1
|
Dingding H, Muhammad S, Manzoor I, Ghaffar SA, Alodaini HA, Moubayed NMS, Hatamleh AA, Songxiao X. Subtractive proteomics and reverse-vaccinology approaches for novel drug targets and designing a chimeric vaccine against Ruminococcus gnavus strain RJX1120. Front Immunol 2025; 16:1555741. [PMID: 40297578 PMCID: PMC12034673 DOI: 10.3389/fimmu.2025.1555741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
Mediterraneibacter gnavus, also known as Ruminococcus gnavus, is a Gram-positive anaerobic bacterium that resides in the human gut microbiota. Notably, this bacterium plays dual roles in health and disease. On one side it supports nutrient metabolism essential for bodily functions and on the other it contributes to the development of Inflammatory Bowel Disease (IBD) and other gastrointestinal disorders. R. gnavus strain RJX1120 is an encapsulated strain and has been linked to develop IBD. Despite the advances made on its role in gut homeostasis, limited information is available on strain-specific virulence factors, metabolic pathways, and regulatory mechanisms. The study of such aspects is crucial to make microbiota-targeted therapy and understand its implications in host health. A multi-epitope vaccine against R. gnavus strain RJX1120 was designed using reverse vaccinology-based subtractive proteomics approach. Among the 3,219 proteins identified in the R. gnavus strain RJX1120, two critical virulent and antigenic proteins, a Single-stranded DNA-binding protein SSB (A0A2N5PT08) and Cell division ATP-binding protein FtsE (A0A2N5NK05) were screened and identified as potential targets. The predicted B-cell and T-cell epitopes from these proteins were screened for essential immunological properties such as antigenicity, allergenicity, solubility, MHC binding affinity, and toxicity. Epitopes chosen were cross-linked using suitable spacers and an adjuvant to develop a multi-epitope vaccine. Structural refinement of the construct revealed that 95.7% of the amino acid residues were located in favored regions, indicating a high-quality structural model. Molecular docking analysis demonstrated a robust interaction between the vaccine construct and the human Toll-like receptor 4 (TLR4), with a binding energy of -1277.0 kcal/mol. The results of molecular dynamics simulations further confirmed the stability of the vaccine-receptor complex under physiological conditions. In silico cloning of the vaccine construct yielded a GC content of 48% and a Codon Adaptation Index (CAI) value of 1.0, indicating optimal expression in the host system. These results indicate the possibility of the designed vaccine construct as a candidate for the prevention of R. gnavus-associated diseases. However, experimental validation is required to confirm its immunogenicity and protective efficacy.
Collapse
Affiliation(s)
- Hou Dingding
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, China
| | - Sher Muhammad
- Faculty of Agriculture and Veterinary Sciences, Superior University Lahore, Lahore, Pakistan
| | - Irfan Manzoor
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | - Sana Abdul Ghaffar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, Pakistan
| | | | - Nadine MS. Moubayed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Xu Songxiao
- Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Parreiras de Jesus AC, Fraga VG, Pimenta-Carvalho SA, Guimarães TMPD, Araújo MSS, de Carvalho JC, Santos MB, Araújo MG, Pascoal-Xavier MA, Lyon S, Ferreira SR, Arreguin-Campos R, Eersels K, van Grinsven B, Cleij T, Bueno LL, Bartholomeu DC, Menezes CADS, Grossi de Oliveira AL, Fujiwara RT. Identifying promising peptide targets for leprosy serological tests: From prediction to ELISA. J Genet Eng Biotechnol 2025; 23:100475. [PMID: 40074449 PMCID: PMC11928804 DOI: 10.1016/j.jgeb.2025.100475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/29/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025]
Abstract
Leprosy remains a significant health concern, particularly in India, Brazil, and Indonesia. Early diagnosis is essential to prevent complications, highlighting the need for improved diagnostic tools. This study aimed to identify novel Mycobacterium leprae antigens and assess their effectiveness against human sera through immunotools for antibody response evaluation. Using bioinformatics, we predicted B-cell epitopes in M. leprae, which were chemically synthesized and tested via dot blotting with sera from leprosy patients, tuberculosis patients, and healthy controls. Promising peptides underwent further analysis through ELISA using 465 serum samples from leprosy patients, household contacts, and healthy controls across Brazil. The samples were also tested against known antigens HSA-NDO, LID-1, and NDO-LID. A total of 102 epitope sequences were generated, of which eight (PEP1 to PEP8) demonstrated the ability to differentiate between individuals with and without exposure to M. leprae. The results of the ELISA test exhibited statistically significant differences in absorbance responses between the experimental groups for the novel synthetic peptides (p < 0.05). PEP3, PEP4, and PEP5 demonstrated the most favorable outcomes, with values of the area under the receiver operating characteristic curve (AUC) of 0.9759, 0.9796 and 0.9551 respectively in the comparison of healthy controls with household contacts, and 0.8257, 0.7945, and 0.7961 comparing the same controls with patients. Furthermore, the synthetic peptides demonstrated superior sensitivity, specificity, and AUC compared to HSA-NDO, LID-1, and NDO-LID. The identified peptides showed significant responses in samples from patients and household contacts (HHC), indicating their potential for tracing exposure to M. leprae bacilli. These novel synthetic peptides could enhance the sensitivity of rapid diagnostic tests for leprosy, facilitating early detection of the infection. This could help prevent disease progression and interrupt transmission.
