1
|
Grant R, Rubin M, Abbas M, Pittet D, Srinivasan A, Jernigan JA, Bell M, Samore M, Harbarth S, Slayton RB. Expanding the use of mathematical modeling in healthcare epidemiology and infection prevention and control. Infect Control Hosp Epidemiol 2024:1-6. [PMID: 39228083 DOI: 10.1017/ice.2024.97] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
During the coronavirus disease 2019 pandemic, mathematical modeling has been widely used to understand epidemiological burden, trends, and transmission dynamics, to facilitate policy decisions, and, to a lesser extent, to evaluate infection prevention and control (IPC) measures. This review highlights the added value of using conventional epidemiology and modeling approaches to address the complexity of healthcare-associated infections (HAI) and antimicrobial resistance. It demonstrates how epidemiological surveillance data and modeling can be used to infer transmission dynamics in healthcare settings and to forecast healthcare impact, how modeling can be used to improve the validity of interpretation of epidemiological surveillance data, how modeling can be used to estimate the impact of IPC interventions, and how modeling can be used to guide IPC and antimicrobial treatment and stewardship decision-making. There are several priority areas for expanding the use of modeling in healthcare epidemiology and IPC. Importantly, modeling should be viewed as complementary to conventional healthcare epidemiological approaches, and this requires collaboration and active coordination between IPC, healthcare epidemiology, and mathematical modeling groups.
Collapse
Affiliation(s)
- Rebecca Grant
- Infection Control Programme and WHO Collaborating Centre for Infection Prevention and Control and Antimicrobial Resistance, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Michael Rubin
- Division of Epidemiology, University of Utah School Medicine, Salt Lake City, UT, USA
| | - Mohamed Abbas
- Infection Control Programme and WHO Collaborating Centre for Infection Prevention and Control and Antimicrobial Resistance, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Didier Pittet
- Infection Control Programme and WHO Collaborating Centre for Infection Prevention and Control and Antimicrobial Resistance, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Arjun Srinivasan
- Division of Healthcare Quality Promotion, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - John A Jernigan
- Division of Healthcare Quality Promotion, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Michael Bell
- Division of Healthcare Quality Promotion, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Matthew Samore
- Division of Epidemiology, University of Utah School Medicine, Salt Lake City, UT, USA
| | - Stephan Harbarth
- Infection Control Programme and WHO Collaborating Centre for Infection Prevention and Control and Antimicrobial Resistance, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Rachel B Slayton
- Division of Healthcare Quality Promotion, U.S. Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
2
|
Duong KN, Nguyen DT, Kategeaw W, Liang X, Khaing W, Visnovsky LD, Veettil SK, McFarland MM, Nelson RE, Jones BE, Pavia AT, Coates E, Khader K, Love J, Vega Yon GG, Zhang Y, Willson T, Dorsan E, Toth DJ, Jones MM, Samore MH, Chaiyakunapruk N. Incorporating social determinants of health into transmission modeling of COVID-19 vaccine in the US: a scoping review. LANCET REGIONAL HEALTH. AMERICAS 2024; 35:100806. [PMID: 38948323 PMCID: PMC11214325 DOI: 10.1016/j.lana.2024.100806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024]
Abstract
During COVID-19 in the US, social determinants of health (SDH) have driven health disparities. However, the use of SDH in COVID-19 vaccine modeling is unclear. This review aimed to summarize the current landscape of incorporating SDH into COVID-19 vaccine transmission modeling in the US. Medline and Embase were searched up to October 2022. We included studies that used transmission modeling to assess the effects of COVID-19 vaccine strategies in the US. Studies' characteristics, factors incorporated into models, and approaches to incorporate these factors were extracted. Ninety-two studies were included. Of these, 11 studies incorporated SDH factors (alone or combined with demographic factors). Various sets of SDH factors were integrated, with occupation being the most common (8 studies), followed by geographical location (5 studies). The results show that few studies incorporate SDHs into their models, highlighting the need for research on SDH impact and approaches to incorporating SDH into modeling. Funding This research was funded by the Centers for Disease Control and Prevention (CDC).
