1
|
Szabó D, Crowe A, Mamotte C, Strappe P. Natural products as a source of Coronavirus entry inhibitors. Front Cell Infect Microbiol 2024; 14:1353971. [PMID: 38449827 PMCID: PMC10915212 DOI: 10.3389/fcimb.2024.1353971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/01/2024] [Indexed: 03/08/2024] Open
Abstract
The COVID-19 pandemic has had a significant and lasting impact on the world. Four years on, despite the existence of effective vaccines, the continuous emergence of new SARS-CoV-2 variants remains a challenge for long-term immunity. Additionally, there remain few purpose-built antivirals to protect individuals at risk of severe disease in the event of future coronavirus outbreaks. A promising mechanism of action for novel coronavirus antivirals is the inhibition of viral entry. To facilitate entry, the coronavirus spike glycoprotein interacts with angiotensin converting enzyme 2 (ACE2) on respiratory epithelial cells. Blocking this interaction and consequently viral replication may be an effective strategy for treating infection, however further research is needed to better characterize candidate molecules with antiviral activity before progressing to animal studies and clinical trials. In general, antiviral drugs are developed from purely synthetic compounds or synthetic derivatives of natural products such as plant secondary metabolites. While the former is often favored due to the higher specificity afforded by rational drug design, natural products offer several unique advantages that make them worthy of further study including diverse bioactivity and the ability to work synergistically with other drugs. Accordingly, there has recently been a renewed interest in natural product-derived antivirals in the wake of the COVID-19 pandemic. This review provides a summary of recent research into coronavirus entry inhibitors, with a focus on natural compounds derived from plants, honey, and marine sponges.
Collapse
Affiliation(s)
- Dávid Szabó
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Andrew Crowe
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Cyril Mamotte
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- Curtin Medical School, Curtin University, Bentley, WA, Australia
| | - Padraig Strappe
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
- Curtin Medical School, Curtin University, Bentley, WA, Australia
| |
Collapse
|
2
|
Liu J, Lu X, Li X, Huang W, Fang E, Li W, Liu X, Liu M, Li J, Li M, Zhang Z, Song H, Ying B, Li Y. Construction and immunogenicity of an mRNA vaccine against chikungunya virus. Front Immunol 2023; 14:1129118. [PMID: 37006310 PMCID: PMC10050897 DOI: 10.3389/fimmu.2023.1129118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Chikungunya fever (CHIKF) has spread to more than 100 countries worldwide, with frequent outbreaks in Europe and the Americas in recent years. Despite the relatively low lethality of infection, patients can suffer from long-term sequelae. Until now, no available vaccines have been approved for use; however, increasing attention is being paid to the development of vaccines against chikungunya virus (CHIKV), and the World Health Organization has included vaccine development in the initial blueprint deliverables. Here, we developed an mRNA vaccine using the nucleotide sequence encoding structural proteins of CHIKV. And immunogenicity was evaluated by neutralization assay, Enzyme-linked immunospot assay and Intracellular cytokine staining. The results showed that the encoded proteins elicited high levels of neutralizing antibody titers and T cell-mediated cellular immune responses in mice. Moreover, compared with the wild-type vaccine, the codon-optimized vaccine elicited robust CD8+ T-cell responses and mild neutralizing antibody titers. In addition, higher levels of neutralizing antibody titers and T-cell immune responses were obtained using a homologous booster mRNA vaccine regimen of three different homologous or heterologous booster immunization strategies. Thus, this study provides assessment data to develop vaccine candidates and explore the effectiveness of the prime-boost approach.
