1
|
Invenção MDCV, de Macêdo LS, de Moura IA, Santos LABDO, Espinoza BCF, de Pinho SS, Leal LRS, dos Santos DL, São Marcos BDF, Elsztein C, de Sousa GF, de Souza-Silva GA, Barros BRDS, Cruz LCDO, Maux JMDL, Silva Neto JDC, de Melo CML, Silva AJD, Batista MVDA, de Freitas AC. Design and Immune Profile of Multi-Epitope Synthetic Antigen Vaccine Against SARS-CoV-2: An In Silico and In Vivo Approach. Vaccines (Basel) 2025; 13:149. [PMID: 40006696 PMCID: PMC11861798 DOI: 10.3390/vaccines13020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND The rapid advancement of the pandemic caused by SARS-CoV-2 and its variants reinforced the importance of developing easy-to-edit vaccines with fast production, such as multi-epitope DNA vaccines. The present study aimed to construct a synthetic antigen multi-epitope SARS-CoV-2 to produce a DNA vaccine. METHODS A database of previously predicted Spike and Nucleocapsid protein epitopes was created, and these epitopes were analyzed for immunogenicity, conservation, population coverage, and molecular docking. RESULTS A synthetic antigen with 15 epitopes considered immunogenic, conserved even in the face of variants and that were able to anchor themselves in the appropriate HLA site, together had more than 90% worldwide coverage. A multi-epitope construct was developed with the sequences of these peptides separated from each other by linkers, cloned into the pVAX1 vector. This construct was evaluated in vivo as a DNA vaccine and elicited T CD4+ and T CD8+ cell expansion in the blood and spleen. In hematological analyses, there was an increase in lymphocytes, monocytes, and neutrophils between the two doses. Furthermore, based on histopathological analysis, the vaccines did not cause any damage to the organs analyzed. CONCLUSIONS The present study generated a multi-epitope synthetic vaccine antigen capable of generating antibody-mediated and cellular immune responses.
Collapse
Affiliation(s)
- Maria da Conceição Viana Invenção
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil; (M.d.C.V.I.); (L.S.d.M.); (I.A.d.M.); (B.C.F.E.); (S.S.d.P.); (L.R.S.L.); (D.L.d.S.); (B.d.F.S.M.); (C.E.); (A.J.D.S.)
| | - Larissa Silva de Macêdo
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil; (M.d.C.V.I.); (L.S.d.M.); (I.A.d.M.); (B.C.F.E.); (S.S.d.P.); (L.R.S.L.); (D.L.d.S.); (B.d.F.S.M.); (C.E.); (A.J.D.S.)
| | - Ingrid Andrêssa de Moura
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil; (M.d.C.V.I.); (L.S.d.M.); (I.A.d.M.); (B.C.F.E.); (S.S.d.P.); (L.R.S.L.); (D.L.d.S.); (B.d.F.S.M.); (C.E.); (A.J.D.S.)
| | - Lucas Alexandre Barbosa de Oliveira Santos
- Laboratory of Molecular Genetics and Biotechnology (GMBio), Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão 49100-000, Brazil; (L.A.B.d.O.S.); (M.V.d.A.B.)
| | - Benigno Cristofer Flores Espinoza
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil; (M.d.C.V.I.); (L.S.d.M.); (I.A.d.M.); (B.C.F.E.); (S.S.d.P.); (L.R.S.L.); (D.L.d.S.); (B.d.F.S.M.); (C.E.); (A.J.D.S.)
| | - Samara Sousa de Pinho
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil; (M.d.C.V.I.); (L.S.d.M.); (I.A.d.M.); (B.C.F.E.); (S.S.d.P.); (L.R.S.L.); (D.L.d.S.); (B.d.F.S.M.); (C.E.); (A.J.D.S.)
| | - Lígia Rosa Sales Leal
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil; (M.d.C.V.I.); (L.S.d.M.); (I.A.d.M.); (B.C.F.E.); (S.S.d.P.); (L.R.S.L.); (D.L.d.S.); (B.d.F.S.M.); (C.E.); (A.J.D.S.)