Collapse
Affiliation(s)
- Khanh N.C. Duong
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Danielle T. Nguyen
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Warittakorn Kategeaw
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Xi Liang
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Win Khaing
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
| | - Lindsay D. Visnovsky
- Division of Epidemiology, Department of Internal Medicine, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA
- IDEAS Center, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, USA
| | - Sajesh K. Veettil
- International Medical University, School of Pharmacy, Department of Pharmacy Practice, Kuala Lumpur, Malaysia
| | - Mary M. McFarland
- Spencer S. Eccles Health Sciences Library, University of Utah, Salt Lake City, UT, USA
| | - Richard E. Nelson
- Division of Epidemiology, Department of Internal Medicine, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA
- IDEAS Center, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, USA
| | - Barbara E. Jones
- IDEAS Center, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, USA
- Division of Pulmonary & Critical Care, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Andrew T. Pavia
- IDEAS Center, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, USA
- Division of Pediatric Infectious Diseases, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Emma Coates
- Department of Mathematics & Statistics, McMaster University, Ontario, Canada
| | - Karim Khader
- Division of Epidemiology, Department of Internal Medicine, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA
- IDEAS Center, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, USA
| | - Jay Love
- Division of Epidemiology, Department of Internal Medicine, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - George G. Vega Yon
- Division of Epidemiology, Department of Internal Medicine, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Yue Zhang
- Division of Epidemiology, Department of Internal Medicine, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Tina Willson
- Division of Epidemiology, Department of Internal Medicine, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA
- IDEAS Center, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, USA
| | - Egenia Dorsan
- Division of Epidemiology, Department of Internal Medicine, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA
- IDEAS Center, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, USA
| | - Damon J.A. Toth
- Division of Epidemiology, Department of Internal Medicine, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA
- IDEAS Center, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, USA
- Department of Mathematics, University of Utah, Salt Lake City, UT, USA
| | - Makoto M. Jones
- Division of Epidemiology, Department of Internal Medicine, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA
- IDEAS Center, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, USA
| | - Matthew H. Samore
- Division of Epidemiology, Department of Internal Medicine, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA
- IDEAS Center, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, USA
| | - Nathorn Chaiyakunapruk
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT, USA
- IDEAS Center, Veterans Affairs Salt Lake City Health Care System, Salt Lake City, UT, USA
| |
Collapse
|
3
|
Smith DRM, Duval A, Grant R, Abbas M, Harbarth S, Opatowski L, Temime L. Predicting consequences of COVID-19 control measure de-escalation on nosocomial transmission and mortality: a modelling study in a French rehabilitation hospital. J Hosp Infect 2024; 147:47-55. [PMID: 38467250 DOI: 10.1016/j.jhin.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 03/13/2024]
Abstract
INTRODUCTION Infection control measures are effective for nosocomial COVID-19 prevention but bear substantial health-economic costs, motivating their "de-escalation" in settings at low risk of SARS-CoV-2 transmission. Yet consequences of de-escalation are difficult to predict, particularly in light of novel variants and heterogeneous population immunity. AIM To estimate how infection control measure de-escalation influences nosocomial COVID-19 risk. METHODS An individual-based transmission model was used to simulate SARS-CoV-2 outbreaks and control measure de-escalation in a French long-term care hospital with multi-modal control measures in place (testing and isolation, universal masking, single-occupant rooms). Estimates of COVID-19 case fatality rates (CFRs) from reported outbreaks were used to quantify excess COVID-19 mortality due to de-escalation. RESULTS In a population fully susceptible to infection, de-escalating both universal masking and single rooms resulted in hospital-wide outbreaks of 114 (95% CI: 103-125) excess infections, compared with five (three to seven) excess infections when de-escalating only universal masking or 15 (11-18) when de-escalating only single rooms. When de-escalating both measures and applying CFRs from the first wave of COVID-19, excess patient mortality ranged from 1.57 (1.41-1.71) to 9.66 (8.73-10.57) excess deaths/1000 patient-days. By contrast, when applying CFRs from subsequent pandemic waves and assuming susceptibility to infection among 40-60% of individuals, excess mortality ranged from 0 (0-0) to 0.92 (0.77-1.07) excess deaths/1000 patient-days. CONCLUSIONS The de-escalation of bundled COVID-19 control measures may facilitate widespread nosocomial SARS-CoV-2 transmission. However, excess mortality is probably limited in populations at least moderately immune to infection and given CFRs resembling those estimated during the 'post-vaccine' era.