Collapse
Affiliation(s)
- Jingjing Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Division of Arboviral Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Xishan Lu
- Department of Preclinical Vaccine Research, Suzhou Abogen Biosciences Co., Ltd., Suzhou, China
| | - Xingxing Li
- Division of Arboviral Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Enyue Fang
- Division of Arboviral Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Wenjuan Li
- Division of Arboviral Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Xiaohui Liu
- Division of Arboviral Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Minglei Liu
- Division of Arboviral Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Jia Li
- Division of Arboviral Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Ming Li
- Division of Arboviral Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Zelun Zhang
- Division of Arboviral Vaccines, National Institutes for Food and Drug Control, Beijing, China
| | - Haifeng Song
- Department of Preclinical Vaccine Research, Suzhou Abogen Biosciences Co., Ltd., Suzhou, China
| | - Bo Ying
- Department of Preclinical Vaccine Research, Suzhou Abogen Biosciences Co., Ltd., Suzhou, China
- *Correspondence: Yuhua Li, ; Bo Ying,
| | - Yuhua Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Division of Arboviral Vaccines, National Institutes for Food and Drug Control, Beijing, China
- *Correspondence: Yuhua Li, ; Bo Ying,
| |
Collapse
|
3
|
Pseudotyped Viruses for Lyssavirus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:191-208. [PMID: 36920698 DOI: 10.1007/978-981-99-0113-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Lyssaviruses, which belong to the family Rhabdoviridae, are enveloped and bullet-shaped ssRNA viruses with genetic diversity. All members of Lyssavirus genus are known to infect warm-blooded animals and cause the fatal disease rabies. The rabies virus (RABV) in lyssavirus is the major pathogen to cause fatal rabies. The pseudotyped RABV is constructed to study the biological functions of G protein and evaluation of anti-RABV products including vaccine-induced antisera, rabies immunoglobulins (RIG), neutralizing mAbs, and other antiviral inhibitors. In this chapter, we focus on RABV as a representative and describe the construction of RABV G protein bearing pseudotyped virus and its applications. Other non-RABV lyssaviruses are also included.
Collapse
|
4
|
Wu J, Huang W, Wang Y. Pseudotyped Viruses for the Alphavirus Chikungunya Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:299-312. [PMID: 36920704 DOI: 10.1007/978-981-99-0113-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Members of the genus Alphavirus are mostly mosquito-borne pathogens that cause disease in their vertebrate hosts. Chikungunya virus (CHIKV), which is one member of the genus Alphavirus [1], has been a major health problem in endemic areas since its re-emergence in 2006. CHIKV is transmitted to mammalian hosts by the Aedes mosquito, causing persistent debilitating symptoms in many cases. At present, there is no specific treatment or vaccine. Experiments involving live CHIKV need to be performed in BSL-3 facilities, which limits vaccine and drug research. The emergence of pseudotyped virus technology offered the potential for the development of a safe and effective evaluation method. In this chapter, we review the construction and application of pseudotyped CHIKVs, the findings from which have enhanced our understanding of CHIKV. This will, in turn, enable the exploration of promising therapeutic strategies in animal models, with the ultimate aim of developing effective treatments and vaccines against CHIKV and other related viruses.
Collapse
Affiliation(s)
- Jiajing Wu
- Beijing Yunling Biotechnology Co., Ltd, Beijing, China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC) and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, China
| | - Youchun Wang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Institute of Medical Biology, Chinese Academy of Medicine Sciences & Peking Union Medical College, Kunming, China.
| |
Collapse
|
5
|
Application of Pseudotyped Viruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:45-60. [PMID: 36920691 DOI: 10.1007/978-981-99-0113-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Highly pathogenic emerging and reemerging viruses have serious public health and socioeconomic implications. Although conventional live virus research methods can more reliably investigate disease pathogenicity and evaluate antiviral products, they usually depend on high-level biosafety laboratories and skilled researchers; these requirements hinder in vitro assessments of efficacy, as well as efforts to test vaccines and antibody drugs. In contrast, pseudotyped viruses (i.e., single-round infectious viruses that mimic the membrane structures of various live viruses) are widely used in studies of highly pathogenic viruses because they can be handled in biosafety level 2 facilities. This chapter provides a concise overview of various aspects of pseudotyped virus technologies, including (1) exploration of the mechanisms of viral infection; (2) evaluation of the efficacies of vaccines and monoclonal antibodies based on pseudovirion-based neutralization assay; (3) assessment of antiviral agents (i.e., antibody-based drugs and inhibitors); (4) establishment of animal models of pseudotyped virus infection in vivo; (5) investigation of the evolution, infectivity, and antigenicity of viral variants and viral glycosylation; and (6) prediction of antibody-dependent cell-mediated cytotoxic activity.
