Parasitology, Indian Veterinary Research Institute (IVRI)-Izatnagar, Bareilly, India
| | | | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Srikant Ghosh
- Entomology Laboratory, Division of Parasitology, Indian Veterinary Research Institute (IVRI)-Izatnagar, Bareilly, India
| |
Collapse
|
20
|
Artigas-Jerónimo S, Villar M, Cabezas-Cruz A, Valdés JJ, Estrada-Peña A, Alberdi P, de la Fuente J. Functional Evolution of Subolesin/Akirin. Front Physiol 2018; 9:1612. [PMID: 30542290 PMCID: PMC6277881 DOI: 10.3389/fphys.2018.01612] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/25/2018] [Indexed: 01/18/2023] Open
Abstract
The Subolesin/Akirin constitutes a good model for the study of functional evolution because these proteins have been conserved throughout the metazoan and play a role in the regulation of different biological processes. Here, we investigated the evolutionary history of Subolesin/Akirin with recent results on their structure, protein-protein interactions and function in different species to provide insights into the functional evolution of these regulatory proteins, and their potential as vaccine antigens for the control of ectoparasite infestations and pathogen infection. The results suggest that Subolesin/Akirin evolved conserving not only its sequence and structure, but also its function and role in cell interactome and regulome in response to pathogen infection and other biological processes. This functional conservation provides a platform for further characterization of the function of these regulatory proteins, and how their evolution can meet species-specific demands. Furthermore, the conserved functional evolution of Subolesin/Akirin correlates with the protective capacity shown by these proteins in vaccine formulations for the control of different arthropod and pathogen species. These results encourage further research to characterize the structure and function of these proteins, and to develop new vaccine formulations by combining Subolesin/Akirin with interacting proteins for the control of multiple ectoparasite infestations and pathogen infection.
Collapse
Affiliation(s)
- Sara Artigas-Jerónimo
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC, Universidad de Castilla-La Mancha (UCLM), Junta de Comunidades de Castilla – La Mancha (JCCM), Ciudad Real, Spain
| | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC, Universidad de Castilla-La Mancha (UCLM), Junta de Comunidades de Castilla – La Mancha (JCCM), Ciudad Real, Spain
| | - Alejandro Cabezas-Cruz
- UMR BIPAR, INRA, ANSES, Ecole Nationale Vétérinaire d’Alfort, Université Paris-Est, Paris, France
| | - James J. Valdés
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Department of Virology, Veterinary Research Institute, Brno, Czechia
| | | | - Pilar Alberdi
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC, Universidad de Castilla-La Mancha (UCLM), Junta de Comunidades de Castilla – La Mancha (JCCM), Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC, Universidad de Castilla-La Mancha (UCLM), Junta de Comunidades de Castilla – La Mancha (JCCM), Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
21
|
Sajid M, Kausar A, Iqbal A, Abbas H, Iqbal Z, Jones M. An insight into the ecobiology, vector significance and control of Hyalomma ticks (Acari: Ixodidae): A review. Acta Trop 2018; 187:229-239. [PMID: 30118698 DOI: 10.1016/j.actatropica.2018.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/10/2018] [Accepted: 08/12/2018] [Indexed: 12/28/2022]
Abstract
Ticks (Acari:Ixodoidea) are important ectoparasites infesting livestock and human populations around the globe. Ticks can cause damage directly by affecting the site of infestation, or indirectly as vectors of a wide range of protozoa, bacteria and viruses which ultimately lead to lowered productivity of livestock populations. Hyalomma is a genus of hard ticks, having more than 30 species well-adapted to hot, humid and cold climates. Habitat diversity, vector ability, and emerging problem of acaricidal resistance in enzootic regions typify this genus in various countries around the world. This paper reviews the epidemiology, associated risk factors (temperature, climate, age, sex, breed etc.), vector role, vector-pathogen association, and reported control strategies of genus Hyalomma. The various proteins in saliva of Hyalomma secreted into the blood stream of host and the prolonged attachment are responsible for the successful engorgement of female ticks in spite of host immune defense system. The various immunological approaches that have been tried by researchers in order to cause tick rejection are also discussed. In addition, the novel biological control approaches involving the use of entomo-pathogenic nematodes and Bacillus thuringiensis (B. thuringiensis) serovar thuringiensis H14; an endotoxin, for their acaricidal effect on different species and life cycle stages of Hyalomma are also presented.
Collapse
|
22
|
Artigas-Jerónimo S, De La Fuente J, Villar M. Interactomics and tick vaccine development: new directions for the control of tick-borne diseases. Expert Rev Proteomics 2018; 15:627-635. [PMID: 30067120 DOI: 10.1080/14789450.2018.1506701] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Ticks are obligate hematophagous arthropod ectoparasites that transmit pathogens responsible for a growing number of tick-borne diseases (TBDs) throughout the world. Vaccines have been shown to be the most efficient, cost-effective, and environmentally friendly approach for the control of ticks and the prevention of TBDs. Although at its infancy, interactomics has shown the possibilities that the knowledge of the interactome offers in understanding tick biology and the molecular mechanisms involved in pathogen infection and transmission. Furthermore, interactomics has provided information for the identification of candidate vaccine protective antigens. Areas covered: In this special report, we review the different approaches used for the study of protein-protein physical and functional interactions, and summarize the application of interactomics to the characterization of tick biology and tick-host-pathogen interactions, and the possibilities that offers to vaccine development for the control of ticks and TBDs. Expert commentary: The combination of interacting proteins in antigen formulations may increase vaccine efficacy. In the near future, the combination of interactomics with other omics approaches such as transcriptomics, proteomics, metabolomics, and regulomics together with intelligent Big Data analytic techniques will improve the high throughput discovery and characterization of vaccine protective antigens for the prevention and control of TBDs.