Collapse
Affiliation(s)
- Augusto César Parreiras de Jesus
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vanêssa Gomes Fraga
- Programa de Pós-Graduação em Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Samuel Alexandre Pimenta-Carvalho
- Programa de Pós-Graduação em Bioinformática, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tania Mara Pinto Dabés Guimarães
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Marcio Sobreira Silva Araújo
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Jairo Campos de Carvalho
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Marcio Bezerra Santos
- Programa de Pós-Graduação em Ciências da Saúde, Complexo de Ciências Médicas e Enfermagem, Universidade Federal de Alagoas, Arapiraca, Alagoas, Brazil
| | - Marcelo Grossi Araújo
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcelo Antonio Pascoal-Xavier
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil; Departamento de Anatomia Patológica e Medicina Legal, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sandra Lyon
- Hospital Eduardo de Menezes, Fundação Hospitalar do Estado de Minas Gerais, Belo Horizonte, Brazil
| | - Sebastião Rodrigo Ferreira
- Programa de Pós-graduação em Saúde, Ambiente e Biodiversidade, Universidade Federal do Sul da Bahia, Teixeira de Freitas, Bahia, Brazil
| | - Rocio Arreguin-Campos
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, Maastricht, Limburg, the Netherlands
| | - Kasper Eersels
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, Maastricht, Limburg, the Netherlands
| | - Bart van Grinsven
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, Maastricht, Limburg, the Netherlands
| | - Thomas Cleij
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, Maastricht, Limburg, the Netherlands
| | - Lilian Lacerda Bueno
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Programa de Pós-Graduação em Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniella Castanheira Bartholomeu
- Programa de Pós-Graduação em Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Programa de Pós-Graduação em Bioinformática, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Cristiane Alves da Silva Menezes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Minas Gerais, Brazil
| | - Ana Laura Grossi de Oliveira
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Toshio Fujiwara
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Programa de Pós-Graduação em Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Tenginakai P, Bhor S, Waasia FZ, Sharma S, Dinesh S. Comparative proteomic analysis to annotate the structural association of the hypothetical proteins from the conserved domain of P. aeruginosa as novel vaccine candidates. Biotechnol Lett 2024; 47:13. [PMID: 39702823 DOI: 10.1007/s10529-024-03546-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/18/2024] [Accepted: 10/03/2024] [Indexed: 12/21/2024]
Abstract
OBJECTIVES Pseudomonas aeruginosa, identified as an ESKAPE pathogen, contributes to severe clinical diseases worldwide and despite its prevalence an effective vaccine or treatment remains elusive. Numerous computational methods are being employed to target hypothetical proteins (HPs). Presently, no studies have predicted multi-epitope vaccines for these HPs. RESULTS Totally, 877 HPs from P. aeruginosa were included in the study and the data showcased here illustrate a methodical approach to prioritize the proteome by employing diverse comparative proteomics. The study employed physicochemical property assessment and conserved domain analysis to identify stable and immunologically pertinent proteins for epitope prediction. The VaxiJen2.0 antigenicity assessment aided in epitope selection, contributing to the foundational steps in vaccine development by predicting T-cell and B-cell epitopes. Potential T and B cell epitopes with high antigenicity, non-toxic categorization, and robust binding affinities were identified in the investigation. The periplasmic HP WP_132813935.1 was predicted as conserved, stable, and soluble. The T-cell peptide RTSMRALAY and the B-cell peptide MPVYLYLM were predicted to be probable non-allergen and demonstrated strong binding with MHC class I allele HLA-C*03:03. CONCLUSIONS This research provides a comprehensive approach to predict T and B cell epitopes for conditions associated with P. aeruginosa, offering a candidate pool for tailored vaccine development. However, the efficacy of these epitopes in vaccine development necessitates clinical validation and testing for confirmation.
Collapse
Affiliation(s)
- Prajval Tenginakai
- Department of Bioinformatics, BioNome, Bengaluru, Karnataka, 560043, India
| | - Samiksha Bhor
- Department of Bioinformatics, BioNome, Bengaluru, Karnataka, 560043, India
| | | | - Sameer Sharma
- Department of Bioinformatics, BioNome, Bengaluru, Karnataka, 560043, India
| | - Susha Dinesh
- Department of Bioinformatics, BioNome, Bengaluru, Karnataka, 560043, India.
| |
Collapse
|
4
|
Arshad F, Sarfraz A, Rubab A, Shehroz M, Moura AA, Sheheryar S, Ullah R, Shahat AA, Ibrahim MA, Nishan U, Shah M. Rational design of novel peptide-based vaccine against the emerging OZ virus. Hum Immunol 2024; 85:111162. [PMID: 39447523 DOI: 10.1016/j.humimm.2024.111162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Oz virus (OZV) belongs to the Orthomyxoviridae family which includes viruses with a negative-sense, single-stranded, and segmented RNA genome. OZV is a zoonotic pathogen, particularly since the virus can cause deadly illness when injected intracerebrally into nursing mice. OZV is an emerging pathogen with the potential to spark a pandemic as there is no preventive and licensed treatment against this virus. The goal of this study was to develop a novel multi-epitope vaccination against OZV proteins utilizing immunoinformatics and immunological simulation analysis. This work evaluated immunological epitopes (B cells, MHC-I, and MHC-II) to identify highly antigenic OZV target proteins. Shortlisted epitopes were joined together by using appropriate linkers and adjuvants to design multi-epitope vaccine constructs (MEVC). The vaccine models were designed, improved, validated, and the globular regions and post-translational modifications (PTMs) were also evaluated in the vaccine's structure. Molecular docking analysis with the Toll-like receptor (TLR4) showed strong interactions and appropriate binding energies. Molecular dynamics (MD) simulation confirmed stable interactions between the vaccines and TLR4. Bioinformatics tools helped optimize codons, resulting in successful cloning into appropriate host vectors. This study showed that the developed vaccines are stable and non-allergenic in the human body and successfully stimulated immunological responses against OZV. Finally, a mechanism of action for the designed vaccine construct was also proposed. Further experimental validations of the designed vaccine construct will pave the way to create a potentially effective vaccine against this emerging pathogen.
Collapse
Affiliation(s)
- Fizza Arshad
- Department of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Asifa Sarfraz
- Department of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Aleeza Rubab
- Department of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Muhammad Shehroz
- Department of Bioinformatics, Kohsar University Murree, Murree 47150, Pakistan
| | - Arlindo A Moura
- Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil
| | - Sheheryar Sheheryar
- Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdelaaty A Shahat
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed A Ibrahim
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Umar Nishan
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Pakistan.
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan; Department of Animal Science, Federal University of Ceara, Fortaleza, Brazil.
| |
Collapse
|
5
|
Kumar DS, Prasanth K, Bhandari A, Kumar Jha V, Naveen A, Prasanna M. Innovations and Challenges in the Development of COVID-19 Vaccines for a Safer Tomorrow. Cureus 2024; 16:e60015. [PMID: 38854201 PMCID: PMC11162516 DOI: 10.7759/cureus.60015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Vaccination, a historically effective public health intervention, has shielded millions from various diseases. Lessons from severe acute respiratory syndrome coronavirus (SARS-CoV) have improved COVID-19 vaccine development. Despite mRNA vaccines' efficacy, emerging variants pose challenges, exhibiting increased transmissibility, infectivity, and severity. Developing COVID-19 vaccines has faced hurdles due to urgency, limited virus understanding, and the need for safe solutions. Genetic variability necessitates continuous vaccine adjustments and production challenges demand scaling up manufacturing with stringent quality control. This review explores SARS-CoV-2's evolution, upcoming mutations that challenge vaccines, and strategies such as structure-based, T cell-based, respiratory mucosal-based, and nanotechnology approaches for vaccine development. This review insight provides a roadmap for navigating virus evolution and improving vaccine development.
