1
|
Heidary M, Dashtbin S, Ghanavati R, Mahdizade Ari M, Bostanghadiri N, Darbandi A, Navidifar T, Talebi M. Evaluation of Brucellosis Vaccines: A Comprehensive Review. Front Vet Sci 2022; 9:925773. [PMID: 35923818 PMCID: PMC9339783 DOI: 10.3389/fvets.2022.925773] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/03/2022] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is a bacterial zoonosis caused by Brucella spp. which can lead to heavy economic losses and severe human diseases. Thus, controlling brucellosis is very important. Due to humans easily gaining brucellosis from animals, animal brucellosis control programs can help the eradication of human brucellosis. There are two popular vaccines against animal brucellosis. Live attenuated Brucella abortus strain 19 (S19 vaccine) is the first effective and most extensively used vaccine for the prevention of brucellosis in cattle. Live attenuated Brucella melitensis strain Rev.1 (Rev.1 vaccine) is the most effective vaccine against caprine and ovine brucellosis. Although these two vaccines provide good immunity for animals against brucellosis, the expense of persistent serological responses is one of the main problems of both vaccines. The advantages and limitations of Brucella vaccines, especially new vaccine candidates, have been less studied. In addition, there is an urgent need for new strategies to control and eradicate this disease. Therefore, this narrative review aims to present an updated overview of the available different types of brucellosis vaccines.
Collapse
Affiliation(s)
- Mohsen Heidary
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Shirin Dashtbin
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Ghanavati
- School of Paramedical Sciences, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Atieh Darbandi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- *Correspondence: Malihe Talebi
| |
Collapse
|
2
|
Aragón-Aranda B, de Miguel MJ, Lázaro-Antón L, Salvador-Bescós M, Zúñiga-Ripa A, Moriyón I, Iriarte M, Muñoz PM, Conde-Álvarez R. Development of attenuated live vaccine candidates against swine brucellosis in a non-zoonotic B. suis biovar 2 background. Vet Res 2020; 51:92. [PMID: 32703299 PMCID: PMC7376850 DOI: 10.1186/s13567-020-00815-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023] Open
Abstract
Brucella is a genus of gram-negative bacteria that cause brucellosis. B. abortus and B. melitensis infect domestic ruminants while B. suis (biovars 1-3) infect swine, and all these bacteria but B. suis biovar 2 are zoonotic. Live attenuated B. abortus S19 and B. melitensis Rev1 are effective vaccines in domestic ruminants, though both can infect humans. However, there is no swine brucellosis vaccine. Here, we investigated the potential use as vaccines of B. suis biovar 2 rough (R) lipopolysaccharide (LPS) mutants totally lacking O-chain (Bs2ΔwbkF) or only producing internal O-chain precursors (Bs2Δwzm) and mutants with a smooth (S) LPS defective in the core lateral branch (Bs2ΔwadB and Bs2ΔwadD). We also investigated mutants in the pyruvate phosphate dikinase (Bs2ΔppdK) and phosphoenolpyruvate carboxykinase (Bs2ΔpckA) genes encoding enzymes bridging phosphoenolpyruvate and the tricarboxylic acid cycle. When tested in the OIE mouse model at the recommended R or S vaccine doses (108 and 105 CFU, respectively), CFU/spleen of all LPS mutants were reduced with respect to the wild type and decreased faster for the R than for the S mutants. At those doses, protection against B. suis was similar for Bs2ΔwbkF, Bs2Δwzm, Bs2ΔwadB and the Rev1 control (105 CFU). As described before for B. abortus, B. suis biovar 2 carried a disabled pckA so that a double mutant Bs2ΔppdKΔpckA had the same metabolic phenotype as Bs2ΔppdK and ppdK mutation was enough to generate attenuation. At 105 CFU, Bs2ΔppdK also conferred the same protection as Rev1. As compared to other B. suis vaccine candidates described before, the mutants described here simultaneously carry irreversible deletions easy to identify as vaccine markers, lack antibiotic-resistance markers and were obtained in a non-zoonotic background. Since R vaccines should not elicit antibodies to the S-LPS and wzm mutants carry immunogenic O-chain precursors and did not improve Bs2ΔwbkF, the latter seems a better R vaccine candidate than Bs2Δwzm. However, taking into account that all R vaccines interfere in ELISA and other widely used assays, whether Bs2ΔwbkF is advantageous over Bs2ΔwadB or Bs2ΔppdK requires experiments in the natural host.
