1
|
Moghaddam ZS, Dehghan A, Halimi S, Najafi F, Nokhostin A, Naeini AE, Akbarzadeh I, Ren Q. Bacterial Extracellular Vesicles: Bridging Pathogen Biology and Therapeutic Innovation. Acta Biomater 2025:S1742-7061(25)00352-6. [PMID: 40349898 DOI: 10.1016/j.actbio.2025.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/14/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
The main role of bacterial extracellular vesicles (BEVs) has been associated with various processes such as intercellular communication and host-pathogen interactions. This comprehensive review explores the multifaceted functions of BEVs across different biological domains, emphasizing their dual nature as contributors to disease and potential vehicles for therapeutic intervention. We examine the intricate interactions of BEVs within bacterial communities and between bacteria and hosts, their involvement in disease development through cargo delivery mechanisms, and their beneficial impact on microbial ecology. The review also highlights BEVs' applications in biomedical field, where they are revolutionizing vaccine development, targeted drug delivery, and cancer therapy. By utilizing the inherent properties of BEVs for controlled drug release, targeted antigen delivery, and immune modulation, they offer a promising frontier in precision medicine. In addition, the diagnostic potential of BEVs is explored through their utility as biomarkers, providing valuable insights into disease states and treatment efficacy. Looking forward, this review underscores the challenges and opportunities in translating BEV research to clinical practice, promoting the need of standardized methods in BEV characterization and scaling up production. The diverse abilities of BEVs, ranging from contributing to pathogen virulence to driving therapeutic innovation, highlight their potential as a cornerstone in the future of biomedical advancements. STATEMENT OF SIGNIFICANCE: Bacterial extracellular vesicles (BEVs) are emerging as pivotal players in both pathogenesis and therapeutic innovation. This review explores their dual nature as agents of disease and as promising biomaterials for biomedical applications, and provides a comprehensive survey on their involvement in disease mechanisms and microbial ecology, and their potential in biomedical applications such as vaccine development, targeted drug delivery, cancer therapy, and diagnosis. It highlights the complex interactions of BEVs within bacterial communities and between bacteria and hosts. This review also addresses current advancements, challenges, and opportunities in translating BEV research into clinical practice. The insights presented here position BEVs as a cornerstone in the future of biomedical advancements, advocating for standardized methods in BEV characterization and scalable production techniques.
Collapse
Affiliation(s)
| | - Ashkan Dehghan
- W Booth School of Engineering Practice and Technology Faculty of Engineering, McMaster University Hamilton, ON, Canada, L8S 0A3
| | - Saba Halimi
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Fatemeh Najafi
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802-1503, United States
| | - Ali Nokhostin
- Medical Sciences & Technologies Faculty, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | | | - Iman Akbarzadeh
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW, Australia.
| | - Qun Ren
- Laboratory for Biointerfaces, Empa Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland.
| |
Collapse
|
2
|
Zizza A, Fallucca A, Guido M, Restivo V, Roveta M, Trucchi C. Foodborne Infections and Salmonella: Current Primary Prevention Tools and Future Perspectives. Vaccines (Basel) 2024; 13:29. [PMID: 39852807 PMCID: PMC11768952 DOI: 10.3390/vaccines13010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/26/2025] Open
Abstract
Salmonella is considered the major zoonotic and foodborne pathogen responsible for human infections. It includes the serovars causing typhoid fever (S. typhi and S. paratyphi) and the non-typhoidal salmonella (NTS) serovars (S. enteritidis and S. typhimurium), causing enteric infections known as "Salmonellosis". NTS represents a major public health burden worldwide. The consumption of S. enteritidis-contaminated animal foods is the main source of this disease in humans, and eradicating bacteria from animals remains a challenge. NTS causes various clinical manifestations, depending on the quantity of bacteria present in the food and the immune status of the infected individual, ranging from localized, self-limiting gastroenteritis to more serious systemic infections. Salmonellosis prevention is based on hygienic and behavioral rules related to food handling that aim to reduce the risk of infection. However, no vaccine against NTS is available for human use. This aspect, in addition to the increase in multidrug-resistant strains and the high morbidity, mortality, and socioeconomic costs of NTS-related diseases, makes the development of new prevention and control strategies urgently needed. The success of the vaccines used to protect against S. typhi encouraged the development of NTS vaccine candidates, including live attenuated, subunit-based, and recombinant-protein-based vaccines. In this review, we discuss the epidemiological burden of Salmonellosis and its primary prevention, focusing on the current status and future perspectives of the vaccines against NTS.