Collapse
Affiliation(s)
- Devika S Kumar
- Research, Panimalar Medical College Hospital and Research Institute, Chennai, IND
| | - Krishna Prasanth
- Department of Community Medicine, Sree Balaji Medical College and Hospital, Chennai, IND
| | - Ashni Bhandari
- Department of Community Medicine, Sree Balaji Medical College and Hospital, Chennai, IND
| | - Vivek Kumar Jha
- Department of Audiology and Speech Language Pathology, Shree Guru Gobind Singh Tricentenary (SGT) University, Haryana, IND
| | - Avula Naveen
- Pharmacology and Therapeutics, All India Institute Of Medical Science Bilaspur, Bilaspur, IND
| | - Muthu Prasanna
- Pharmaceutics, Pharmaceutical Biotechnology, Surya School of Pharmacy, Surya Group of Institutions, Villupuram, IND
| |
Collapse
|
6
|
Niazi SK. Anti-Idiotypic mRNA Vaccine to Treat Autoimmune Disorders. Vaccines (Basel) 2023; 12:9. [PMID: 38276668 PMCID: PMC10819008 DOI: 10.3390/vaccines12010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/01/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
The 80+ existing autoimmune disorders (ADs) affect billions with little prevention or treatment options, except for temporary symptomatic management, leading to enormous human suffering and a monumental financial burden. The autoantibodies formed in most ADs have been identified, allowing the development of novel anti-idiotypic antibodies to mute the autoantibodies using vaccines. Nucleoside vaccines have been successfully tested as antigen-specific immunotherapies (ASI), with mRNA technology offering multi-epitope targeting to mute multiple autoantibodies. This paper proposes using mRNA technology to produce anti-idiotypic antibodies with broad effectiveness in preventing and treating them. This paper delves into the state-of-the-art mRNA design strategies used to develop novel ASIs by selecting appropriate T cell and B cell epitopes to generate anti-idiotypic antibodies. The low cost and fast development of mRNA vaccines make this technology the most affordable for the global control of ADs.
Collapse
Affiliation(s)
- Sarfaraz K Niazi
- College of Pharmacy, University of Illinois, Chicago, IL 60012, USA
| |
Collapse
|
7
|
Kumari S, Kessel A, Singhal D, Kaur G, Bern D, Lemay-St-Denis C, Singh J, Jain S. Computational identification of a multi-peptide vaccine candidate in E2 glycoprotein against diverse Hepatitis C virus genotypes. J Biomol Struct Dyn 2023; 41:11044-11061. [PMID: 37194293 DOI: 10.1080/07391102.2023.2212777] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/11/2022] [Indexed: 05/18/2023]
Abstract
Hepatitis C Virus (HCV) is estimated to affect nearly 180 million people worldwide, culminating in ∼0.7 million yearly casualties. However, a safe vaccine against HCV is not yet available. This study endeavored to identify a multi-genotypic, multi-epitopic, safe, and globally competent HCV vaccine candidate. We employed a consensus epitope prediction strategy to identify multi-epitopic peptides in all known envelope glycoprotein (E2) sequences, belonging to diverse HCV genotypes. The obtained peptides were screened for toxicity, allergenicity, autoimmunity and antigenicity, resulting in two favorable peptides viz., P2 (VYCFTPSPVVVG) and P3 (YRLWHYPCTV). Evolutionary conservation analysis indicated that P2 and P3 are highly conserved, supporting their use as part of a designed multi-genotypic vaccine. Population coverage analysis revealed that P2 and P3 are likely to be presented by >89% Human Leukocyte Antigen (HLA) molecules from six geographical regions. Indeed, molecular docking predicted the physical binding of P2 and P3 to various representative HLAs. We designed a vaccine construct using these peptides and assessed its binding to toll-like receptor 4 (TLR-4) by molecular docking and simulation. Subsequent analysis by energy-based and machine learning tools predicted high binding affinity and pinpointed the key binding residues (i.e. hotspots) in P2 and P3. Also, a favorable immunogenic profile of the construct was predicted by immune simulations. We encourage the scientific community to validate our vaccine construct in vitro and in vivo.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shweta Kumari
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Amit Kessel
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Divya Singhal
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Gurpreet Kaur
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India
| | - David Bern
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Claudèle Lemay-St-Denis
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada
- PROTEO, The Québec Network for Research on Protein, Function, Engineering and Applications, Québec, QC, Canada
- CGCC, Center in Green Chemistry and Catalysis, Montréal, QC, Canada
| | - Jasdeep Singh
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
| | - Sahil Jain
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, India
- Department of Biochemistry and Molecular Biology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
8
|
Hwang SY, Shin SH, Park SH, Lee MJ, Kim SM, Lee JS, Park JH. Serological Conversion through a Second Exposure to Inactivated Foot-and-Mouth Disease Virus Expressing the JC Epitope on the Viral Surface. Vaccines (Basel) 2023; 11:1487. [PMID: 37766163 PMCID: PMC10537882 DOI: 10.3390/vaccines11091487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Foot-and-mouth disease (FMD) is a fatal contagious viral disease that affects cloven-hoofed animals and causes severe economic damage at the national level. There are seven serotypes of the causative foot-and-mouth disease virus (FMDV), and type O is responsible for serious outbreaks and shows a high incidence. Recently, the Cathay, Southeast Asia (SEA), and ME-SA (Middle East-South Asia) topotypes of type O have been found to frequently occur in Asia. Thus, it is necessary to develop candidate vaccines that afford protection against these three different topotypes. In this study, an experimental FMD vaccine was produced using a recombinant virus (TWN-JC) with the JC epitope (VP1 140-160 sequence of the O/SKR/Jincheon/2014) between amino acid 152 and 153 of VP1 in TWN-R. Immunization with this novel vaccine candidate was found to effectively protect mice against challenge with the three different topotype viruses. Neutralizing antibody titers were considerably higher after a second vaccination. The serological differences between the topotype strains were identified in guinea pigs and swine. In conclusion, a significant serological difference was observed at 56 days post-vaccination between animals that received the TWN-JC vaccine candidate and those that received the positive control virus (TWN-R). The TWN-JC vaccine candidate induced IFNγ and IL-12B.
Collapse
Affiliation(s)
- Seong Yun Hwang
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon 39660, Republic of Korea; (S.Y.H.); (S.H.S.); (S.-H.P.); (M.J.L.); (S.-M.K.)
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea;
| | - Sung Ho Shin
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon 39660, Republic of Korea; (S.Y.H.); (S.H.S.); (S.-H.P.); (M.J.L.); (S.-M.K.)
| | - Sung-Han Park
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon 39660, Republic of Korea; (S.Y.H.); (S.H.S.); (S.-H.P.); (M.J.L.); (S.-M.K.)
| | - Min Ja Lee
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon 39660, Republic of Korea; (S.Y.H.); (S.H.S.); (S.-H.P.); (M.J.L.); (S.-M.K.)
| | - Su-Mi Kim
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon 39660, Republic of Korea; (S.Y.H.); (S.H.S.); (S.-H.P.); (M.J.L.); (S.-M.K.)
