1
|
Brewer MT, Mertens M, Colina-Iturralde A, Chelladurai JJ, Martin KA, Chinchilla-Vargas K, Kelly SM, Narasimhan B, Griffith RW, Jones DE. Implantation of a vaccine platform for extended antigen release (VPEAR) induces long-term immunity against Haemonchus contortus in sheep. Sci Rep 2025; 15:12168. [PMID: 40204811 PMCID: PMC11982313 DOI: 10.1038/s41598-025-95929-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
The nematode Haemonchus contortus causes severe anemia in sheep and goats. Drug-resistant isolates are common, prompting a need for parasite control measures beyond chemotherapeutics. Vaccination is one promising approach for mitigation of clinical signs associated with haemonchosis. One challenge for H. contortus vaccine efforts is the need to administer repeated boosting doses at regular intervals. In this study, we evaluated a vaccine platform for extended antigen release (VPEAR) designed to initiate and maintain long-term immunity following a single immunization event in sheep. We compared a soluble vaccine depot with montanide adjuvant to the VPEAR platform with two different adjuvant combinations. Vaccination with VPEAR adjuvanted with DEAE-dextran induced antibody titers in 5 out of 6 vaccinated sheep up to 47 weeks post-vaccination. Challenge experiments revealed a 73% decrease in adult worm burden in this vaccine group compared to adjuvant alone and serum antibodies from these animals bound the luminal surface of the parasite intestine. Overall, the VPEAR platform was effective for long-term vaccination with no indication of immune tolerance to the parasite upon challenge.
Collapse
Affiliation(s)
- Matthew T Brewer
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, USA.
| | - Micaela Mertens
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, USA
| | - Alfredo Colina-Iturralde
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, USA
| | - Jeba Jesudoss Chelladurai
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, USA
| | - Katy A Martin
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, USA
| | - Krystal Chinchilla-Vargas
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, USA
| | - Sean M Kelly
- Department of Chemical and Biological Engineering, Iowa State University, Ames, USA
- Nanovaccine Institute, Iowa State University, Ames, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, USA
- Nanovaccine Institute, Iowa State University, Ames, USA
| | - Ronald W Griffith
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, USA
| | - Douglas E Jones
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, USA
| |
Collapse
|
2
|
Regassa AG, Obsu LL. The role of asymptomatic cattle for leptospirosis dynamics in a herd with imperfect vaccination. Sci Rep 2024; 14:23775. [PMID: 39390012 PMCID: PMC11467461 DOI: 10.1038/s41598-024-72613-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Leptospirosis is an emerging zoonotic disease with high health and economic damage. In this study, we developed a deterministic mathematical model that describes the dynamics of leptospirosis transmission within a cattle herd, incorporating asymptomatic infected and vaccinated compartments. The study examined the transmission role of asymptomatic cattle that contaminate herds without farmers' knowledge. We proved the well-posedness of the proposed model and found the basic reproduction number using the next-generation matrix. Analytically, we demonstrated that the disease-free equilibrium point is locally and globally asymptotically stable when R 0 is less than unity and is otherwise unstable. Graphically, we further established the local asymptotic stability of disease-free and endemic equilibria. Sensitivity analysis showed that the contact rate with asymptomatic infected cattle, β A , is the most sensitive parameter in the stated model, followed by the recovery rate of asymptomatic infected cattle, σ , and the vaccination rate of susceptible cattle, τ . Numerical simulations revealed that a reduction in contact rate with asymptomatic infected cattle significantly reduced pathogen Leptospira transmission in the herd. In addition, fostering the recovery rate of asymptomatic infected cattle can significantly reduce new infections in the herd. Furthermore, augmenting the vaccination rate among susceptible cattle resulted in a notable decrease in disease prevalence within the herd. Findings of this study underscore the remarkable importance of targeted interventions, such as reducing contact rates with asymptomatic infected cattle, increasing recovery rates using proper treatments, and enhancing vaccination efforts to manage leptospirosis transmission in cattle herds.