Collapse
Affiliation(s)
- Antonella Zizza
- Institute of Clinical Physiology, National Research Council, 73100 Lecce, Italy;
| | - Alessandra Fallucca
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialities, University of Palermo, 90127 Palermo, Italy;
| | - Marcello Guido
- Laboratory of Hygiene, Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy;
| | | | - Marco Roveta
- Food Hygiene and Nutrition Service, Local Health Unit 3, Department of Prevention, 16142 Genoa, Italy;
| | - Cecilia Trucchi
- Food Hygiene and Nutrition Service, Local Health Unit 3, Department of Prevention, 16142 Genoa, Italy;
| |
Collapse
|
3
|
Banerjee S, Halder P, Das S, Maiti S, Withey JH, Mitobe J, Chowdhury G, Kitahara K, Miyoshi SI, Mukhopadhyay AK, Dutta S, Koley H. Trivalent outer membrane vesicles-based combination vaccine candidate induces protective immunity against Campylobacter and invasive non-typhoidal Salmonella in adult mice. Med Microbiol Immunol 2024; 213:21. [PMID: 39407046 DOI: 10.1007/s00430-024-00805-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 10/07/2024] [Indexed: 12/28/2024]
Abstract
Campylobacter and invasive non-typhoidal Salmonella (iNTS) are among the most common causative agents of gastroenteritis worldwide. As of now, no single combination licensed vaccine is available for public health use against both iNTS and Campylobacter species. Outer-membrane vesicles (OMVs) are nanoscale proteoliposomes released from the surface of gram-negative bacteria during log phase and harbor a variety of immunogenic proteins. Based on epidemiology of infections, we formulated a novel trivalent outer membrane vesicles (TOMVs)-based vaccine candidate against Campylobacter jejuni (CJ), Salmonella Typhimurium (ST) and Salmonella Enteritidis (SE). Isolated OMVs from CJ, ST and SE were combined in equal ratios for formulation of TOMVs and 5 µg of the developed vaccine candidate was used for intraperitoneal immunization of adult BALB/c mice. Immunization with TOMVs significantly activated both the humoral and cellular arm of adaptive immune response. Robust bactericidal effect was elicited by TOMVs immunized adult mice sera. TOMVs immunization induced long-term protective efficacy against CJ, ST and SE infections in mice. The study illustrates the ability of TOMVs-based combination immunogen in eliciting broad-spectrum protective immunity against prevalent Campylobacter and iNTS pathogens. According to the findings, TOMVs can work as a potent combination-based acellular vaccine candidate for amelioration of Campylobacter and iNTS-mediated gastroenteritis.
Collapse
Affiliation(s)
- Soumalya Banerjee
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Prolay Halder
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Sanjib Das
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Suhrid Maiti
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - Jeffrey H Withey
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jiro Mitobe
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| | - Goutam Chowdhury
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
- Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Kei Kitahara
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Shin-Ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Asish Kumar Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India.
| |
Collapse
|
4
|
Siddique A, Wang Z, Zhou H, Huang L, Jia C, Wang B, Ed-Dra A, Teng L, Li Y, Yue M. The Evolution of Vaccines Development across Salmonella Serovars among Animal Hosts: A Systematic Review. Vaccines (Basel) 2024; 12:1067. [PMID: 39340097 PMCID: PMC11435802 DOI: 10.3390/vaccines12091067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/06/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Salmonella is a significant zoonotic foodborne pathogen, and the global spread of multidrug-resistant (MDR) strains poses substantial challenges, necessitating alternatives to antibiotics. Among these alternatives, vaccines protect the community against infectious diseases effectively. This review aims to summarize the efficacy of developed Salmonella vaccines evaluated in various animal hosts and highlight key transitions for future vaccine studies. A total of 3221 studies retrieved from Web of Science, Google Scholar, and PubMed/Medline databases between 1970 and 2023 were evaluated. One hundred twenty-seven qualified studies discussed the vaccine efficacy against typhoidal and nontyphoidal serovars, including live-attenuated vaccines, killed inactivated vaccines, outer membrane vesicles, outer membrane complexes, conjugate vaccines, subunit vaccines, and the reverse vaccinology approach in different animal hosts. The most efficacious vaccine antigen candidate found was recombinant heat shock protein (rHsp60) with an incomplete Freund's adjuvant evaluated in a murine model. Overall, bacterial ghost vaccine candidates demonstrated the highest efficacy at 91.25% (95% CI = 83.69-96.67), followed by the reverse vaccinology approach at 83.46% (95% CI = 68.21-94.1) across animal hosts. More than 70% of vaccine studies showed significant production of immune responses, including humoral and cellular, against Salmonella infection. Collectively, the use of innovative methods rather than traditional approaches for the development of new effective vaccines is crucial and warrants in-depth studies.