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon 34314, Republic of Korea;
| | - Jong-Hyeon Park
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon 39660, Republic of Korea; (S.Y.H.); (S.H.S.); (S.-H.P.); (M.J.L.); (S.-M.K.)
| |
Collapse
|
9
|
Rahi S, Lanjekar V, Ghormade V. Rationally designed peptide conjugated to gold nanoparticles for detection of aflatoxin B1 in point-of-care dot-blot assay. Food Chem 2023; 413:135651. [PMID: 36787667 DOI: 10.1016/j.foodchem.2023.135651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 01/15/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Aflatoxin B1 (AFB1) is a hepatotoxic and carcinogenic food contaminant. Although on-site paper-based detection is sensitive it depends on expensive antibodies which are difficult to raise against mycotoxins. Here, we rationally designed a high binding octapeptide, N-KSGKSKPR-C peptide for AFB1 detection, by molecular docking, as confirmed by indirect ELISA (Kd 323 nM). Further, conjugation of octapeptide with gold nanoparticles (26 nm) permitted its use as a visual detection agent in rapid, sensitive dot-blot assay (LOD 0.39 μg/kg). The assay displayed negligible cross-reactivity with co-contaminating mycotoxins. AFB1 recovery from spiked wheat sample was comparable by dot-blot (78-91 %) and HPLC (65-87 %). Evaluation of dot-blot using certified reference material and 146 food and feed samples showed high correlation R2 = 0.87 with HPLC. The assay displayed high accuracy (91 %), sensitivity (71 %) and specificity (96.5 %). Therefore, the developed dot-blot assay holds promise for monitoring AFB1 contamination in food and feed.
Collapse
Affiliation(s)
- Shraddha Rahi
- Nanobioscience Group, Agharkar Research Institute, GG Agarkar Road, Pune 411004, India
| | - Vikram Lanjekar
- Bioenergy Group, Agharkar Research Institute, GG Agarkar Road, Pune 411004, India
| | - Vandana Ghormade
- Nanobioscience Group, Agharkar Research Institute, GG Agarkar Road, Pune 411004, India.
| |
Collapse
|
10
|
Pan C, Ye J, Zhang S, Li X, Shi Y, Guo Y, Wang K, Sun P, Wu J, Wang H, Zhu L. Production of a promising modular proteinaceous self-assembled delivery system for vaccination. NANOSCALE 2023. [PMID: 37326289 DOI: 10.1039/d2nr06718h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recently, there have been enormous advances in nano-delivery materials, especially safer and more biocompatible protein-based nanoparticles. Generally, proteinaceous nanoparticles (such as ferritin and virus-like particles) are self-assembled from some natural protein monomers. However, to ensure their capability of assembly, it is difficult to upgrade the protein structure through major modifications. Here, we have developed an efficient orthogonal modular proteinaceous self-assembly delivery system that could load antigens with an attractive coupling strategy. In brief, we constructed a nanocarrier by fusing two orthogonal domains-a pentameric cholera toxin B subunit and a trimer forming peptide-and an engineered streptavidin monomer for binding biotinylated antigens. After successfully preparing the nanoparticles, the receptor-binding domain of SARS-CoV-2 spike protein and influenza virus haemagglutination antigen are used as model antigens for further evaluation. We found that the biotinylated antigen is able to bind to the nanoparticles with high affinity and achieve efficient lymph node drainage when loaded on the nanoparticles. Then, T cells are greatly activated and the formation of germinal centers is observed. Experiments of two mouse models demonstrate the strong antibody responses and prophylactic effects of these nanovaccines. Thus, we establish a proof-of-concept for the delivery system with the potential to load diverse antigen cargos to generate high-performance nanovaccines, thereby offering an attractive platform technology for nanovaccine preparation.
Collapse
Affiliation(s)
- Chao Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Jingqin Ye
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Sen Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Millitary Medical Sciences, Beijing, 100071, PR China
| | - Xiang Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Yixin Shi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Kangfeng Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
- College of Life Science, Hebei University, Baoding, 071002, PR China
| | - Peng Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
- School of Medicine, Tsinghua University, Beijing, 100084, PR China
| | - Jun Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Hengliang Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| | - Li Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, 100071, PR China.
| |
Collapse
|
11
|
Mazumder L, Hasan MR, Fatema K, Begum S, Azad AK, Islam MA. Identification of B and T Cell Epitopes to Design an Epitope-Based Peptide Vaccine against the Cell Surface Binding Protein of Monkeypox Virus: An Immunoinformatics Study. J Immunol Res 2023; 2023:2274415. [PMID: 36874624 PMCID: PMC9977553 DOI: 10.1155/2023/2274415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/07/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Background Although the monkeypox virus-associated illness was previously confined to Africa, recently, it has started to spread across the globe and become a significant threat to human lives. Hence, this study was designed to identify the B and T cell epitopes and develop an epitope-based peptide vaccine against this virus's cell surface binding protein through an in silico approach to combat monkeypox-associated diseases. Results The analysis revealed that the cell surface binding protein of the monkeypox virus contains 30 B cell and 19 T cell epitopes within the given parameter. Among the T cell epitopes, epitope "ILFLMSQRY" was found to be one of the most potential peptide vaccine candidates. The docking analysis revealed an excellent binding affinity of this epitope with the human receptor HLA-B∗15:01 with a very low binding energy (-7.5 kcal/mol). Conclusion The outcome of this research will aid the development of a T cell epitope-based peptide vaccine, and the discovered B and T cell epitopes will facilitate the creation of other epitope and multi-epitope-based vaccines in the future. This research will also serve as a basis for further in vitro and in vivo analysis to develop a vaccine that is effective against the monkeypox virus.