Collapse
|
6
|
Preparation and application of chikungunya pseudovirus containing double reporter genes. Sci Rep 2022; 12:9844. [PMID: 35701460 PMCID: PMC9194775 DOI: 10.1038/s41598-022-13230-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/23/2022] [Indexed: 11/18/2022] Open
Abstract
Chikungunya virus (CHIKV), a highly infectious and rapidly spread viral pathogen, is classified as a pathogenic agent at the biosafety level 3. Operation of live authentic CHIKV needs a specific laboratory with the P3 or above containment, which greatly confines the CHIKV-associated studies. To establish an evaluation system of CHIKV that can be utilized in a BSL2 laboratory, we constructed a pseudovirus (PsV) system of CHIKV containing double reporter genes (ZsGreen1 and luciferase). The fluorescent ZsGreen1 is a convenient and cheap reporter for monitoring the efficiency of transfection and titration of PsV. The enzyme luciferase is a sensitive reporter for the application of PsV to neutralization assay or drug screening. The CHIKV PsV produced in this study, with a titer of up to 3.16 × 106 TU/ml, was confirmed by Western blotting and transmission electronic microscopy (TEM). Finally, we developed a microneutralization assay with the CHIKV PsV produced in this study, which was successfully applied to evaluate neutralizing activities of convalescent sera from CHIKV-infected patients. In summary, we have established a convenient and sensitive double-reporter CHIKV pseudovirus system, which provides a safe and effective platform for screening anti-CHIKV drugs and evaluating vaccines against CHIKV.
Collapse
|
7
|
Xiang Q, Li L, Wu J, Tian M, Fu Y. Application of pseudovirus system in the development of vaccine, antiviral-drugs, and neutralizing antibodies. Microbiol Res 2022; 258:126993. [PMID: 35240544 PMCID: PMC8848573 DOI: 10.1016/j.micres.2022.126993] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/12/2022] [Accepted: 02/13/2022] [Indexed: 12/16/2022]
Abstract
Pseudoviruses are viral particles coated with a heterologous envelope protein, which mediates the entry of pseudoviruses as efficiently as that of the live viruses possessing high pathogenicity and infectivity. Due to the deletion of the envelope protein gene and the absence of pathogenic genes, pseudoviruses have no autonomous replication ability and can infect host cells for only a single cycle. In addition, pseudoviruses have the desired characteristics of high safety, strong operability, and can be easily used to perform rapid throughput detection. Therefore, pseudoviruses are widely employed in the mechanistic investigation of viral infection, the screening and evaluation of monoclonal antibodies and antiviral drugs, and the detection of neutralizing antibody titers in serum after vaccination. In this review, we will discuss the construction of pseudoviruses based on different packaging systems, their current applications especially in the research of SARS-CoV-2, limitations, and further directions.
Collapse
Affiliation(s)
- Qi Xiang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Linhao Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jie Wu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Miao Tian
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
8
|
Balinsky C, Jani V, Sun P, Williams M, Defang G, Porter KR. Pseudovirus-Based Assays for the Measurement of Antibody-Mediated Neutralization of SARS-CoV-2. Methods Mol Biol 2022; 2452:361-378. [PMID: 35554917 DOI: 10.1007/978-1-0716-2111-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
SARS-CoV-2 has emerged as a significant cause of morbidity and mortality worldwide. Virus neutralization assays are critical for the development and evaluation of vaccines and immunotherapeutics, as well as for conducting basic research into the immune response, spread, and pathogenesis of this disease. However, neutralization assays traditionally require the use of infectious virus which must be carefully handled in a BSL-3 setting, thus complicating the assay and restricting its use to labs with access to BSL-3 facilities. Pseudovirus-based assays are an alternative to the use of infectious virus. SARS-CoV-2 pseudovirus contains only the spike structural protein, and infection results in a single round of replication, thus allowing for the assay to be run safely under BSL-2 conditions. In this chapter, we describe protocols and considerations for the production and titration of lentivirus-based SARS-CoV-2 pseudovirus, as well as for running and analysis of FACS-based pseudovirus neutralization assays.