Collapse
Affiliation(s)
- Abubakar Siddique
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zining Wang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haiyang Zhou
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Linlin Huang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chenghao Jia
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baikui Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Abdelaziz Ed-Dra
- Laboratory of Engineering and Applied Technologies, Higher School of Technology, M'ghila Campus, BP: 591, Beni Mellal 23000, Morocco
| | - Lin Teng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yan Li
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Min Yue
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
5
|
Luo M, Li S, Yang Y, Sun J, Su Y, Huang D, Feng X, Zhang H, Qi Q. Effects of Salmonella Outer Membrane Vesicles on Intestinal Microbiota and Intestinal Barrier Function. Foodborne Pathog Dis 2024; 21:257-267. [PMID: 38215267 DOI: 10.1089/fpd.2023.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024] Open
Abstract
Salmonella enterica is one of the most important zoonotic pathogens causing foodborne gastroenteritis worldwide. Outer membrane vesicles (OMVs) are lipid-bilayer vesicles produced by Gram-negative bacteria, which contain biologically active components. We hypothesized that OMVs are an important weapon of S. enterica to initiate enteric diseases pathologies. In this study, the effects of S. enterica OMVs (SeOMVs) on intestinal microbiota and intestinal barrier function were investigated. In vitro fecal culture experiments showed that alpha diversity indexes and microbiota composition were altered by SeOMV supplementation. SeOMV supplementation showed an increase of pH, a decrease of OD630 and total short chain fatty acid (SCFA) concentrations. In vitro IPEC-J2 cells culture experiments showed that SeOMV supplementation did not affect the IPEC-J2 cell viability and the indicated genes expression. In vivo experiments in mice showed that SeOMVs had adverse effects on average daily gain (p < 0.05) and feed:gain ratio (p < 0.05), and had a tendency to decrease the final body weight (p = 0.073) in mice. SeOMV administration decreased serum interleukin-10 level (p < 0.05), decreased the relative abundance of bacteria belonging to the genera BacC-u-018 and Akkermansia (p < 0.05). Furthermore, SeOMV administration damaged the ileum mucosa (p < 0.05). These findings suggest that SeOMVs play an important role in the activation of intestinal inflammatory response induced by S. enterica, and downregulation of SCFA-producing bacteria is a possible mechanism.
Collapse
Affiliation(s)
- Meiying Luo
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Suqian Li
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yang Yang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Junhang Sun
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yuman Su
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Dechun Huang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Xin Feng
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Huihua Zhang
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Qien Qi
- School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
6
|
Banerjee S, Halder P, Das S, Maiti S, Bhaumik U, Dutta M, Chowdhury G, Kitahara K, Miyoshi SI, Mukhopadhyay AK, Dutta S, Koley H. Pentavalent outer membrane vesicles immunized mice sera confers passive protection against five prevalent pathotypes of diarrhoeagenic Escherichia coli in neonatal mice. Immunol Lett 2023; 263:33-45. [PMID: 37734682 DOI: 10.1016/j.imlet.2023.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Diarrhoeagenic Escherichia coli (DEC) pathotypes are one of the major causative agents of diarrhoea induced childhood morbidity and mortality in developing countries. Licensed vaccines providing broad spectrum protection against DEC mediated infections are not available. Outer membrane vesicles (OMVs) are microvesicles released by gram-negative bacteria during the growth phase and contain multiple immunogenic proteins. Based on prevalence of infections, we have formulated a pentavalent outer-membrane vesicles (POMVs) based immunogen targeting five main pathotypes of DEC responsible for diarrhoeal diseases. Following isolation, OMVs from five DEC pathotypes were mixed in equal proportions to formulate POMVs and 10 µg of the immunogen was intraperitoneally administered to adult BALB/c mice. Three doses of POMVs induced significant humoral immune response against whole cell lysates (WCLs), outer membrane proteins (OMPs) and lipopolysaccharides (LPS) isolated from DEC pathotypes along with significant induction of cellular immune response in adult mice. Passive transfer of POMVs immunized adult mice sera protected neonatal mice significantly against DEC infections. Overall, this study finds POMVs to be immunogenic in conferring broad-spectrum passive protection to neonatal mice against five main DEC pathotypes. Altogether, these findings suggest that POMVs can be used as a potent vaccine candidate to ameliorate the DEC-mediated health burden.