Collapse
Affiliation(s)
- Lincon Mazumder
- Department of Microbiology, Jagannath University, Dhaka 1100, Bangladesh
| | - Md. Rakibul Hasan
- Department of Microbiology, Jagannath University, Dhaka 1100, Bangladesh
| | - Kanij Fatema
- Department of Microbiology, Jagannath University, Dhaka 1100, Bangladesh
| | - Shamima Begum
- Department of Microbiology, Jagannath University, Dhaka 1100, Bangladesh
| | - Abul Kalam Azad
- Department of Microbiology, Jagannath University, Dhaka 1100, Bangladesh
| | | |
Collapse
|
12
|
Calvin DJD, Steve RJ, Kannangai R, Abraham P, Udhaya Kumar S, Balasundaram A, George Priya Doss C, Thomas V, Thomas A, Danda D, Fletcher JG. HPV and molecular mimicry in systemic lupus erythematosus and an impact of compiling B-cell epitopes and MHC-class II binding profiles with in silico evidence. J Biomol Struct Dyn 2023; 41:12338-12346. [PMID: 36744526 DOI: 10.1080/07391102.2023.2175261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/01/2023] [Indexed: 02/07/2023]
Abstract
Epidemiological link between HPV and SLE is evolving. The possibility of HPV infection-induced molecular mimicry and systemic lupus erythematosus (SLE) was elucidated through detailed in silico analyses. Conserved regions in the structural protein sequences of high-risk HPV types were inferred, and sequence homologies between viral and human peptides were identified to delineate proteins implicated in SLE. B-cell epitopes and MHC-class II binding were compiled using Immune Epitope Database and ProPred II analysis tool. Molecular modeling and molecular dynamics/simulation (MDS) were performed using AutoDock Vina and GROMACS, respectively. Sequence alignment revealed 32 conserved regions, and 27/32 viral peptides showed varying similarities to human peptides, rich in B-cell epitopes with superior accessibility, high hydrophilicity, antigenicity and disposition to bind many class-II HLA alleles. Molecular docking of 13 viral peptides homologous (100%) to human peptides implicated in SLE showed that VIR-PEP1 (QLFNKPYWL) and VIR-PEP2 (DTYRFVTS) exhibited higher binding affinities than corresponding human peptides to SLE predisposing HLA-DRB1 allele. MDS of these peptides showed that the viral peptides had superior folding, compactness, and a higher number of hydrogen bonds than human peptides throughout the simulation period. SASA analysis revealed that the VIR-PEP1&2 fluctuated less frequently than corresponding human peptides. MM-PBSA revealed that the VIR-PEP2 complex exhibited higher binding energy than the human peptide complex. This suggests that highly conserved structural peptides of high-risk HPV types homologous to human peptides could compete and bind avidly to the HLA allele associated with SLE and predispose HPV-infected individuals to SLE through molecular mimicry.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- D John Dickson Calvin
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Runal John Steve
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Rajesh Kannangai
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Priya Abraham
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, India
| | - S Udhaya Kumar
- Laboratory of Integrative Genomics, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Ambritha Balasundaram
- Laboratory of Integrative Genomics, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - C George Priya Doss
- Laboratory of Integrative Genomics, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Vinotha Thomas
- Department of Gynecologic Oncology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Anitha Thomas
- Department of Gynecologic Oncology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Debashish Danda
- Department of Clinical Immunology and Rheumatology, Christian Medical College, Vellore, Tamil Nadu, India
| | | |
Collapse
|
13
|
Salod Z, Mahomed O. Mapping Potential Vaccine Candidates Predicted by VaxiJen for Different Viral Pathogens between 2017-2021-A Scoping Review. Vaccines (Basel) 2022; 10:1785. [PMID: 36366294 PMCID: PMC9695814 DOI: 10.3390/vaccines10111785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 09/29/2023] Open
Abstract
Reverse vaccinology (RV) is a promising alternative to traditional vaccinology. RV focuses on in silico methods to identify antigens or potential vaccine candidates (PVCs) from a pathogen's proteome. Researchers use VaxiJen, the most well-known RV tool, to predict PVCs for various pathogens. The purpose of this scoping review is to provide an overview of PVCs predicted by VaxiJen for different viruses between 2017 and 2021 using Arksey and O'Malley's framework and the Preferred Reporting Items for Systematic Reviews extension for Scoping Reviews (PRISMA-ScR) guidelines. We used the term 'vaxijen' to search PubMed, Scopus, Web of Science, EBSCOhost, and ProQuest One Academic. The protocol was registered at the Open Science Framework (OSF). We identified articles on this topic, charted them, and discussed the key findings. The database searches yielded 1033 articles, of which 275 were eligible. Most studies focused on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), published between 2020 and 2021. Only a few articles (8/275; 2.9%) conducted experimental validations to confirm the predictions as vaccine candidates, with 2.2% (6/275) articles mentioning recombinant protein expression. Researchers commonly targeted parts of the SARS-CoV-2 spike (S) protein, with the frequently predicted epitopes as PVCs being major histocompatibility complex (MHC) class I T cell epitopes WTAGAAAYY, RQIAPGQTG, IAIVMVTIM, and B cell epitope IAPGQTGKIADY, among others. The findings of this review are promising for the development of novel vaccines. We recommend that vaccinologists use these findings as a guide to performing experimental validation for various viruses, with SARS-CoV-2 as a priority, because better vaccines are needed, especially to stay ahead of the emergence of new variants. If successful, these vaccines could provide broader protection than traditional vaccines.
Collapse
Affiliation(s)
- Zakia Salod
- Discipline of Public Health Medicine, University of KwaZulu-Natal, Durban 4051, South Africa
| | | |
Collapse
|
14
|
Maison DP, Ching LL, Cleveland SB, Tseng AC, Nakano E, Shikuma CM, Nerurkar VR. Dynamic SARS-CoV-2 emergence algorithm for rationally-designed logical next-generation vaccines. Commun Biol 2022; 5:1081. [PMID: 36217024 PMCID: PMC9550860 DOI: 10.1038/s42003-022-04030-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/23/2022] [Indexed: 02/08/2023] Open
Abstract
SARS-CoV-2 worldwide spread and evolution has resulted in variants containing mutations resulting in immune evasive epitopes that decrease vaccine efficacy. We acquired SARS-CoV-2 positive clinical samples and compared the worldwide emerged spike mutations from Variants of Concern/Interest, and developed an algorithm for monitoring the evolution of SARS-CoV-2 in the context of vaccines and monoclonal antibodies. The algorithm partitions logarithmic-transformed prevalence data monthly and Pearson's correlation determines exponential emergence of amino acid substitutions (AAS) and lineages. The SARS-CoV-2 genome evaluation indicated 49 mutations, with 44 resulting in AAS. Nine of the ten most worldwide prevalent (>70%) spike protein changes have Pearson's coefficient r > 0.9. The tenth, D614G, has a prevalence >99% and r-value of 0.67. The resulting algorithm is based on the patterns these ten substitutions elucidated. The strong positive correlation of the emerged spike protein changes and algorithmic predictive value can be harnessed in designing vaccines with relevant immunogenic epitopes. Monitoring, next-generation vaccine design, and mAb clinical efficacy must keep up with SARS-CoV-2 evolution, as the virus is predicted to remain endemic.
Collapse
Affiliation(s)
- David P Maison
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Pacific Center for Emerging Infectious Diseases Research, University of Hawai'i at Mānoa, Honolulu, HI, USA
- John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Lauren L Ching
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Pacific Center for Emerging Infectious Diseases Research, University of Hawai'i at Mānoa, Honolulu, HI, USA
- John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Sean B Cleveland
- Hawaii Data Science Institute, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Department of Cyberinfrastructure, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Alanna C Tseng
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Pacific Center for Emerging Infectious Diseases Research, University of Hawai'i at Mānoa, Honolulu, HI, USA
- John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Eileen Nakano
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Pacific Center for Emerging Infectious Diseases Research, University of Hawai'i at Mānoa, Honolulu, HI, USA
- John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Cecilia M Shikuma
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, University of Hawai'i at Mānoa, Honolulu, HI, USA
- John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Hawaii Center for AIDS, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Vivek R Nerurkar
- Department of Tropical Medicine, Medical Microbiology, and Pharmacology, University of Hawai'i at Mānoa, Honolulu, HI, USA.
- Pacific Center for Emerging Infectious Diseases Research, University of Hawai'i at Mānoa, Honolulu, HI, USA.