Collapse
Affiliation(s)
- Sara Artigas-Jerónimo
- a SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM , Ciudad Real , Spain
| | - José De La Fuente
- a SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM , Ciudad Real , Spain.,b Department of Veterinary Pathobiology , Center for Veterinary Health Sciences, Oklahoma State University , Stillwater OK , USA
| | - Margarita Villar
- a SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM , Ciudad Real , Spain
| |
Collapse
|
23
|
Oleaga A, Obolo-Mvoulouga P, Manzano-Román R, Pérez-Sánchez R. De novo assembly and analysis of midgut transcriptome of the argasid tick Ornithodoros erraticus and identification of genes differentially expressed after blood feeding. Ticks Tick Borne Dis 2018; 9:1537-1554. [PMID: 30093291 DOI: 10.1016/j.ttbdis.2018.06.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 10/28/2022]
Abstract
Ticks are hematophagous vectors of great medical and veterinary importance because they transmit numerous pathogenic microorganisms to humans and animals. The argasid Ornithodoros erraticus is the main vector of tick-borne human relapsing fever and African swine fever in the Mediterranean Basin. Tick enterocytes express bioactive molecules that perform key functions in blood digestion, feeding, toxic waste processing and pathogen transmission. To explore new strategies for tick control, in this work we have obtained and compared the midgut transcriptomes of O. erraticus female ticks before and after a blood meal and identified the genes whose expression is differentially regulated after feeding. The transcript sequences were annotated, functionally and structurally characterised and their expression levels compared between both physiological conditions (unfed females and fed females at 2 days post-engorgement). Up to 29,025 transcripts were assembled, and 9290 of them corresponded to differentially expressed genes (DEGs) after feeding. Of these, 4656 genes were upregulated and nearly the same number of genes was downregulated in fed females compared to unfed females. BLASTN and BLASTX analyses of the 29,025 transcripts allowed the annotation of 9072 transcripts/proteins. Among them, the most numerous were those with catalytic and binding activities and those involved in diverse metabolic pathways and cellular processes. The analyses of functional groups of upregulated DEGs potentially related to the digestion of proteins, carbohydrates and lipids, and the genes involved in the defence response and response to oxidative stress, confirm that these processes are narrowly regulated in ticks, highlighting their complexity and importance in tick biology. The expression patterns of six genes throughout the blood digestion period revealed significant differences between these patterns, strongly suggesting that the transcriptome composition is highly dynamic and subjected to important variation along the trophogonic cycle. This may guide future studies aimed at improving the understanding of the molecular physiology of tick digestion and digestion-related processes. The current work provides a more robust and comprehensive understanding of the argasid tick digestive system.
Collapse
Affiliation(s)
- Ana Oleaga
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| | - Prosper Obolo-Mvoulouga
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| | - Raúl Manzano-Román
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| | - Ricardo Pérez-Sánchez
- Parasitology Laboratory, Institute of Natural Resources and Agrobiology (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| |
Collapse
|
24
|
Stutzer C, Richards SA, Ferreira M, Baron S, Maritz-Olivier C. Metazoan Parasite Vaccines: Present Status and Future Prospects. Front Cell Infect Microbiol 2018; 8:67. [PMID: 29594064 PMCID: PMC5859119 DOI: 10.3389/fcimb.2018.00067] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/26/2018] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic parasites and pathogens continue to cause some of the most detrimental and difficult to treat diseases (or disease states) in both humans and animals, while also continuously expanding into non-endemic countries. Combined with the ever growing number of reports on drug-resistance and the lack of effective treatment programs for many metazoan diseases, the impact that these organisms will have on quality of life remain a global challenge. Vaccination as an effective prophylactic treatment has been demonstrated for well over 200 years for bacterial and viral diseases. From the earliest variolation procedures to the cutting edge technologies employed today, many protective preparations have been successfully developed for use in both medical and veterinary applications. In spite of the successes of these applications in the discovery of subunit vaccines against prokaryotic pathogens, not many targets have been successfully developed into vaccines directed against metazoan parasites. With the current increase in -omics technologies and metadata for eukaryotic parasites, target discovery for vaccine development can be expedited. However, a good understanding of the host/vector/pathogen interface is needed to understand the underlying biological, biochemical and immunological components that will confer a protective response in the host animal. Therefore, systems biology is rapidly coming of age in the pursuit of effective parasite vaccines. Despite the difficulties, a number of approaches have been developed and applied to parasitic helminths and arthropods. This review will focus on key aspects of vaccine development that require attention in the battle against these metazoan parasites, as well as successes in the field of vaccine development for helminthiases and ectoparasites. Lastly, we propose future direction of applying successes in pursuit of next generation vaccines.
Collapse
Affiliation(s)
- Christian Stutzer
- Tick Vaccine Group, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | | | | | | | | |
Collapse
|