Collapse
Affiliation(s)
- Abebe Girma Regassa
- Department of Applied Mathematics, Adama Science and Technology University, Adama, Ethiopia
| | - Legesse Lemecha Obsu
- Department of Applied Mathematics, Adama Science and Technology University, Adama, Ethiopia.
| |
Collapse
|
3
|
Lynch C, Schenkel FS, van Staaveren N, Miglior F, Kelton D, Baes CF. Investigating the potential for genetic selection of dairy calf disease traits using management data. J Dairy Sci 2024; 107:1022-1034. [PMID: 37730178 DOI: 10.3168/jds.2023-23780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/30/2023] [Indexed: 09/22/2023]
Abstract
Genetic selection could be a tool to help improve the health and welfare of calves; however, to date, there is limited research on the genetics of calfhood diseases. This study aimed to understand the current impact of calf diseases, by investigating incidence rates, estimating genetic parameters, and providing industry recommendations to improve calf disease recording practices on farms. Available calf disease data composed of 69,695 Holstein calf disease records for respiratory problems (RESP) and diarrhea (DIAR), from 62,361 calves collected on 1,617 Canadian dairy herds from 2006 to 2021. Single- and multiple-trait analysis using both a threshold and linear animal model for each trait were evaluated. Furthermore, each trait was analyzed using 2 scenarios with respect to minimum disease incidence threshold criterion (herd-year incidence of at least 1% and 5%) to highlight the effect of different filtering thresholds on selection potential. Observed scale heritability estimates for RESP and DIAR ranged from 0.02 to 0.07 across analyses, while estimated genetic correlations between the traits ranged from 0.50 to 0.62. Sires were compared based on their estimated breeding value and their diseased daughter incidence rates. On average, calves born to the bottom 10% of sires were 1.8 times more likely to develop RESP and 1.9 times to develop DIAR compared with daughters born to the top 10% of sires. Results from the current study are promising for the inclusion of both DIAR and RESP in Canadian genetic evaluations. However, for effective genetic evaluation, standardized approaches on data collection and industry outreach to highlight the importance of collecting and uploading this information to herd management software is required. In particular, it is important that the herd management software is accessible to the national milk recording system to allow for use in national genetic evaluation.
Collapse
Affiliation(s)
- C Lynch
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - F S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - N van Staaveren
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - F Miglior
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Lactanet Canada, Guelph, ON, N1K 1E5, Canada
| | - D Kelton
- Department of Population Medicine, University of Guelph, Ontario, N1G 2W1, Canada
| | - C F Baes
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Institute of Genetics, Department of Clinical Research and Veterinary Public Health, University of Bern, Bern, 3001, Switzerland.
| |
Collapse
|
4
|
Monti G, Montes V, Tortosa P, Tejeda C, Salgado M. Urine shedding patterns of pathogenic Leptospira spp. in dairy cows. Vet Res 2023; 54:64. [PMID: 37525220 PMCID: PMC10391894 DOI: 10.1186/s13567-023-01190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/14/2023] [Indexed: 08/02/2023] Open
Abstract
Pathogenic Leptospira spp. are zoonotic bacteria that infect wild and domestic animals. Humans contract leptospirosis directly through contact with infected animals or indirectly from contaminated water or soil. In mammalian reservoirs, the pathogen can colonize renal tubules for lengthy periods and persistently contaminate the environment through urine. Cattle have been reported to shed several serovars; with Hardjo the most common serovar found in cattle. Without clinical manifestations, the infection can spread within a herd, impairing productivity, and putting workers like farmers, abattoir operators and veterinarians at risk. The dynamics of pathogenic Leptospira shedding was studied in six dairy herds in southern Chile. Various intermittent urine shedding patterns were found, with elimination periods between 79 and 259 days and bacterial loads ranging from 3 × 104 to 4.4 × 104 bacteria/mL. The current study was the first to assess the various urine shedding patterns and loads of pathogenic leptospires shed through urine of naturally-infected dairy cows. In addition, the study suggests that vaccination does not prevent cattle infection, although it influences loads of pathogenic leptospires excreted in urine. Our study provides a great awareness of asymptomatic animal carriers in an endemic area and will contribute to improving disease control and designing better prevention strategies.
Collapse
Affiliation(s)
- Gustavo Monti
- Quantitative Veterinary Epidemiology Group, Wageningen University and Research, Wageningen, The Netherlands.