- John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, USA.
| |
Collapse
|
15
|
Gan L, Chen Y, Tan J, Wang X, Zhang D. Does potential antibody-dependent enhancement occur during SARS-CoV-2 infection after natural infection or vaccination? A meta-analysis. BMC Infect Dis 2022; 22:742. [PMID: 36123623 PMCID: PMC9483537 DOI: 10.1186/s12879-022-07735-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 09/09/2022] [Indexed: 12/05/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) continues to constitute an international public health emergency. Vaccination is a prospective approach to control this pandemic. However, apprehension about the safety of vaccines is a major obstacle to vaccination. Amongst health professionals, one evident concern is the risk of antibody-dependent enhancement (ADE), which may increase the severity of COVID-19. To explore whether ADE occurs in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and increase confidence in the safety of vaccination, we conducted a meta-analysis to investigate the relationship between post-immune infection and disease severity from a population perspective. Databases, including PubMed, EMBASE, Chinese National Knowledge Infrastructure, SinoMed, Scopus, Science Direct, and Cochrane Library, were searched for articles on SARS-CoV-2 reinfection published until 25 October 2021. The papers were reviewed for methodological quality, and a random effects model was used to analyse the results. Heterogeneity was assessed using the I2 statistic. Publication bias was evaluated using a funnel plot and Egger's test. Eleven studies were included in the final meta-analysis. The pooled results indicated that initial infection and vaccination were protective factors against severe COVID-19 during post-immune infection (OR = 0.55, 95%CI = 0.31-0.98). A subgroup (post-immune infection after natural infection or vaccination) analysis showed similar results. Primary SARS-CoV-2 infection and vaccination provide adequate protection against severe clinical symptoms after post-immune infection. This finding demonstrates that SARS-CoV-2 may not trigger ADE at the population level.
Collapse
Affiliation(s)
- Lin Gan
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Yan Chen
- Medical College of Shaoguan University, Shaoguan, 512000, Guangdong, China
| | - Jinlin Tan
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Xuezhi Wang
- Foshan No.4 People's Hospital, Foshan, 528000, Guangdong, China
| | - Dingmei Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
16
|
Aasim, Sharma R, Patil CR, Kumar A, Sharma K. Identification of vaccine candidate against Omicron variant of SARS-CoV-2 using immunoinformatic approaches. In Silico Pharmacol 2022; 10:12. [PMID: 35898574 PMCID: PMC9315333 DOI: 10.1007/s40203-022-00128-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/24/2022] [Indexed: 12/20/2022] Open
Abstract
Despite the availability of COVID-19 vaccines, additional more potent vaccines are still required against the emerging variations of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In the present investigation, we have identified a promising vaccine candidate against the Omicron (B.1.1.529) using immunoinformatics approaches. Various available tools like, the Immune Epitope Database server resource, and NetCTL-1.2, have been used for the identification of the promising T-cell and B-cell epitopes. The molecular docking was performed to check the interaction of TLR-3 receptors and validated 3D model of vaccine candidate. The codon optimization was done followed by cloning using SnapGene. Finally, In-silico immune simulation profile was also checked. The identified T-cell and B-cell epitopes have been selected based on their antigenicity (VaxiJen v2.0) and, allergenicity (AllerTOP v2.0). The identified epitopes with antigenic and non-allergenic properties were fused with the specific peptide linkers. In addition, the 3D model was constructed by the PHYRE2 server and validated using ProSA-web. The validated 3D model was further docked with the Toll-like receptor 3 (TLR3) and showed good interaction with the amino acids which indicate a promising vaccine candidate against the Omicron variant of SARS-CoV-2. Finally, the codon optimization, In-silico cloning and immune simulation profile was found to be satisfactory. Overall, the designed vaccine candidate has a potential against variant of SARS-Cov-2. However, further experimental studies are required to confirm.
Collapse
Affiliation(s)
- Aasim
- Department of Pharmaceutical Biotechnology, Delhi Pharmaceutical Science, and Research University, New Delhi, 110017 India
| | - Ruchika Sharma
- Centre for Precision Medicine and Pharmacy, Delhi Pharmaceutical Science, and Research University, New Delhi, 110017 India
| | - C R Patil
- Department of Pharmacology, Delhi Pharmaceutical Science, and Research University, New Delhi, 110017 India
| | - Anoop Kumar
- Department of Pharmacology, Delhi Pharmaceutical Science, and Research University, New Delhi, 110017 India
| | - Kalicharan Sharma
- Department of Medicinal Chemistry, Delhi Pharmaceutical Science, and Research University, New Delhi, 110017 India
| |
Collapse
|
17
|
Perveen S, Akram M, Nasar A, Arshad‐Ayaz A, Naseem A. Vaccination-hesitancy and vaccination-inequality as challenges in Pakistan's COVID-19 response. JOURNAL OF COMMUNITY PSYCHOLOGY 2022; 50:666-683. [PMID: 34217150 PMCID: PMC8426931 DOI: 10.1002/jcop.22652] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/05/2021] [Indexed: 06/01/2023]
Abstract
This study explores the mechanism for timely and equitable distribution of coronavirus disease 2019 (COVID-19) vaccination among the various communities in Pakistan. It examines the factors that support and/or impede peoples' access and response towards COVID-19 vaccination in Pakistan. The study uses a literature synthesis approach to examine and analyze the situation of the COVID-19 vaccination in Pakistan. The research results show "hesitancy" and "inequality" as two fundamental challenges that hinder the successful delivery of COVID-19 vaccination in Pakistan. People are reluctant to use vaccines due to conspiracy theories and religious beliefs. However, inequality, especially unequal accessibility to all social groups appears to be a more significant barrier to getting a vaccine. We argue that there is a need to mobilize community influence, social media, and mass media campaigns for public education on vaccination programs along with the engagement of religious leaders to endorse the vaccination for the masses. The area of this study is underdeveloped; thereby, future studies are recommended to investigate the possible way for equitable distribution of vaccines in multiple regions.
Collapse
Affiliation(s)
- Shama Perveen
- Center for Justice and PeacebuildingEastern Mennonite UniversityHarrisonburgVirginiaUSA
| | - Muhammad Akram
- Center for Justice and PeacebuildingEastern Mennonite UniversityHarrisonburgVirginiaUSA
| | - Asim Nasar
- Azman Hashim International Business SchoolUniversiti Teknologi MalaysiaKuala LumpurMalaysia
| | | | - Ayaz Naseem
- Department of EducationConcordia UniversityMontrealQuebecCanada
| |
Collapse
|
18
|
Immunoinformatics and reverse vaccinomic approaches for effective design. COMPUTATIONAL APPROACHES FOR NOVEL THERAPEUTIC AND DIAGNOSTIC DESIGNING TO MITIGATE SARS-COV-2 INFECTION 2022. [PMCID: PMC9300457 DOI: 10.1016/b978-0-323-91172-6.00004-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The emergence of mutagenic strains of severe acute respiratory syndrome-Coronavirus-2 (SARS-CoV-2) worst hit the world which already suffered from the Coronavirus disease-2019 (COVID-19) pandemic for 2 years. Due to recent advances in vaccinomics, many vaccine candidates are available but their efficacy against a mutant version of SARS-CoV-2 has remained uncertain. The immune-informatics-based reverse vaccinomic approaches have shown promising investigations recently for the development of cost-effective vaccinomics candidates in a very short period of time. The strategic vaccine development of selected epitopes using artificial intelligence for both B- and T-cells is a very crucial step in this process. This approach provides a highly effective and immunogenic vaccine that offers immunological safety against autoimmunity and other adverse effects over ethnicities, pregnant women, and vulnerable age groups. Several researchers have developed effective vaccine candidates using computational vaccinology and the immune-informatics approach. In this process, a unique peptide sequence of viral proteins such as Nucleocapsid, spike, envelope protein was identified by various in silico tools which are acting as immunological epitopes against TLRs, T-cells, and B-cells. While the conventional immunological vaccine studies take years for vaccine candidature, the immunoinformatics approach is a time-efficient way for the next generation research to study host-pathogen interactions and vaccine development. It is also cost-effective and leads to a better understanding of disease pathogenesis, diagnosis, and immunological response. Owing to the advantage of immunoinformatics-based vaccine approaches the present chapter aimed to discuss vaccine development using immunoinformatics approaches. Besides, the current challenges and future aspects have also been discussed herewith.
