1
|
McKay PF, Zhou J, Frise R, Blakney AK, Bouton CR, Wang Z, Hu K, Samnuan K, Brown JC, Kugathasan R, Yeow J, Stevens MM, Barclay WS, Tregoning JS, Shattock RJ. Polymer formulated self-amplifying RNA vaccine is partially protective against influenza virus infection in ferrets. OXFORD OPEN IMMUNOLOGY 2022; 3:iqac004. [PMID: 35996628 PMCID: PMC9384352 DOI: 10.1093/oxfimm/iqac004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/03/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
COVID-19 has demonstrated the power of RNA vaccines as part of a pandemic response toolkit. Another virus with pandemic potential is influenza. Further development of RNA vaccines in advance of a future influenza pandemic will save time and lives. As RNA vaccines require formulation to enter cells and induce antigen expression, the aim of this study was to investigate the impact of a recently developed bioreducible cationic polymer, pABOL for the delivery of a self-amplifying RNA (saRNA) vaccine for seasonal influenza virus in mice and ferrets. Mice and ferrets were immunized with pABOL formulated saRNA vaccines expressing either haemagglutinin (HA) from H1N1 or H3N2 influenza virus in a prime boost regime. Antibody responses, both binding and functional were measured in serum after immunization. Animals were then challenged with a matched influenza virus either directly by intranasal inoculation or in a contact transmission model. While highly immunogenic in mice, pABOL-formulated saRNA led to variable responses in ferrets. Animals that responded to the vaccine with higher levels of influenza virus-specific neutralizing antibodies were more protected against influenza virus infection. pABOL-formulated saRNA is immunogenic in ferrets, but further optimization of RNA vaccine formulation and constructs is required to increase the quality and quantity of the antibody response to the vaccine.
Collapse
Affiliation(s)
- P F McKay
- Department of Infectious Disease, Imperial College London , London W2 1PG, UK
| | - J Zhou
- Department of Infectious Disease, Imperial College London , London W2 1PG, UK
| | - R Frise
- Department of Infectious Disease, Imperial College London , London W2 1PG, UK
| | - A K Blakney
- Department of Infectious Disease, Imperial College London , London W2 1PG, UK
| | - C R Bouton
- Department of Infectious Disease, Imperial College London , London W2 1PG, UK
| | - Z Wang
- Department of Infectious Disease, Imperial College London , London W2 1PG, UK
| | - K Hu
- Department of Infectious Disease, Imperial College London , London W2 1PG, UK
| | - K Samnuan
- Department of Infectious Disease, Imperial College London , London W2 1PG, UK
| | - J C Brown
- Department of Infectious Disease, Imperial College London , London W2 1PG, UK
| | - R Kugathasan
- Department of Infectious Disease, Imperial College London , London W2 1PG, UK
| | - J Yeow
- Departments of Materials and Bioengineering, Institute of Biomedical Engineering, Imperial College London , London SW7 2AZ, UK
| | - M M Stevens
- Departments of Materials and Bioengineering, Institute of Biomedical Engineering, Imperial College London , London SW7 2AZ, UK
| | - W S Barclay
- Department of Infectious Disease, Imperial College London , London W2 1PG, UK
| | - J S Tregoning
- Department of Infectious Disease, Imperial College London , London W2 1PG, UK
| | - R J Shattock
- Department of Infectious Disease, Imperial College London , London W2 1PG, UK
| |
Collapse
|
2
|
Abstract
Live attenuated, cold-adapted influenza vaccines exhibit several desirable characteristics, including the induction of systemic, mucosal, and cell-mediated immunity resulting in breadth of protection, ease of administration, and yield. Seasonal live attenuated influenza vaccines (LAIVs) were developed in the United States and Russia and have been used in several countries. In the last decade, following the incorporation of the 2009 pandemic H1N1 strain, the performance of both LAIVs has been variable and the U.S.-backbone LAIV was less effective than the corresponding inactivated influenza vaccines. The cause appears to be reduced replicative fitness of some H1N1pdm09 viruses, indicating a need for careful selection of strains included in multivalent LAIV formulations. Assays are now being implemented to select optimal strains. An improved understanding of the determinants of replicative fitness of vaccine strains and of vaccine effectiveness of LAIVs is needed for public health systems to take full advantage of these valuable vaccines.
Collapse
Affiliation(s)
- Kanta Subbarao
- WHO Collaborating Centre for Reference and Research on Influenza and Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| |
Collapse
|
3
|
Comparative Study of the Temperature Sensitive, Cold Adapted and Attenuated Mutations Present in the Master Donor Viruses of the Two Commercial Human Live Attenuated Influenza Vaccines. Viruses 2019; 11:v11100928. [PMID: 31658679 PMCID: PMC6832241 DOI: 10.3390/v11100928] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 12/28/2022] Open
Abstract
Influenza viruses cause annual, seasonal infection across the globe. Vaccination represents the most effective strategy to prevent such infections and/or to reduce viral disease. Two major types of influenza vaccines are approved for human use: inactivated influenza vaccines (IIVs) and live attenuated influenza vaccines (LAIVs). Two Master Donor Virus (MDV) backbones have been used to create LAIVs against influenza A virus (IAV): the United States (US) A/Ann Arbor/6/60 (AA) and the Russian A/Leningrad/134/17/57 (Len) H2N2 viruses. The mutations responsible for the temperature sensitive (ts), cold-adapted (ca) and attenuated (att) phenotypes of the two MDVs have been previously identified and genetically mapped. However, a direct comparison of the contribution of these residues to viral attenuation, immunogenicity and protection efficacy has not been conducted. Here, we compared the In vitro and in vivo phenotype of recombinant influenza A/Puerto Rico/8/34 H1N1 (PR8) viruses containing the ts, ca and att mutations of the US (PR8/AA) and the Russian (PR8/Len) MDVs. Our results show that PR8/Len is more attenuated in vivo than PR8/AA, although both viruses induced similar levels of humoral and cellular responses, and protection against homologous and heterologous viral challenges. Our findings support the feasibility of using a different virus backbone as MDV for the development of improved LAIVs for the prevention of IAV infections.
Collapse
|
4
|
Mucosal vaccine based on attenuated influenza virus and the group B Streptococcus recombinant peptides protected mice from influenza and S. pneumoniae infections. PLoS One 2019; 14:e0218544. [PMID: 31237893 PMCID: PMC6592537 DOI: 10.1371/journal.pone.0218544] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023] Open
Abstract
Although many influenza-related deaths are attributable to secondary bacterial infection with S. pneumoniae, vaccines that simultaneously protect against influenza and pneumococcal infection are currently not developed. The aim of our study was to evaluate the possibility to prevent post-influenza pneumococcal infection using an associated vaccine based on live influenza vaccine (LAIV) combined with recombinant polypeptides derived from superficial factors of Group B streptococcus (GBS) determining pathogenicity. We demonstrated in a model of post-influenza pneumococcal pneumonia that intranasal pneumococcal super-infection seriously complicated the course of A/Shanghai/2/2013(H7N9) CDC-RG virus infection in mice. Associated immunization using LAIV and GBS vaccine (GBSV) prevented post-influenza pneumococcal pneumonia better than mono-LAIV or GBSV immunization. At the same time, parenteral pneumococcal post-influenza infection of immune mice was more severe in the groups immunized using recombinant GBS peptides which can be explained by antibody-dependent enhancement of infection. In this case, the introduction of blockers of histamine receptors type 1 and 2 reduced the burden of secondary pneumococcal infection.
Collapse
|