| | - Victor Montes
- Programa de Doctorado en Ciencias Veterinarias, Escuela de Graduados Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
- Department of Veterinary, Faculty of Veterinary Sciences, Universidad Técnica de Manabí, Portoviejo, Ecuador
| | - Pablo Tortosa
- UMR PIMIT Processus Infectieux en Milieu Insulaire Tropical, Université de La Réunion, Ste Clotilde, Ile de La Réunion, France
| | - Carlos Tejeda
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Miguel Salgado
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
5
|
Novak A, Hindriks E, Hoek A, Veraart C, Broens EM, Ludwig I, Rutten V, Sloots A, Broere F. Cellular and humoral immune responsiveness to inactivated Leptospira interrogans in dogs vaccinated with a tetravalent Leptospira vaccine. Vaccine 2023; 41:119-129. [PMID: 36411135 DOI: 10.1016/j.vaccine.2022.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022]
Abstract
Vaccination is commonly used to protect dogs against leptospirosis, however, memory immune responses induced by canine Leptospira vaccines have not been studied. In the present study, antibody and T cell mediated responses were assessed in dogs before and 2 weeks after annual revaccination with a commercial tetravalent Leptospira vaccine containing serogroups Canicola and Australis. Vaccination significantly increased average log2 IgG titers from 6.50 to 8.41 in year 1, from 5.99 to 7.32 in year 2, from 5.32 to 8.32 in year 3 and from 5.32 to 7.82 in year 4. The CXCL-10 levels, induced by in vitro stimulation of PBMC with Canicola and Australis, respectively, significantly increased from 1039.05 pg/ml and 1037.38 pg/ml before vaccination to 2547.73 pg/ml and 2730.38 pg/ml after vaccination. IFN-γ levels increased from 85.60 pg/ml and 178.13 pg/ml before vaccination to 538.62 pg/ml and 210.97 pg/ml after vaccination. The percentage of proliferating CD4+ T cells in response to respective Leptospira strains significantly increased from 1.43 % and 1.25 % before vaccination to 24.11 % and 14.64 % after vaccination. Similar responses were also found in the CD8+ T cell subset. Vaccination also significantly enhanced the percentages of central memory CD4+ T cells from 12 % to 26.97 % and 27.65 %, central memory CD8+ T cells from 3 % to 9.47 % and 7.55 %, and effector CD8+ T cells from 3 % to 7.6 % and 6.42 %, as defined by the expression of CD45RA and CD62L, following stimulation with Canicola and Australis, respectively. Lastly, enhanced expression of the activation marker CD25 on T cells after vaccination was found. Together, our results show that next to IgG responses, also T cell responses are induced in dogs upon annual revaccination with a tetravalent Leptospira vaccine, potentially contributing to protection.
Collapse
Affiliation(s)
- Andreja Novak
- Division Infectious Diseases & Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands; Intravacc, Bilthoven, the Netherlands
| | - Esther Hindriks
- Division Infectious Diseases & Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - Aad Hoek
- Division Infectious Diseases & Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - Claire Veraart
- Division Infectious Diseases & Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - Els M Broens
- Division Infectious Diseases & Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - Irene Ludwig
- Division Infectious Diseases & Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - Victor Rutten
- Division Infectious Diseases & Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands; Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | | | - Femke Broere
- Division Infectious Diseases & Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, the Netherlands; Division Internal Medicine of Companion Animals, Department Clinical Science, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| |
Collapse
|
6
|
Alhaj-Suliman SO, Wafa EI, Salem AK. Engineering nanosystems to overcome barriers to cancer diagnosis and treatment. Adv Drug Deliv Rev 2022; 189:114482. [PMID: 35944587 DOI: 10.1016/j.addr.2022.114482] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 01/24/2023]
Abstract
Over the past two decades, multidisciplinary investigations into the development of nanoparticles for medical applications have continually increased. However, nanoparticles are still subject to biological barriers and biodistribution challenges, which limit their overall clinical potential. This has motivated the implementation of innovational modifications to a range of nanoparticle formulations designed for cancer imaging and/or cancer treatment to overcome specific barriers and shift the accumulation of payloads toward the diseased tissues. In recent years, novel technological and chemical approaches have been employed to modify or functionalize the surface of nanoparticles or manipulate the characteristics of nanoparticles. Combining these approaches with the identification of critical biomarkers provides new strategies for enhancing nanoparticle specificity for both cancer diagnostic and therapeutic applications. This review discusses the most recent advances in the design and engineering of nanoparticles as well as future directions for developing the next generation of nanomedicines.