Collapse
|
19
|
Choudhury SM, Ma X, Dang W, Li Y, Zheng H. Recent Development of Ruminant Vaccine Against Viral Diseases. Front Vet Sci 2021; 8:697194. [PMID: 34805327 PMCID: PMC8595237 DOI: 10.3389/fvets.2021.697194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/04/2021] [Indexed: 01/21/2023] Open
Abstract
Pathogens of viral origin produce a large variety of infectious diseases in livestock. It is essential to establish the best practices in animal care and an efficient way to stop and prevent infectious diseases that impact animal husbandry. So far, the greatest way to combat the disease is to adopt a vaccine policy. In the fight against infectious diseases, vaccines are very popular. Vaccination's fundamental concept is to utilize particular antigens, either endogenous or exogenous to induce immunity against the antigens or cells. In light of how past emerging and reemerging infectious diseases and pandemics were handled, examining the vaccination methods and technological platforms utilized for the animals may provide some useful insights. New vaccine manufacturing methods have evolved because of developments in technology and medicine and our broad knowledge of immunology, molecular biology, microbiology, and biochemistry, among other basic science disciplines. Genetic engineering, proteomics, and other advanced technologies have aided in implementing novel vaccine theories, resulting in the discovery of new ruminant vaccines and the improvement of existing ones. Subunit vaccines, recombinant vaccines, DNA vaccines, and vectored vaccines are increasingly gaining scientific and public attention as the next generation of vaccines and are being seen as viable replacements to conventional vaccines. The current review looks at the effects and implications of recent ruminant vaccine advances in terms of evolving microbiology, immunology, and molecular biology.
Collapse
Affiliation(s)
- Sk Mohiuddin Choudhury
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - XuSheng Ma
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Wen Dang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - YuanYuan Li
- Gansu Agricultural University, Lanzhou, China
| | - HaiXue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
20
|
Akıl M, Aykur M, Karakavuk M, Can H, Döşkaya M. Construction of a multiepitope vaccine candidate against Fasciola hepatica: an in silico design using various immunogenic excretory/secretory antigens. Expert Rev Vaccines 2021; 21:993-1006. [PMID: 34666598 DOI: 10.1080/14760584.2022.1996233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Fasciola hepatica is an important pathogen that causes liver fluke disease in definitive hosts such as livestock animals and humans. Various excretory/secretory products have been used in serological diagnosis and vaccination studies targeting fasciolosis. There are no commercial vaccines against fasciolosis yet. Bioinformatic analysis based on computational methods have lower cost and provide faster output compared to conventional vaccine antigen discovery techniques. The aim of this study was to predict B- and T-cell specific epitopes of four excretory/secretory antigens (Kunitz-type serine protease inhibitor, cathepsin L1, helminth defense molecule, and glutathione S-transferase) of Fasciola hepatica and to construct a multiepitope vaccine candidate against fasciolosis. METHODS AND RESULTS Initially, nonallergic and the highest antigenic B- and T- cell epitopes were selected and then, physico-chemical parameters, secondary and tertiary structures of designed multiepitope vaccine candidate were predicted. Tertiary structure was refined and validated using online bioinformatic tools. Linear and discontinuous B-cell epitopes and disulfide bonds were determined. Finally, molecular docking analysis for MHC-I and MHC-II receptors was performed. CONCLUSION This multi-epitope vaccine candidate antigen, with high immunological properties, can be considered as a promising vaccine candidate for animal experiments and wet lab studies.
Collapse
Affiliation(s)
- Mesut Akıl
- Faculty of Medicine, Department of Parasitology, Istanbul Medeniyet University, Istanbul, TURKEY
| | - Mehmet Aykur
- Faculty of Medicine, Department of Parasitology, Tokat Gaziosmanpasa University, Tokat, TURKEY
| | - Muhammet Karakavuk
- Odemis Vocational School, Ege University, Izmir, TURKEY.,Faculty of Medicine, Department of Parasitology, Ege University, Izmir, TURKEY
| | - Hüseyin Can
- Faculty of Science, Department of Biology, Molecular Biology Section, Ege University, Izmir, TURKEY
| | - Mert Döşkaya
- Faculty of Medicine, Department of Parasitology, Ege University, Izmir, TURKEY
| |
Collapse
|
21
|
Singh J, Raina A, Sangwan N, Chauhan A, Khanduja KL, Avti PK. Identification of homologous human miRNAs as antivirals towards COVID-19 genome. ADVANCES IN CELL AND GENE THERAPY 2021; 4:e114. [PMID: 34901760 PMCID: PMC8646656 DOI: 10.1002/acg2.114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/25/2021] [Accepted: 09/05/2021] [Indexed: 12/12/2022]
Abstract
The COVID-19 fatality rate is ~57% worldwide. The investigation of possible antiviral therapy using host microRNA (miRNA) to inhibit viral replication and transmission is the need of the hour. Computational techniques were used to predict the hairpin precursor miRNA (pre-miRNAs) of COVID-19 genome with high homology towards human (host) miRNA. Top 21 host miRNAs with >80% homology towards 18 viral pre miRNAs were identified. The Gibbs free energy (ΔG) between host miRNAs and viral pre-miRNAs hybridization resulted in the best 5 host miRNAs having the highest base-pair complementarity. miR-4476 had the strongest binding with viral pre-miRNA (ΔG = -21.8 kcal/mol) due to maximum base pairing in the seed sequence. Pre-miR-651 secondary structure was most stable due to the (1) least minimum free energy (ΔG = -24.4 kcal/mol), energy frequency, and noncanonical base pairing and (2) maximum number of stem base pairing and small loop size. Host miRNAs-viral mRNAs interaction can effectively inhibit viral transmission and replication. Furthermore, miRNAs gene network and gene-ontology studies indicate top 5 host miRNAs interaction with host genes involved in transmembrane-receptor signaling, cell migration, RNA splicing, nervous system formation, and tumor necrosis factor-mediated signaling in respiratory diseases. This study identifies host miRNA/virus pre-miRNAs strong interaction, structural stability, and their gene-network analysis provides strong evidence of host miRNAs as antiviral COVID-19 agents.