Collapse
Affiliation(s)
- Corey Balinsky
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Vihasi Jani
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Peifang Sun
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD, USA
| | - Maya Williams
- Chemistry Division, US Naval Research Laboratory, Washington, DC, USA
| | - Gabriel Defang
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD, USA
| | - Kevin R Porter
- Viral and Rickettsial Diseases Department, Naval Medical Research Center, Silver Spring, MD, USA
| |
Collapse
|
9
|
Nie J, Li Q, Wu J, Zhao C, Hao H, Liu H, Zhang L, Nie L, Qin H, Wang M, Lu Q, Li X, Sun Q, Liu J, Fan C, Huang W, Xu M, Wang Y. Establishment and validation of a pseudovirus neutralization assay for SARS-CoV-2. Emerg Microbes Infect 2020; 9:680-686. [PMID: 32207377 PMCID: PMC7144318 DOI: 10.1080/22221751.2020.1743767] [Citation(s) in RCA: 560] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pseudoviruses are useful virological tools because of their safety and versatility, especially for emerging and re-emerging viruses. Due to its high pathogenicity and infectivity and the lack of effective vaccines and therapeutics, live SARS-CoV-2 has to be handled under biosafety level 3 conditions, which has hindered the development of vaccines and therapeutics. Based on a VSV pseudovirus production system, a pseudovirus-based neutralization assay has been developed for evaluating neutralizing antibodies against SARS-CoV-2 in biosafety level 2 facilities. The key parameters for this assay were optimized, including cell types, cell numbers, virus inoculum. When tested against the SARS-CoV-2 pseudovirus, SARS-CoV-2 convalescent patient sera showed high neutralizing potency, which underscore its potential as therapeutics. The limit of detection for this assay was determined as 22.1 and 43.2 for human and mouse serum samples respectively using a panel of 120 negative samples. The cutoff values were set as 30 and 50 for human and mouse serum samples, respectively. This assay showed relatively low coefficient of variations with 15.9% and 16.2% for the intra- and inter-assay analyses respectively. Taken together, we established a robust pseudovirus-based neutralization assay for SARS-CoV-2 and are glad to share pseudoviruses and related protocols with the developers of vaccines or therapeutics to fight against this lethal virus.
Collapse
Affiliation(s)
- Jianhui Nie
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Qianqian Li
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China.,Graduate School of Peking Union Medical College, Beijing, People's Republic of China
| | - Jiajing Wu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China.,Wuhan Institute of Biological Products, Wuhan, People's Republic of China
| | - Chenyan Zhao
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Huan Hao
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Huan Liu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Li Zhang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Lingling Nie
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Haiyang Qin
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Meng Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Qiong Lu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Xiaoyu Li
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Qiyu Sun
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Junkai Liu
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Changfa Fan
- Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Weijin Huang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China
| | - Miao Xu
- Institute for Biological Product Control, National Institutes for Food and Drug Control, Beijing, People's Republic of China
| | - Youchun Wang
- Division of HIV/AIDS and Sex-transmitted Virus Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control (NIFDC), Beijing, People's Republic of China.,Graduate School of Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
10
|
Development of a neutralization assay based on the pseudotyped chikungunya virus of a Korean isolate. J Microbiol 2019; 58:46-53. [PMID: 31768937 PMCID: PMC7091072 DOI: 10.1007/s12275-020-9384-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/07/2019] [Accepted: 10/07/2019] [Indexed: 11/05/2022]
Abstract
The Chikungunya virus (CHIKV) belongs to the Alphavirus genus of Togaviridae family and contains a positive-sense single stranded RNA genome. Infection by this virus mainly causes sudden high fever, rashes, headache, and severe joint pain that can last for several months or years. CHIKV, a mosquito-borne arbovirus, is considered a re-emerging pathogen that has become one of the most pressing global health concerns due to a rapid increase in epidemics. Because handling of CHIKV is restricted to Biosafety Level 3 (BSL-3) facilities, the evaluation of prophylactic vaccines or antivirals has been substantially hampered. In this study, we first iden-tified the whole structural polyprotein sequence of a CHIKV strain isolated in South Korea (KNIH/2009/77). Phylogenetic analysis showed that this sequence clustered within the East/ Central/South African CHIKV genotype. Using this sequence information, we constructed a CHIKV-pseudotyped lenti-virus expressing the structural polyprotein of the Korean CHIKV isolate (CHIKVpseudo) and dual reporter genes of green fluorescence protein and luciferase. We then developed a pseudovirus-based neutralization assay (PBNA) using CHIKVpseudo. Results from this assay compared to those from the conventional plaque reduction neutralization test showed that our PBNA was a reliable and rapid method to evaluate the efficacy of neutralizing antibodies. More importantly, the neutralizing activities of human sera from CHIKV-infected individuals were quantitated by PBNA using CHIKVpseudo. Taken together, these results suggest that our PBNA for CHIKV may serve as a useful and safe method for testing the neutralizing activity of antibodies against CHIKV in BSL-2 facilities.