| | - Daffany Luana dos Santos
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil; (M.d.C.V.I.); (L.S.d.M.); (I.A.d.M.); (B.C.F.E.); (S.S.d.P.); (L.R.S.L.); (D.L.d.S.); (B.d.F.S.M.); (C.E.); (A.J.D.S.)
| | - Bianca de França São Marcos
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil; (M.d.C.V.I.); (L.S.d.M.); (I.A.d.M.); (B.C.F.E.); (S.S.d.P.); (L.R.S.L.); (D.L.d.S.); (B.d.F.S.M.); (C.E.); (A.J.D.S.)
| | - Carolina Elsztein
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil; (M.d.C.V.I.); (L.S.d.M.); (I.A.d.M.); (B.C.F.E.); (S.S.d.P.); (L.R.S.L.); (D.L.d.S.); (B.d.F.S.M.); (C.E.); (A.J.D.S.)
| | - Georon Ferreira de Sousa
- Laboratory of Immunological and Antitumor Analysis, Keizo Asami Immunopathology Laboratory, Department of Antibiotics, Bioscience Center, Federal University of Pernambuco, Recife 50670-901, Brazil; (G.F.d.S.); (G.A.d.S.-S.); (B.R.d.S.B.); (L.C.d.O.C.); (C.M.L.d.M.)
| | - Guilherme Antonio de Souza-Silva
- Laboratory of Immunological and Antitumor Analysis, Keizo Asami Immunopathology Laboratory, Department of Antibiotics, Bioscience Center, Federal University of Pernambuco, Recife 50670-901, Brazil; (G.F.d.S.); (G.A.d.S.-S.); (B.R.d.S.B.); (L.C.d.O.C.); (C.M.L.d.M.)
| | - Bárbara Rafaela da Silva Barros
- Laboratory of Immunological and Antitumor Analysis, Keizo Asami Immunopathology Laboratory, Department of Antibiotics, Bioscience Center, Federal University of Pernambuco, Recife 50670-901, Brazil; (G.F.d.S.); (G.A.d.S.-S.); (B.R.d.S.B.); (L.C.d.O.C.); (C.M.L.d.M.)
| | - Leonardo Carvalho de Oliveira Cruz
- Laboratory of Immunological and Antitumor Analysis, Keizo Asami Immunopathology Laboratory, Department of Antibiotics, Bioscience Center, Federal University of Pernambuco, Recife 50670-901, Brazil; (G.F.d.S.); (G.A.d.S.-S.); (B.R.d.S.B.); (L.C.d.O.C.); (C.M.L.d.M.)
| | - Julliano Matheus de Lima Maux
- Laboratory of Cytological and Molecular Research, Department of Histology and Embriology, Federal University of Pernambuco, Recife 50670-901, Brazil; (J.M.d.L.M.); (J.d.C.S.N.)
| | - Jacinto da Costa Silva Neto
- Laboratory of Cytological and Molecular Research, Department of Histology and Embriology, Federal University of Pernambuco, Recife 50670-901, Brazil; (J.M.d.L.M.); (J.d.C.S.N.)
| | - Cristiane Moutinho Lagos de Melo
- Laboratory of Immunological and Antitumor Analysis, Keizo Asami Immunopathology Laboratory, Department of Antibiotics, Bioscience Center, Federal University of Pernambuco, Recife 50670-901, Brazil; (G.F.d.S.); (G.A.d.S.-S.); (B.R.d.S.B.); (L.C.d.O.C.); (C.M.L.d.M.)
| | - Anna Jéssica Duarte Silva
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil; (M.d.C.V.I.); (L.S.d.M.); (I.A.d.M.); (B.C.F.E.); (S.S.d.P.); (L.R.S.L.); (D.L.d.S.); (B.d.F.S.M.); (C.E.); (A.J.D.S.)
| | - Marcus Vinicius de Aragão Batista
- Laboratory of Molecular Genetics and Biotechnology (GMBio), Department of Biology, Center for Biological and Health Sciences, Federal University of Sergipe, São Cristóvão 49100-000, Brazil; (L.A.B.d.O.S.); (M.V.d.A.B.)
| | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil; (M.d.C.V.I.); (L.S.d.M.); (I.A.d.M.); (B.C.F.E.); (S.S.d.P.); (L.R.S.L.); (D.L.d.S.); (B.d.F.S.M.); (C.E.); (A.J.D.S.)