Collapse
Affiliation(s)
- Jitender Singh
- Department of BiophysicsPostgraduate Institute of Medical Education and Research (PGIMER)ChandigarhIndia
| | - Ashvinder Raina
- Postgraduate Institute of Medical Education and Research (PGIMER)ChandigarhIndia
| | - Namrata Sangwan
- Department of BiophysicsPostgraduate Institute of Medical Education and Research (PGIMER)ChandigarhIndia
| | - Arushi Chauhan
- Department of BiophysicsPostgraduate Institute of Medical Education and Research (PGIMER)ChandigarhIndia
| | - Krishan L. Khanduja
- Department of BiophysicsPostgraduate Institute of Medical Education and Research (PGIMER)ChandigarhIndia
| | - Pramod K. Avti
- Department of BiophysicsPostgraduate Institute of Medical Education and Research (PGIMER)ChandigarhIndia
| |
Collapse
|
22
|
Maison DP, Ching LL, Cleveland SB, Tseng AC, Nakano E, Shikuma CM, Nerurkar VR. Algorithm for the Quantitation of Variants of Concern for Rationally Designed Vaccines Based on the Isolation of SARS-CoV-2 Hawai'i Lineage B.1.243. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.08.18.455536. [PMID: 34751271 PMCID: PMC8575142 DOI: 10.1101/2021.08.18.455536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
SARS-CoV-2 worldwide emergence and evolution has resulted in variants containing mutations resulting in immune evasive epitopes that decrease vaccine efficacy. We acquired clinical samples, analyzed SARS-CoV-2 genomes, used the most worldwide emerged spike mutations from Variants of Concern/Interest, and developed an algorithm for monitoring the SARS-CoV-2 vaccine platform. The algorithm partitions logarithmic-transformed prevalence data monthly and Pearson's correlation determines exponential emergence. The SARS-CoV-2 genome evaluation indicated 49 mutations. Nine of the ten most worldwide prevalent (>70%) spike protein changes have r- values >0.9. The tenth, D614G, has a prevalence >99% and r -value of 0.67. The resulting algorithm is based on the patterns these ten substitutions elucidated. The strong positive correlation of the emerged spike protein changes and algorithmic predictive value can be harnessed in designing vaccines with relevant immunogenic epitopes. SARS-CoV-2 is predicted to remain endemic and continues to evolve, so must SARS-CoV-2 monitoring and next-generation vaccine design.
Collapse
|
23
|
Chakraborty C, Sharma AR, Bhattacharya M, Lee SS. Lessons Learned from Cutting-Edge Immunoinformatics on Next-Generation COVID-19 Vaccine Research. Int J Pept Res Ther 2021; 27:2303-2311. [PMID: 34276266 PMCID: PMC8272614 DOI: 10.1007/s10989-021-10254-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2021] [Indexed: 12/23/2022]
Abstract
Presently, immunoinformatics and bioinformatics approaches are contributing actively to COVID-19 vaccine research. The first immunoinformatics-based vaccine construct against SARS-CoV-2 was published in February 2020. Following this, immunoinformatics and bioinformatics approaches have created a new direction in COVID-19 vaccine research. Several researchers have designed the next-generation COVID-19 vaccines using these approaches. Presently, immunoinformatics has accelerated immunology research immensely in the area of COVID-19. Hence, we have tried to depict the current scenario of immunoinformatics and bioinformatics in COVID-19 vaccine research.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Rd, Jagannathpur, Kolkata, West Bengal 700126 India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, VyasaVihar, Balasore, Odisha 756020 India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| |
Collapse
|
24
|
Mallavarpu Ambrose J, Priya Veeraraghavan V, Kullappan M, Chellapandiyan P, Krishna Mohan S, Manivel VA. Comparison of Immunological Profiles of SARS-CoV-2 Variants in the COVID-19 Pandemic Trends: An Immunoinformatics Approach. Antibiotics (Basel) 2021; 10:535. [PMID: 34066389 PMCID: PMC8148159 DOI: 10.3390/antibiotics10050535] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
The current dynamics of the COVID-19 pandemic have become a serious concern with the emergence of a series of mutant variants of the SARS-CoV-2 virus. Unlike the previous strain, it is reported that the descendants are associated with increased risk of transmission yet causing less impact in terms of hospital admission, the severity of illness, or mortality. Moreover, the vaccine efficacy is also not believed to vary among the population depending on the variants of the virus and ethnicity. It has been determined that the mutations recorded in the spike gene and protein of the newly evolved viruses are specificallyresponsible for this transformation in the behavior of the virus and its disease condition. Hence, this study aimed to compare the immunogenic profiles of the spike protein from the latest variants of the SARS-CoV-2 virus concerning the probability of COVID-19 severity. Genome sequences of the latest SARS-CoV-2 variants were obtained from GISAID and NCBI repositories. The translated protein sequences were run against T-cell and B-cell epitope prediction tools. Subsequently, antigenicity, immunogenicity, allergenicity, toxicity, and conservancy of the identified epitopes were ascertained using various prediction servers. Only the non-allergic and non-toxic potential epitopes were matched for population relevance by using the Human Leucocyte Antigen population registry in IEDB. Finally, the selected epitopes were validated by docking and simulation studies. The evaluated immunological parameters would concurrently reveal the severity of COVID-19, determining the infection rate of the pathogen. Our immunoinformatics approach disclosed that spike protein of the five variants was capable of forming potential T and B-cell epitopes with varying immune responses. Although the Wuhan strain showed a high number of epitope/HLA combinations, relatively less antigenicity and higher immunogenicity results in poor neutralizing capacity, which could be associated with increased disease severity. Our data demonstrate that increased viral antigenicity with moderate to high immunogenicity, and several potential epitope/HLA combinations in England strain, the USA, India, and South Africa variants, could possess a high neutralizing ability. Therefore, our findings reinforce that the newly circulating variants of SARS-CoV-2 might be associated with more infectiousness and less severe disease condition despite their greater viremia, as reported in the recent COVID-19 cases, whichconsequently determine their increased epidemiological fitness.
Collapse
Affiliation(s)
- Jenifer Mallavarpu Ambrose
- Department of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600 123, Tamil Nadu, India; (J.M.A.); (M.K.)
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Velappanchavadi, Chennai 600 077, Tamil Nadu, India;
| | - Malathi Kullappan
- Department of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600 123, Tamil Nadu, India; (J.M.A.); (M.K.)
| | - Poongodi Chellapandiyan
- Department of Obstetrics & Gynaecological Nursing, Panimalar College of Nursing, Varadharajapuram, Poonamallee, Chennai 600 123, Tamil Nadu, India;
| | - Surapaneni Krishna Mohan
- Department of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600 123, Tamil Nadu, India; (J.M.A.); (M.K.)
- Departments of Biochemistry, Molecular Virology, Clinical Skills and Simulation, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600 123, Tamil Nadu, India
| | - Vivek Anand Manivel
- Department of Research, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600 123, Tamil Nadu, India; (J.M.A.); (M.K.)
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden
| |
Collapse
|