Collapse
|
11
|
Nie J, Liu L, Wang Q, Chen R, Ning T, Liu Q, Huang W, Wang Y. Nipah pseudovirus system enables evaluation of vaccines in vitro and in vivo using non-BSL-4 facilities. Emerg Microbes Infect 2019; 8:272-281. [PMID: 30866781 PMCID: PMC6455126 DOI: 10.1080/22221751.2019.1571871] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Because of its high infectivity in humans and the lack of effective vaccines, Nipah virus is classified as a category C agent and handling has to be performed under biosafety level 4 conditions in non-endemic countries, which has hindered the development of vaccines. Based on a highly efficient pseudovirus production system using a modified HIV backbone vector, a pseudovirus-based mouse model has been developed for evaluating the efficacy of Nipah vaccines in biosafety level 2 facilities. For the first time, the correlates of protection have been identified in a mouse model. The limited levels of neutralizing antibodies against immunogens fusion protein (F), glycoprotein (G), and combination of F and G (FG) were found to be 148, 275, and 115, respectively, in passive immunization. Relatively lower limited levels of protection of 52, and 170 were observed for immunogens F, and G, respectively, in an active immunization model. Although the minimal levels for protection of neutralizing antibody in passive immunization were slightly higher than those in active immunization, neutralizing antibody played a key role in protection against Nipah virus infection. The immunogens F and G provided similar protection, and the combination of these immunogens did not provide better outcomes. Either immunogen F or G would provide sufficient protection for Nipah vaccine. The Nipah pseudovirus mouse model, which does not involve highly pathogenic virus, has the potential to greatly facilitate the standardization and implementation of an assay to propel the development of NiV vaccines.
Collapse
Affiliation(s)
- Jianhui Nie
- a Division of HIV/AIDS and Sexually Transmitted Virus Vaccines , National Institutes for Food and Drug Control (NIFDC) , Beijing , People's Republic of China
| | - Lin Liu
- a Division of HIV/AIDS and Sexually Transmitted Virus Vaccines , National Institutes for Food and Drug Control (NIFDC) , Beijing , People's Republic of China
| | - Qing Wang
- a Division of HIV/AIDS and Sexually Transmitted Virus Vaccines , National Institutes for Food and Drug Control (NIFDC) , Beijing , People's Republic of China
| | - Ruifeng Chen
- a Division of HIV/AIDS and Sexually Transmitted Virus Vaccines , National Institutes for Food and Drug Control (NIFDC) , Beijing , People's Republic of China
| | - Tingting Ning
- a Division of HIV/AIDS and Sexually Transmitted Virus Vaccines , National Institutes for Food and Drug Control (NIFDC) , Beijing , People's Republic of China
| | - Qiang Liu
- a Division of HIV/AIDS and Sexually Transmitted Virus Vaccines , National Institutes for Food and Drug Control (NIFDC) , Beijing , People's Republic of China
| | - Weijin Huang
- a Division of HIV/AIDS and Sexually Transmitted Virus Vaccines , National Institutes for Food and Drug Control (NIFDC) , Beijing , People's Republic of China
| | - Youchun Wang
- a Division of HIV/AIDS and Sexually Transmitted Virus Vaccines , National Institutes for Food and Drug Control (NIFDC) , Beijing , People's Republic of China
| |
Collapse
|
12
|
Theillet G, Grard G, Galla M, Maisse C, Enguehard M, Cresson M, Dalbon P, Leparc-Goffart IL, Bedin F. Detection of chikungunya virus-specific IgM on laser-cut paper-based device using pseudo-particles as capture antigen. J Med Virol 2019; 91:899-910. [PMID: 30734316 DOI: 10.1002/jmv.25420] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 01/11/2023]
Abstract
The incidence of arbovirus infections has increased dramatically in recent decades, affecting hundreds of millions of people each year. The Togaviridae family includes the chikungunya virus (CHIKV), which is typically transmitted by Aedes mosquitoes and causes a wide range of symptoms from flu-like fever to severe arthralgia. Although conventional diagnostic tests can provide early diagnosis of CHIKV infections, access to these tests is often limited in developing countries. Consequently, there is an urgent need to develop efficient, affordable, simple, rapid, and robust diagnostic tools that can be used in point-of-care settings. Early diagnosis is crucial to improve patient management and to reduce the risk of complications. A glass-fiber laser-cut microfluidic device (paper-based analytical device [PAD]) was designed and evaluated in a proof of principle context, for the analysis of 30 µL of patient serum. Biological raw materials used for the functionalization of the PAD were first screened by MAC-ELISA (IgM capture enzyme-linked immunosorbent assay) for CHIKV Immunoglobulin M (IgM) capture and then evaluated on the PAD using various human samples. Compared with viral lysate traditionally used for chikungunya (CHIK) serology, CHIKV pseudo-particles (PPs) have proven to be powerful antigens for specific IgM capture. The PAD was able to detect CHIKV IgM in human sera in less than 10 minutes. Results obtained in patient sera showed a sensitivity of 70.6% and a specificity of around 98%. The PAD showed few cross-reactions with other tropical viral diseases. The PAD could help health workers in the early diagnosis of tropical diseases such as CHIK, which require specific management protocols in at-risk populations.