Collapse
Affiliation(s)
- Soumalya Banerjee
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Prolay Halder
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Sanjib Das
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Suhrid Maiti
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Ushasi Bhaumik
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Moumita Dutta
- Division of Electron Microscopy, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Goutam Chowdhury
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India; Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Kei Kitahara
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan; Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Shin-Ichi Miyoshi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan; Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Asish Kumar Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, P-33 CIT Road, Scheme-XM, Beliaghata, Kolkata, 700010, India.
| |
Collapse
|
7
|
Li X, Huang Y, Sun J, Yu X, Xu X, Cui X, Li K, Ji Q, Liu Y, Bao G. Enhancing effect of chitosan nanoparticles on the immune efficacy of Bordetella bronchiseptica outer membrane vesicles. Int Immunopharmacol 2023; 122:110612. [PMID: 37451023 DOI: 10.1016/j.intimp.2023.110612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
The outer membrane vesicle (OMV) of bacteria is a bilayer membrane vesicle with a diameter of about 10-300 nm that is secreted during the growth of Gram-negative bacteria. OMV is considered as a high-quality vaccine candidate antigen because of its natural immunogenicity and non-replicability. Although the excellent antigenicity of OMV has been widely confirmed, its instability and heterogeneity greatly affect its immune effect. Many studies have demonstrated that in combination with nanoparticles can enhance the stability of OMV. In this study, OMVs were used to coat chitosan nanoparticles (CNPs) and obtain a stable OMV vaccine. The characteristics, including morphology, hydrodynamic size, and zeta potential were evaluated. The immune protection of CNP-OMV and anti-infection efficacy were examined and compared in vivo and in vitro. The results showed that the CNP-OMV were homogenous with a size of 139 nm and a stable core-shell structure. And CNP-OMV could significantly increase the cell proliferation, phagocytosis and TNF-α, IL-6 and IL-10 secretion of RAW264.7 in vitro. In vivo, CNP-OMV could significantly increase the levels of anti-Bb and OMV IgG antibodies. Levels of blood lymphocyte, and Th1 (IFN-γ, IL-12), Th2 (IL-4, IL-5), and Th17 (IL-17, TNF-α) type cytokines in the serum were all significantly increased. At the same time, CNP-OMV could significantly reduce the bacterial invading the lungs of challenged rabbits. And CNP-OMV could largely protect the lungs from injury. The above results showed that CNP-OMV had a good immune efficacy and could resist the infection of Bordetella bronchiseptica. This study provided a scientific basis for the development of novel effective and safe vaccine against Bordetella bronchiseptica, and also provided a new idea for the development of new bacterial vaccine.
Collapse
Affiliation(s)
- Xuefeng Li
- College of Life Sciences, China Jiliang University, Hangzhou City, Zhejiang 310018, China
| | - Yee Huang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou City, Zhejiang 310021, China
| | - Jiaying Sun
- College of Life Sciences, China Jiliang University, Hangzhou City, Zhejiang 310018, China
| | - Xiaoping Yu
- College of Life Sciences, China Jiliang University, Hangzhou City, Zhejiang 310018, China
| | - Xiangfei Xu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou City, Zhejiang 310021, China
| | - Xuemei Cui
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou City, Zhejiang 310021, China
| | - Ke Li
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou City, Zhejiang 310021, China
| | - Quanan Ji
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou City, Zhejiang 310021, China
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou City, Zhejiang 310021, China.
| | - Guolian Bao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou City, Zhejiang 310021, China.