Collapse
Affiliation(s)
- D R M Smith
- Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK.
| | - A Duval
- Epidemiology & Modelling of Antibiotic Evasion, Institut Pasteur, Université Paris-Cité, Paris, France; Anti-Infective Evasion & Pharmacoepidemiology, Université Paris-Saclay, UVSQ, INSERM, CESP, Montigny-Le-Bretonneux, France; Laboratoire MESuRS, Conservatoire National des Arts et Métiers, Paris, France
| | - R Grant
- Faculty of Medicine, University of Geneva, Geneva, Switzerland; Infection Control Programme & WHO Collaborating Centre on Infection Prevention and Control and Antimicrobial Resistance, Geneva University Hospitals, Geneva, Switzerland
| | - M Abbas
- Faculty of Medicine, University of Geneva, Geneva, Switzerland; Infection Control Programme & WHO Collaborating Centre on Infection Prevention and Control and Antimicrobial Resistance, Geneva University Hospitals, Geneva, Switzerland; MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - S Harbarth
- Faculty of Medicine, University of Geneva, Geneva, Switzerland; Infection Control Programme & WHO Collaborating Centre on Infection Prevention and Control and Antimicrobial Resistance, Geneva University Hospitals, Geneva, Switzerland
| | - L Opatowski
- Epidemiology & Modelling of Antibiotic Evasion, Institut Pasteur, Université Paris-Cité, Paris, France; Anti-Infective Evasion & Pharmacoepidemiology, Université Paris-Saclay, UVSQ, INSERM, CESP, Montigny-Le-Bretonneux, France
| | - L Temime
- Laboratoire MESuRS, Conservatoire National des Arts et Métiers, Paris, France
| |
Collapse
|
4
|
Fisher A, Xu H, He D, Wang X. Effects of vaccination on mitigating COVID-19 outbreaks: a conceptual modeling approach. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:4816-4837. [PMID: 36896524 DOI: 10.3934/mbe.2023223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This paper is devoted to investigating the impact of vaccination on mitigating COVID-19 outbreaks. In this work, we propose a compartmental epidemic ordinary differential equation model, which extends the previous so-called SEIRD model [1,2,3,4] by incorporating the birth and death of the population, disease-induced mortality and waning immunity, and adding a vaccinated compartment to account for vaccination. Firstly, we perform a mathematical analysis for this model in a special case where the disease transmission is homogeneous and vaccination program is periodic in time. In particular, we define the basic reproduction number $ \mathcal{R}_0 $ for this system and establish a threshold type of result on the global dynamics in terms of $ \mathcal{R}_0 $. Secondly, we fit our model into multiple COVID-19 waves in four locations including Hong Kong, Singapore, Japan, and South Korea and then forecast the trend of COVID-19 by the end of 2022. Finally, we study the effects of vaccination again the ongoing pandemic by numerically computing the basic reproduction number $ \mathcal{R}_0 $ under different vaccination programs. Our findings indicate that the fourth dose among the high-risk group is likely needed by the end of the year.
Collapse
Affiliation(s)
- Allison Fisher
- Department of Mathematics and Statistics, Washington State University, Pullman, WA 99164, USA
| | - Hainan Xu
- Department of Mathematics and Statistics, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Daihai He
- Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Xueying Wang
- Department of Mathematics and Statistics, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|