Collapse
Affiliation(s)
- Suhaila O Alhaj-Suliman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States
| | - Emad I Wafa
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, United States; Holden Comprehensive Cancer Center, University of Iowa Hospitals & Clinics, Iowa City, IA 52242, United States.
| |
Collapse
|
7
|
Smith R, Wafa EI, Geary SM, Ebeid K, Alhaj-Suliman SO, Salem AK. Cationic nanoparticles enhance T cell tumor infiltration and antitumor immune responses to a melanoma vaccine. SCIENCE ADVANCES 2022; 8:eabk3150. [PMID: 35857851 PMCID: PMC9299550 DOI: 10.1126/sciadv.abk3150] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
In clinical settings, cancer vaccines as monotherapies have displayed limited success compared to other cancer immunotherapeutic treatments. Nanoscale formulations have the ability to increase the efficacy of cancer vaccines by combatting the immunosuppressive nature of the tumor microenvironment. Here, we have synthesized a previously unexplored cationic polymeric nanoparticle formulation using polyamidoamine dendrimers and poly(d,l-lactic-co-glycolic acid) that demonstrate adjuvant properties in vivo. Tumor-challenged mice vaccinated with an adenovirus-based cancer vaccine [encoding tumor-associated antigen (TAA)] and subsequently treated with this nanoparticulate formulation showed significant increases in TAA-specific T cells in the peripheral blood, reduced tumor burden, protection against tumor rechallenge, and a significant increase in median survival. An investigation into cell-based pathways suggests that administration of the nanoformulation at the site of the developing tumor may have created an inflammatory environment that attracted activated TAA-specific CD8+ T cells to the vicinity of the tumor, thus enhancing the efficacy of the vaccine.
Collapse
Affiliation(s)
| | | | | | - Kareem Ebeid
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Suhaila O. Alhaj-Suliman
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
8
|
Lemon JL, McMenamy MJ. A Review of UK-Registered and Candidate Vaccines for Bovine Respiratory Disease. Vaccines (Basel) 2021; 9:vaccines9121403. [PMID: 34960149 PMCID: PMC8703677 DOI: 10.3390/vaccines9121403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/10/2021] [Accepted: 11/22/2021] [Indexed: 01/11/2023] Open
Abstract
Vaccination is widely regarded as a cornerstone in animal or herd health and infectious disease management. Nineteen vaccines against the major pathogens implicated in bovine respiratory disease are registered for use in the UK by the Veterinary Medicines Directorate (VMD). However, despite annual prophylactic vaccination, bovine respiratory disease is still conservatively estimated to cost the UK economy approximately £80 million per annum. This review examines the vaccine types available, discusses the surrounding literature and scientific rationale of the limitations and assesses the potential of novel vaccine technologies.
Collapse
Affiliation(s)
- Joanne L. Lemon
- Sustainable Agri-Food and Sciences Division, Agri-Food and Bioscience Institute, Newforge Lane, Belfast BT9 5PX, UK
- Correspondence:
| | - Michael J. McMenamy
- Veterinary Sciences Division, Agri-Food and Bioscience Institute, Stormont, Belfast BT4 3SD, UK;
| |
Collapse
|
9
|
Bovine Immune Response to Vaccination and Infection with Leptospira borgpetersenii Serovar Hardjo. mSphere 2021; 6:6/2/e00988-20. [PMID: 33762318 PMCID: PMC8546708 DOI: 10.1128/msphere.00988-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
This study examined the humoral and cellular response of cattle vaccinated with two commercial leptospiral vaccines, Leptavoid and Spirovac, and a novel bacterin vaccine using Seppic Montanide oil emulsion adjuvant. Vaccination was followed by experimental challenge. All vaccinated cattle were protected from colonization of the kidney and shedding of Leptospira in urine, as detected by culture and immunofluorescence assay. Agglutinating antibody titers were detected in vaccinated cattle at 4 weeks following vaccination, with small anamnestic response detected following experimental challenge. Only animals vaccinated with the oil emulsion-adjuvanted bacterin produced significant IgG2 titers following vaccination, and nonvaccinated animals produced serum IgA titers after experimental challenge. CD4+ and γδ T cells from vaccinated cattle proliferated when cultured with antigen ex vivo. Cellular responses included a marked proliferation of γδ T cells immediately following experimental challenge in vaccinated cattle and release of gamma interferon (IFN-γ), interleukin 17a (IL-17a), and IL-12p40 from stimulated cells. Proliferative and cytokine responses were found not just in peripheral mononuclear cells but also in lymphocytes isolated from renal lymph nodes at 10 weeks following experimental challenge. Overall, effects of leptospirosis vaccination and infection were subtle, resulting in only modest activation of CD4+ and γδ T cells. The use of Seppic Montanide oil emulsion adjuvants may shorten the initiation of response to vaccination, which could be useful during outbreaks or in areas where leptospirosis is endemic. IMPORTANCE Leptospirosis is an underdiagnosed, underreported zoonotic disease of which domestic livestock can be carriers. As a reservoir host for Leptospira borgpetersenii serovar Hardjo, cattle may present with reproductive issues, including abortion, birth of weak or infected calves, or failure to breed. Despite years of study and the availability of commercial vaccines, detailed analysis of the bovine immune response to vaccination and Leptospira challenge is lacking. This study evaluated immunologic responses to two efficacious commercial vaccines and a novel bacterin vaccine using an adjuvant chosen for enhanced cellular immune responses. Antigen-specific responsive CD4 and γδ T cells were detected following vaccination and were associated with release of inflammatory cytokines IFN-γ and IL-17a after stimulation. CD4 and γδ cells increased in the first week after infection and, combined with serum antibody, may play a role in clearance of bacteria from the blood and resident tissues. Additionally, these antigen-reactive T cells were found in the regional lymph nodes following infection, indicating that memory responses may not be circulating but are still present in regional lymph nodes. The information gained in this study expands knowledge of bovine immune response to leptospirosis vaccines and infection. The use of oil emulsion adjuvants may enhance early immune responses to leptospiral bacterins, which could be useful in outbreaks or situations where leptospirosis is endemic.