| |
Collapse
|
8
|
Bhaumik U, Halder P, Howlader DR, Banerjee S, Maiti S, Dutta S, Koley H. A tetravalent Shigella Outer Membrane Vesicles based candidate vaccine offered cross-protection against all the serogroups of Shigella in adult mice. Microbes Infect 2023; 25:105100. [PMID: 36696935 DOI: 10.1016/j.micinf.2023.105100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/26/2022] [Accepted: 01/06/2023] [Indexed: 01/23/2023]
Abstract
In today's world and mostly in low and middle income countries, S. flexneri and S. sonnei remains the major causative agent of clinical bacillary dysentery. Based on contemporary epidemiology, a tetravalent Outer Membrane Vesicle (OMVs) based immunogen was formulated using the most commonly circulating Shigella strains, namely, S. flexneri 2a, S. flexneri 3a, S. flexneri 6 and S. sonnei I, in a 1:1:1:1 ratio. Adult BALB/c mice were orally immunized in a prime-boost-boost manner. Tetravalent Shigella OMVs immunogen induced significant and persistent serum and mucosal antibodies against OMVs, Outer Membrane Proteins (OMPs) and lipopolysaccharides (LPS). Tetravalent OMVs also primed cell mediated immune response effectively. Protective efficacy against six heterologous Shigella strains was checked in an intra-peritoneal mouse model. Immunized mice survived lethal infection better than the non-immunized mice cohort with fewer replicating bacteria isolated from their gut. This study establishes the possibilities of tetravalent OMVs immunogen to become a potent vaccine candidate against human shigellosis, overcoming the limitations of sero-specific cross-protection of Shigella species.
Collapse
Affiliation(s)
- Ushasi Bhaumik
- Division of Bacteriology, ICMR- National Institute of Cholera and Enteric Diseases. P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata-700 010, India; Center for Vaccine Development and Global Health, School of Medicine, University of Maryland, Baltimore, MD 2120, United States
| | - Prolay Halder
- Division of Bacteriology, ICMR- National Institute of Cholera and Enteric Diseases. P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata-700 010, India
| | - Debaki Ranjan Howlader
- Division of Bacteriology, ICMR- National Institute of Cholera and Enteric Diseases. P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata-700 010, India; Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65201, United States
| | - Soumalya Banerjee
- Division of Bacteriology, ICMR- National Institute of Cholera and Enteric Diseases. P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata-700 010, India
| | - Suhrid Maiti
- Division of Bacteriology, ICMR- National Institute of Cholera and Enteric Diseases. P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata-700 010, India; Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65201, United States
| | - Shanta Dutta
- ICMR- National Institute of Cholera and Enteric Diseases. . P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata 700 010, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR- National Institute of Cholera and Enteric Diseases. P-33, C.I.T. Road, Scheme XM, Beliaghata, Kolkata-700 010, India. http://www.niced.org.in/
| |
Collapse
|
9
|
The tremendous biomedical potential of bacterial extracellular vesicles. Trends Biotechnol 2022; 40:1173-1194. [DOI: 10.1016/j.tibtech.2022.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 12/20/2022]
|
10
|
Thomas SC, Kim JW, Pauletti GM, Hassett DJ, Kotagiri N. Exosomes: Biological Pharmaceutical Nanovectors for Theranostics. Front Bioeng Biotechnol 2022; 9:808614. [PMID: 35096795 PMCID: PMC8790084 DOI: 10.3389/fbioe.2021.808614] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are natural cell-derived nanovesicles of endocytic origin that enable cellular crosstalk by transferring encapsulated molecular cargos across biological barriers, thereby holding significantly complex implications in the etiology and progression of diverse disease states. Consequently, the development of exosomes-based nano-theranostic strategies has received immense consideration for advancing therapeutic interventions and disease prognosis. Their favorable biopharmaceutical properties make exosomes a unique nanoparticulate carrier for pharmaceutical drug delivery. This review provides an update on the contemporary strategies utilizing exosomes for theranostic applications in nanomedicine. In addition, we provide a synopsis of exosomal features and insights into strategic modifications that control in vivo biodistribution. We further discuss their opportunities, merits and pitfalls for cell/tissue targeted drug delivery in personalized nanotherapy.
Collapse
Affiliation(s)
- Shindu C Thomas
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
| | - Jin-Woo Kim
- Department of Biological and Agricultural Engineering, Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR, United States
| | - Giovanni M Pauletti
- St. Louis College of Pharmacy, University of Health Sciences and Pharmacy in St. Louis, St. Louis, MO, United States
| | - Daniel J Hassett
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Nalinikanth Kotagiri
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
11
|
Development of a novel trivalent invasive non-typhoidal Salmonella outer membrane vesicles based vaccine against salmonellosis and fowl typhoid in chickens. Immunobiology 2022; 227:152183. [DOI: 10.1016/j.imbio.2022.152183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/04/2022] [Accepted: 01/23/2022] [Indexed: 11/17/2022]
|