| |
Collapse
|
2
|
Chauhan S, Khasa YP. Challenges and Opportunities in the Process Development of Chimeric Vaccines. Vaccines (Basel) 2023; 11:1828. [PMID: 38140232 PMCID: PMC10747103 DOI: 10.3390/vaccines11121828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/22/2023] [Accepted: 08/04/2023] [Indexed: 12/24/2023] Open
Abstract
Vaccines are integral to human life to protect them from life-threatening diseases. However, conventional vaccines often suffer limitations like inefficiency, safety concerns, unavailability for non-culturable microbes, and genetic variability among pathogens. Chimeric vaccines combine multiple antigen-encoding genes of similar or different microbial strains to protect against hyper-evolving drug-resistant pathogens. The outbreaks of dreadful diseases have led researchers to develop economical chimeric vaccines that can cater to a large population in a shorter time. The process development begins with computationally aided omics-based approaches to design chimeric vaccines. Furthermore, developing these vaccines requires optimizing upstream and downstream processes for mass production at an industrial scale. Owing to the complex structures and complicated bioprocessing of evolving pathogens, various high-throughput process technologies have come up with added advantages. Recent advancements in high-throughput tools, process analytical technology (PAT), quality-by-design (QbD), design of experiments (DoE), modeling and simulations, single-use technology, and integrated continuous bioprocessing have made scalable production more convenient and economical. The paradigm shift to innovative strategies requires significant attention to deal with major health threats at the global scale. This review outlines the challenges and emerging avenues in the bioprocess development of chimeric vaccines.
Collapse
Affiliation(s)
| | - Yogender Pal Khasa
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India;
| |
Collapse
|
3
|
Silva AJD, de Jesus ALS, Leal LRS, de Macêdo LS, da Silva Barros BR, de Sousa GF, da Paz Leôncio Alves S, Pena LJ, de Melo CML, de Freitas AC. Whole Yeast Vaccine Displaying ZIKV B and T Cell Epitopes Induces Cellular Immune Responses in the Murine Model. Pharmaceutics 2023; 15:1898. [PMID: 37514084 PMCID: PMC10385271 DOI: 10.3390/pharmaceutics15071898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Improving antigen presentation is crucial for the success of immunization strategies. Yeasts are classically used as biofactories to produce recombinant proteins and are efficient vehicles for antigen delivery, in addition to their adjuvant properties. Despite the absence of epidemic outbreaks, several vaccine approaches continue to be developed for Zika virus infection. The development of these prophylactic strategies is fundamental given the severity of clinical manifestations, mainly due to viral neurotropism. The present study aimed to evaluate in vivo the immune response induced by P. pastoris recombinant strains displaying epitopes of the envelope (ENV) and NS1 ZIKV proteins. Intramuscular immunization with heat-attenuated yeast enhanced the secretion of IL-6, TNF-α, and IFN-γ, in addition to the activation of CD4+ and CD8+ T cells, in BALB/c mice. P. pastoris displaying ENV epitopes induced a more robust immune response, increasing immunoglobulin production, especially IgG isotypes. Both proposed vaccines showed the potential to induce immune responses without adverse effects, confirming the safety of administering P. pastoris as a vaccine vehicle. Here, we demonstrated, for the first time, the evaluation of a vaccine against ZIKV based on a multiepitope construct using yeast as a delivery system and reinforcing the applicability of P. pastoris as a whole-cell vaccine.
