1
|
Clothier HJ, Shetty AN, Mesfin Y, Mackie M, Pearce C, Buttery JP. What would have happened anyway? Population data source considerations when estimating background incident rates of adverse events following immunisation to inform vaccine safety. Vaccine 2024; 42:1108-1115. [PMID: 38262811 DOI: 10.1016/j.vaccine.2024.01.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
INTRODUCTION Understanding background incident rates of adverse events following immunisation (AEFI) is essential to rapidly detect, evaluate, respond to, and communicate about vaccine safety concerns, especially for new vaccines. Creating estimates based on geographic specific population level data is increasingly important, as new AEFI presentations will be subject to the same local influences of population demography, exposures, health system variations and level of health care sought. METHODS We conducted a retrospective cohort analysis of hospital admissions, emergency department presentations and general practice consultations from 2015 to 2019-before introduction of COVID-19, Mpox or Shingrix vaccination-to estimate background incident rates for 37 conditions considered potential AEFI of special interest (AESI). Background incident rates per 100,000 population were calculated and presented as cases expected to occur coincidentally 1 day, 1 week and 6 weeks post-vaccination, by life-stage age-groups and presenting healthcare setting. We then assessed the proportional contribution of each data source to inform each AESI background rate estimate. RESULTS 16,437,156 episodes of the 37 AESI were identified. Hospital admissions predominantly informed 19 (51%) of AESI, including exclusively ADEM and CVST; 8 AESI (22%) by primary care, and 10 (27%) a mix. Four AESI (allergic urticaria, Bell's palsy, erythema multiform and sudden death) were better informed by emergency presentations than admissions, but conversely 11 AESI (30%) were not captured in ICD-10 coded emergency presentations at all. CONCLUSIONS Emergent safety concerns are inevitable in population-wide implementation of new vaccines, therefore understanding local background rates aids both safety signal detection as well as maintaining public confidence in vaccination. Hospital and primary care data sources can be interrogated to inform expected background incident rates of adverse events that may occur following vaccination. However, it is necessary to understand which data-source provides best intelligence according to nature of condition and presenting healthcare setting.
Collapse
Affiliation(s)
- Hazel J Clothier
- Health Informatics, Centre for Health Analytics, Melbourne Children's Campus, 50 Flemington Road, Parkville, Victoria, Australia; SAEFVIC, Infection and Immunity, Murdoch Children's Research Institute, 50 Flemington Road, Parkville, Victoria, Australia; Melbourne School of Population & Global Health, University of Melbourne, Grattan Street, Parkville, Victoria, Australia; Department of Paediatrics, University of Melbourne, Grattan Street, Parkville, Victoria, Australia.
| | - Aishwarya N Shetty
- Health Informatics, Centre for Health Analytics, Melbourne Children's Campus, 50 Flemington Road, Parkville, Victoria, Australia; SAEFVIC, Infection and Immunity, Murdoch Children's Research Institute, 50 Flemington Road, Parkville, Victoria, Australia.
| | - Yonatan Mesfin
- SAEFVIC, Infection and Immunity, Murdoch Children's Research Institute, 50 Flemington Road, Parkville, Victoria, Australia
| | - Michael Mackie
- Victorian Agency for Health Information, Victorian Government Department of Health, 50 Lonsdale Street, Melbourne, Victoria, Australia.
| | | | - Jim P Buttery
- Health Informatics, Centre for Health Analytics, Melbourne Children's Campus, 50 Flemington Road, Parkville, Victoria, Australia; SAEFVIC, Infection and Immunity, Murdoch Children's Research Institute, 50 Flemington Road, Parkville, Victoria, Australia; Department of Paediatrics, University of Melbourne, Grattan Street, Parkville, Victoria, Australia; Department of General Medicine, The Royal Children's Hospital, 50 Flemington Road, Parkville, Victoria, Australia.
| |
Collapse
|
2
|
Abstract
Immunization implementation in the community relies upon post-licensure vaccine safety surveillance to maintain safe vaccination programs and to detect rare AEFI not observed in clinical trials. The increasing availability of electronic health-care related data and correspondence from both health-related providers and internet-based media has revolutionized health-care information. Many and varied forms of health information related to adverse event following immunization (AEFI) are potentially suitable for vaccine safety surveillance. The utilization of these media ranges from more efficient use of electronic spontaneous reporting, automated solicited surveillance methods, screening various electronic health record types, and the utilization of natural language processing techniques to scan enormous amounts of internet-based data for AEFI mentions. Each of these surveillance types have advantages and disadvantages and are often complementary to each other. Most are "hypothesis generating," detecting potential safety signals, where some, such as vaccine safety datalinking, may also serve as "hypothesis testing" to help verify and investigate those potential signals.
Collapse
Affiliation(s)
- Jim P Buttery
- Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Centre for Health Analytics, Melbourne, Australia.,Health Informatics Group and SAEFVIC, Murdoch Children's Research Institute, Melbourne, Australia.,Infectious Diseases Unit, Royal Children's Hospital, Melbourne, Australia
| | - Hazel Clothier
- Centre for Health Analytics, Melbourne, Australia.,Health Informatics Group and SAEFVIC, Murdoch Children's Research Institute, Melbourne, Australia.,School of Population and Global Health, University of Melbourne, Melbourne, Australia
| |
Collapse
|