Collapse
Affiliation(s)
- Gerald Theillet
- bioMérieux, Innovations New Immuno-Concepts department, Chemin de l'Orme, Marcy-l'Etoile, France.,Unité des Virus Emergents (UVE: Aix-Marseille Univ, IRD 190, Inserm 1207, IHU Méditerranée Infection), Marseille, France
| | - Gilda Grard
- Unité des Virus Emergents (UVE: Aix-Marseille Univ, IRD 190, Inserm 1207, IHU Méditerranée Infection), Marseille, France.,IRBA, Unité de virologie, CNR des Arbovirus, HIA Laveran, Marseille, France
| | - Mathilde Galla
- Unité des Virus Emergents (UVE: Aix-Marseille Univ, IRD 190, Inserm 1207, IHU Méditerranée Infection), Marseille, France.,IRBA, Unité de virologie, CNR des Arbovirus, HIA Laveran, Marseille, France
| | - Carine Maisse
- Infections Virales et Pathologie Comparée, UMR754, INRA, Univ Claude Bernard Lyon1, Lyon, France
| | - Margot Enguehard
- Ecologie Microbienne CNRS UMR 5557, INRA UMR1418, Villeurbanne, France.,CAS Key Laboratory of Molecular Virology and Immunology, Unit of Interspecies transmission of arboviruses and antivirals, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Marie Cresson
- CAS Key Laboratory of Molecular Virology and Immunology, Unit of Interspecies transmission of arboviruses and antivirals, Institut Pasteur of Shanghai, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,IVPC UMR754, INRA, Univ Lyon, Université Claude Bernard Lyon 1, EPHE, PSL Research University, Lyon, France
| | - Pascal Dalbon
- bioMérieux, Innovations New Immuno-Concepts department, Chemin de l'Orme, Marcy-l'Etoile, France
| | - Isabelle Leparc Leparc-Goffart
- Unité des Virus Emergents (UVE: Aix-Marseille Univ, IRD 190, Inserm 1207, IHU Méditerranée Infection), Marseille, France.,IRBA, Unité de virologie, CNR des Arbovirus, HIA Laveran, Marseille, France
| | - Frederic Bedin
- bioMérieux, Innovations New Immuno-Concepts department, Chemin de l'Orme, Marcy-l'Etoile, France
| |
Collapse
|
13
|
Theillet G, Martinez J, Steinbrugger C, Lavillette D, Coutard B, Papageorgiou N, Dalbon P, Leparc-Goffart I, Bedin F. Comparative study of chikungunya Virus-Like Particles and Pseudotyped-Particles used for serological detection of specific immunoglobulin M. Virology 2019; 529:195-204. [PMID: 30721816 DOI: 10.1016/j.virol.2019.01.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 01/28/2023]
Abstract
The incidence of chikungunya virus (CHIKV) infection has increased dramatically in recent decades. Effective diagnostic methods must be available to optimize patient management. IgM-capture Enzyme-Linked Immunosorbent Assay (MAC-ELISA) is routinely used for the detection of specific CHIKV IgM. This method requires inactivated CHIKV viral lysate (VL). The use of viral bioparticles such as Virus-Like Particles (VLPs) and Pseudotyped-Particles (PPs) could represent an alternative to VL. Bioparticles performances were established by MAC-ELISA; physico-chemical characterizations were performed by field-flow fractionation (HF5) and confirmed by electron microscopy. Non-purified PPs give a detection signal higher than for VL. Results suggested that the signal difference observed in MAC-ELISA was probably due to the intrinsic antigenic properties of particles. The use of CHIKV bioparticles such as VLPs and PPs represents an attractive alternative to VL. Compared to VL and VLPs, non-purified PPs have proven to be more powerful antigens for specific IgM capture.