Collapse
|
10
|
Trehalose diamide glycolipids augment antigen-specific antibody responses in a Mincle-dependent manner. Bioorg Chem 2021; 110:104747. [PMID: 33799177 DOI: 10.1016/j.bioorg.2021.104747] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/15/2021] [Accepted: 02/13/2021] [Indexed: 12/11/2022]
Abstract
Many studies have investigated how trehalose glycolipid structures can be modified to improve their Macrophage inducible C-type lectin (Mincle)-mediated adjuvanticity. However, in all instances, the ester-linkage of α,ά-trehalose to the lipid of choice remained. We investigated how changing this ester-linkage to an amide influences Mincle signalling and agonist activity and demonstrated that Mincle tolerates this functional group change. In in vivo vaccination studies in murine and ovine model systems, using OVA or Mannheimia haemolytica and Mycoplasma ovipneumoniae as vaccine antigens, respectively, it was demonstrated that a representative trehalose diamide glycolipid was able to enhance antibody-specific immune responses. Notably, IgG titres against M. ovipneumoniae were significantly greater when using trehalose dibehenamide (A-TDB) compared to trehalose dibehenate (TDB). This is particularly important as infection with M. ovipneumoniae predisposes sheep to pneumonia.
Collapse
|
11
|
Maina TW, Grego EA, Boggiatto PM, Sacco RE, Narasimhan B, McGill JL. Applications of Nanovaccines for Disease Prevention in Cattle. Front Bioeng Biotechnol 2020; 8:608050. [PMID: 33363134 PMCID: PMC7759628 DOI: 10.3389/fbioe.2020.608050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Vaccines are one of the most important tools available to prevent and reduce the incidence of infectious diseases in cattle. Despite their availability and widespread use to combat many important pathogens impacting cattle, several of these products demonstrate variable efficacy and safety in the field, require multiple doses, or are unstable under field conditions. Recently, nanoparticle-based vaccine platforms (nanovaccines) have emerged as promising alternatives to more traditional vaccine platforms. In particular, polymer-based nanovaccines provide sustained release of antigen payloads, stabilize such payloads, and induce enhanced antibod- and cell-mediated immune responses, both systemically and locally. To improve vaccine administrative strategies and efficacy, they can be formulated to contain multiple antigenic payloads and have the ability to protect fragile proteins from degradation. Nanovaccines are also stable at room temperature, minimizing the need for cold chain storage. Nanoparticle platforms can be synthesized for targeted delivery through intranasal, aerosol, or oral administration to induce desired mucosal immunity. In recent years, several nanovaccine platforms have emerged, based on biodegradable and biocompatible polymers, liposomes, and virus-like particles. While most nanovaccine candidates have not yet advanced beyond testing in rodent models, a growing number have shown promise for use against cattle infectious diseases. This review will highlight recent advancements in polymeric nanovaccine development and the mechanisms by which nanovaccines may interact with the bovine immune system. We will also discuss the positive implications of nanovaccines use for combating several important viral and bacterial disease syndromes and consider important future directions for nanovaccine development in beef and dairy cattle.
Collapse
Affiliation(s)
- Teresia W. Maina
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Elizabeth A. Grego
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Paola M. Boggiatto
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Randy E. Sacco
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Jodi L. McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|