Collapse
Affiliation(s)
- Beatriz Aragón-Aranda
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Dpto. de Microbiología y Parasitología, Universidad de Navarra, c/Irunlarrea 1, 31008, Pamplona, Spain
| | - María Jesús de Miguel
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059, Zaragoza, Spain.,Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Leticia Lázaro-Antón
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Dpto. de Microbiología y Parasitología, Universidad de Navarra, c/Irunlarrea 1, 31008, Pamplona, Spain
| | - Miriam Salvador-Bescós
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Dpto. de Microbiología y Parasitología, Universidad de Navarra, c/Irunlarrea 1, 31008, Pamplona, Spain
| | - Amaia Zúñiga-Ripa
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Dpto. de Microbiología y Parasitología, Universidad de Navarra, c/Irunlarrea 1, 31008, Pamplona, Spain
| | - Ignacio Moriyón
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Dpto. de Microbiología y Parasitología, Universidad de Navarra, c/Irunlarrea 1, 31008, Pamplona, Spain
| | - Maite Iriarte
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Dpto. de Microbiología y Parasitología, Universidad de Navarra, c/Irunlarrea 1, 31008, Pamplona, Spain
| | - Pilar M Muñoz
- Unidad de Producción y Sanidad Animal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059, Zaragoza, Spain. .,Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain.
| | - Raquel Conde-Álvarez
- Instituto de Salud Tropical (ISTUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA) and Dpto. de Microbiología y Parasitología, Universidad de Navarra, c/Irunlarrea 1, 31008, Pamplona, Spain.
| |
Collapse
|
3
|
Jain-Gupta N, Waldrop SG, Tenpenny NM, Witonsky SG, Boyle SM, Sriranganathan N. Rough Brucella neotomae provides protection against Brucella suis challenge in mice. Vet Microbiol 2019; 239:108447. [PMID: 31767087 DOI: 10.1016/j.vetmic.2019.108447] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/26/2019] [Accepted: 10/03/2019] [Indexed: 12/18/2022]
Abstract
Brucellosis is one of the most common zoonotic diseases worldwide. Almost 500,000 new human cases occur each year; yet there is no vaccine for human use. Moreover, there is no universal Brucella vaccine that would provide protection against all pathogenic species of Brucella. We generated a rough, live-attenuated B. neotomae strain by deleting the wboA gene encoding a glycosyltransferase. This strain lacks the O-side chain in its lipopolysaccharide (LPS) and thus the vaccinated animals can be differentiated serologically from the field-infected animals. We tested the efficacy of rough B. neotomae strain to stimulate dendritic cells compared to the smooth wild type strain. Based on TNF-α production, our data suggests that a significantly higher stimulation was obtained when dendritic cells were stimulated with the rough vaccine strain compared to the smooth wild type B. neotomae. Furthermore, the rough mutant was cleared from mice within 6 weeks even at a dose as high as 2 x 108 CFU. Vaccinated mice showed significantly higher level of protection against a virulent B. suis 1330 challenge compared to the control mice. Antibody titers in the mice and cytokine production by the splenocytes from the vaccinated mice showed a Th1 mediated immune response that correlated with the protection.
Collapse
Affiliation(s)
- Neeta Jain-Gupta
- Department of Biomedical Sciences and Pathobiology, Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061-0342, USA
| | - Steven G Waldrop
- Department of Biomedical Sciences and Pathobiology, Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061-0342, USA
| | - Nancy M Tenpenny
- Department of Biomedical Sciences and Pathobiology, Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061-0342, USA
| | - Sharon G Witonsky
- Department of Large Animal Clinical Sciences, Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061-0342, USA
| | - Stephen M Boyle
- Department of Biomedical Sciences and Pathobiology, Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061-0342, USA
| | - Nammalwar Sriranganathan
- Department of Biomedical Sciences and Pathobiology, Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061-0342, USA.
| |
Collapse
|
4
|
Gheibi A, Khanahmad H, Kardar GA, Boshtam M, Rezaie S, Kazemi B, Khorramizadeh MR. Optimization and Comparison of Different Methods and Factors for Efficient Transformation of Brucella abortus RB51strain. Adv Biomed Res 2019; 8:37. [PMID: 31198771 PMCID: PMC6555225 DOI: 10.4103/abr.abr_14_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: The development of protective vaccines for Brucella spp. has been hampered by the difficulty in transformation of Brucella cells with foreign DNA for genetic manipulation. It seems that the formation of Brucella spheroplasts would increase the efficiency of transformation. The aim of this study was to devise an efficient method for the transformation of Brucella spp. Materials and Methods: At first, spheroplast of Brucella was prepared by glycine and ampicillin induction and transformed using optimized protocols of CaCl2, electroporation, and lipofection methods. Then, the efficacy of transformation was compared between the three-mentioned methods. Results: Ampicillin-induced spheroplasts from early-log phase culture of brucella when incubated in a medium-containing 0.2 M sucrose during cell recovery had higher transformation efficiency in three different methods. Comparison of the transformation efficiency of Brucella abortus RB51 using the CaCl2, lipofection, and electroporation methods revealed that the transformation efficiency with the lipofection method was significantly higher than with other two methods (P < 0.05). Conclusions: Lipofection method by lipofectamine 2000 on ampicillin-induced spheroplasts can be a suitable approach for Brucella transformation.
Collapse
Affiliation(s)
- Azam Gheibi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholam Ali Kardar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, Asthma and Allergy Research Institute, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sassan Rezaie
- Department of Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Khorramizadeh
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|