Collapse
Affiliation(s)
- Anna Jéssica Duarte Silva
- Laboratory of Molecular Studies and Experimental Therapy-LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | | | - Lígia Rosa Sales Leal
- Laboratory of Molecular Studies and Experimental Therapy-LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Larissa Silva de Macêdo
- Laboratory of Molecular Studies and Experimental Therapy-LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | | | | | | | - Lindomar José Pena
- Department of Virology and Experimental Therapy, Instituto Aggeu Magalhães, Oswaldo Cruz Foundation, Recife 50670-901, Brazil
| | | | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy-LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| |
Collapse
|
4
|
Silva AJD, Rocha CKDS, de Freitas AC. Standardization and Key Aspects of the Development of Whole Yeast Cell Vaccines. Pharmaceutics 2022; 14:pharmaceutics14122792. [PMID: 36559285 PMCID: PMC9781213 DOI: 10.3390/pharmaceutics14122792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
In the context of vaccine development, improving antigenic presentation is critical for the activation of specific immune responses and the success of immunization, in addition to selecting an appropriate target. In this sense, different strategies have been developed and improved. Among them is the use of yeast cells as vehicles for the delivery of recombinant antigens. These vaccines, named whole yeast vaccines (WYVs), can induce humoral and cellular immune responses, with the additional advantage of dispensing with the use of adjuvants due to the immunostimulatory properties of their cell wall components. However, there are some gaps in the methodologies for obtaining and validating recombinant strains and vaccine formulations. The standardization of these parameters is an important factor for WYVs approval by regulatory agencies and, consequently, their licensing. This review aimed to provide an overview of the main parameters to consider when developing a yeast-based vaccine, addressing some available tools, and highlighting the main variables that can influence the vaccine production process.
Collapse
Affiliation(s)
- Anna Jéssica Duarte Silva
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | | | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
- Correspondence: ; Tel.: +55-81996067671
| |
Collapse
|
5
|
de Pinho Favaro MT, Atienza-Garriga J, Martínez-Torró C, Parladé E, Vázquez E, Corchero JL, Ferrer-Miralles N, Villaverde A. Recombinant vaccines in 2022: a perspective from the cell factory. Microb Cell Fact 2022; 21:203. [PMID: 36199085 PMCID: PMC9532831 DOI: 10.1186/s12934-022-01929-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
The last big outbreaks of Ebola fever in Africa, the thousands of avian influenza outbreaks across Europe, Asia, North America and Africa, the emergence of monkeypox virus in Europe and specially the COVID-19 pandemics have globally stressed the need for efficient, cost-effective vaccines against infectious diseases. Ideally, they should be based on transversal technologies of wide applicability. In this context, and pushed by the above-mentioned epidemiological needs, new and highly sophisticated DNA-or RNA-based vaccination strategies have been recently developed and applied at large-scale. Being very promising and effective, they still need to be assessed regarding the level of conferred long-term protection. Despite these fast-developing approaches, subunit vaccines, based on recombinant proteins obtained by conventional genetic engineering, still show a wide spectrum of interesting potentialities and an important margin for further development. In the 80's, the first vaccination attempts with recombinant vaccines consisted in single structural proteins from viral pathogens, administered as soluble plain versions. In contrast, more complex formulations of recombinant antigens with particular geometries are progressively generated and explored in an attempt to mimic the multifaceted set of stimuli offered to the immune system by replicating pathogens. The diversity of recombinant antimicrobial vaccines and vaccine prototypes is revised here considering the cell factory types, through relevant examples of prototypes under development as well as already approved products.
Collapse
Affiliation(s)
- Marianna Teixeira de Pinho Favaro
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
- Laboratory of Vaccine Development, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jan Atienza-Garriga
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
| | - Carlos Martínez-Torró
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| | - José Luis Corchero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| |
Collapse
|
6
|
Tan Y, Chen L, Li K, Lou B, Liu Y, Liu Z. Yeast as carrier for drug delivery and vaccine construction. J Control Release 2022; 346:358-379. [PMID: 35483637 DOI: 10.1016/j.jconrel.2022.04.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022]
Abstract
Yeast has been employed as an effective derived drug carrier as a unicellular microorganism. Many research works have been devoted to the encapsulation of nucleic acid compounds, insoluble small molecule drugs, small molecules, liposomes, polymers, and various nanoparticles in yeast for the treatment of disease. Recombinant yeast-based vaccine carriers (WYV) have played a major role in the development of vaccines. Herein, the latest reports on the application of yeast carriers and the development of related research are summarized, a conceptual description of gastrointestinal absorption of yeast carriers, as well as the various package forms of different drug molecules and nanoparticles in yeast carriers are introduced. In addition, the advantages and development of recombinant yeast vaccine carriers for the disease, veterinary and aquaculture applications are discussed. Moreover, the current challenges and future directions of yeast carriers are proposed.
Collapse
Affiliation(s)
- Yifu Tan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Liwei Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Ke Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Beibei Lou
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China.
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China; Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan, PR China.
| |
Collapse
|