Collapse
Affiliation(s)
- Gérald Theillet
- bioMérieux, Innovation New Immuno-Concepts, Chemin de l'Orme, 69280 Marcy-l'Etoile, France; Unité des Virus Emergents (UVE: Aix-Marseille Univ. - IRD 190 - Inserm 1207 - IHU Méditerranée Infection), Marseille, France.
| | - Jérôme Martinez
- bioMérieux, R&D Immunoassays dpt., Biomolecule Engineering - bioMAP, Chemin de l'Orme, 69280 Marcy-l'Etoile, France.
| | - Christophe Steinbrugger
- bioMérieux, R&D Immunoassays dpt., Biomolecule Engineering - bioMAP, Chemin de l'Orme, 69280 Marcy-l'Etoile, France.
| | - Dimitri Lavillette
- Unit of Interspecies Transmission of Arboviruses and Antivirals, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
| | - Bruno Coutard
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | | | - Pascal Dalbon
- bioMérieux, Innovation New Immuno-Concepts, Chemin de l'Orme, 69280 Marcy-l'Etoile, France.
| | - Isabelle Leparc-Goffart
- Unité des Virus Emergents (UVE: Aix-Marseille Univ. - IRD 190 - Inserm 1207 - IHU Méditerranée Infection), Marseille, France; IRBA, Unité de virologie - CNR des Arbovirus, HIA Laveran - CS50004, 13384 Marseille cedex, France
| | - Frédéric Bedin
- bioMérieux, Innovation New Immuno-Concepts, Chemin de l'Orme, 69280 Marcy-l'Etoile, France.
| |
Collapse
|
14
|
Kendall LV, Owiny JR, Dohm ED, Knapek KJ, Lee ES, Kopanke JH, Fink M, Hansen SA, Ayers JD. Replacement, Refinement, and Reduction in Animal Studies With Biohazardous Agents. ILAR J 2019; 59:177-194. [DOI: 10.1093/ilar/ily021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 06/11/2018] [Indexed: 12/17/2022] Open
Abstract
Abstract
Animal models are critical to the advancement of our knowledge of infectious disease pathogenesis, diagnostics, therapeutics, and prevention strategies. The use of animal models requires thoughtful consideration for their well-being, as infections can significantly impact the general health of an animal and impair their welfare. Application of the 3Rs—replacement, refinement, and reduction—to animal models using biohazardous agents can improve the scientific merit and animal welfare. Replacement of animal models can use in vitro techniques such as cell culture systems, mathematical models, and engineered tissues or invertebrate animal hosts such as amoeba, worms, fruit flies, and cockroaches. Refinements can use a variety of techniques to more closely monitor the course of disease. These include the use of biomarkers, body temperature, behavioral observations, and clinical scoring systems. Reduction is possible using advanced technologies such as in vivo telemetry and imaging, allowing longitudinal assessment of animals during the course of disease. While there is no single method to universally replace, refine, or reduce animal models, the alternatives and techniques discussed are broadly applicable and they should be considered when infectious disease animal models are developed.
Collapse
Affiliation(s)
- Lon V Kendall
- Department of Microbiology, Immunology and Pathology, and Laboratory Animal Resources, Colorado State University, Fort Collins, Colorado
| | - James R Owiny
- Laboratory Animal Resources, Colorado State University, Fort Collins, Colorado
| | - Erik D Dohm
- Animal Resources Program, University of Alabama, Birmingham, Alabama
| | - Katie J Knapek
- Comparative Medicine Training Program, Colorado State University, Fort Collins, Colorado
| | - Erin S Lee
- Animal Resource Center, University of Texas Medical Branch, Galveston, Texas
| | - Jennifer H Kopanke
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Michael Fink
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri
| | - Sarah A Hansen
- Office of Animal Resources, University of Iowa, Iowa City, Iowa
| | - Jessica D Ayers
- Laboratory Animal Resources, Colorado State University, Fort Collins, Colorado
| |
Collapse
|