1
|
Wang J, Hu H, Wang C, Jiang Y, Jiang W, Xin F, Zhang W, Jiang M. Advanced Strategies for the Efficient Production of Squalene by Microbial Fermentation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jingnan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P.R. China
| | - Haibo Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P.R. China
| | - Chenxi Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P.R. China
| | - Yujia Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P.R. China
| | - Wankui Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P.R. China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, P.R. China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, P.R. China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, P.R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, P.R. China
| |
Collapse
|
2
|
Ma R, Chen W, Guo Z, Jia Y, Zhu B, Wang E, Wang G. Screening the potential part of the G protein antigen is an achievable strategy to improve the immune effect of DNA vaccine against MSRV infection. FISH & SHELLFISH IMMUNOLOGY 2022; 131:1101-1108. [PMID: 36372202 DOI: 10.1016/j.fsi.2022.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/22/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
DNA vaccines, as an effective prophylactic technology to induce both humoral and cellular immune responses, have already been widely studied to prevent and control viral and bacterial infections in aquaculture. To find a more effective and safer way to control Micropterus salmoides rhabdovirus (MSRV) infection in largemouth bass, two different DNA vaccines expressing partial (pcDNA3.1-G2) and full-length (pcDNA3.1-G) of the MSRV G protein were developed and injected intramuscularly with different doses. The immune effect was comprehensively compared and evaluated by detecting immune-related parameters including serum antibody levels, immune-related physiological indexes, immune-related gene expression and relative survival rates in this study. The results showed that compared with the pcDNA3.1-G vaccine, the pcDNA3.1-G2 vaccine induced higher serum antibody levels, a lower nonspecific immune response in serum (ACP, SOD and T-AOC activities), higher immune-related gene expression and a higher relative survival rate. Moreover, the immune effect of pcDNA3.1-G2-vaccinated fish showed gradually higher with the increasing pcDNA3.1-G2 concentration, especially in pcDNA3.1-G2 (10μg/per fish) group, the relative survival rate reached to 82.5%, which was significant higher (p < 0.05) than pcDNA3.1-G (10μg/per fish) group. This study indicated that screening the potential core part of an antigen is an achievable strategy to improve the immunogenicity and immunoprotective effect of DNA vaccine.
Collapse
Affiliation(s)
- Rui Ma
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Weichao Chen
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zirao Guo
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yijun Jia
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bin Zhu
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Erlong Wang
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Gaoxue Wang
- Northwest A&F University Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|