1
|
Yuan H, Jiao Y, Gao J, Wang T, Xia Y, Li K, Yang Y, Zhang J, Bao H, Wang L, Sun P, Li D, Li P, Cao Y, Zhao Z, Liu Z, Lu Z, Liu Y, Bai X. Enhancement of immune responses to classical swine fever virus E2 in mice by fusion or mixture with the porcine IL-28B. Appl Microbiol Biotechnol 2025; 109:44. [PMID: 39945936 PMCID: PMC11825588 DOI: 10.1007/s00253-024-13399-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/23/2024] [Accepted: 12/28/2024] [Indexed: 02/16/2025]
Abstract
The E2 subunit vaccine has been considered a promising alternative to an attenuated classical swine fever (CSF) vaccine. However, it fails to induce a good cellular immune response. Given that immunogenic adjuvants can regulate the cellular immunity to achieve a maximum efficacy against antigens, immunostimulatory effects of porcine IL-28B on the CSF virus (CSFV) E2 subunit vaccine were evaluated in the present study. We expressed recombinant proteins E2-IL28B, E2, and IL-28B using CHO-S mammalian cells as an antigen expression platform, and three types of CSFV E2 subunit vaccines based on antigens E2-IL28B, E2 + IL-28B, and E2 were prepared, respectively. We found that both E2-IL28B and E2 + IL-28B antigens exhibited superior immunogenicity with dramatically induced antibody titers and neutralizing antibody levels than the E2 alone. Moreover, E2-IL28B or E2 + IL-28B, instead of E2, boosted cellular immune responses via obviously increasing the percentages of CD3+CD4+ T lymphocytes, promoting the lymphocyte proliferations, and enhancing the release of Th1-type cytokines. All results revealed that the inclusion of IL-28B, whether fused or mixed with E2, significantly elevated E2-induced immune potencies, suggesting that IL-28B could be used as a molecular adjuvant to optimize the design of E2 subunit vaccine for more effective controls of the CSF disease. KEY POINTS: • New CSF E2 subunit vaccine candidates were developed in which IL-28B was an immunoadjuvant • IL-28B significantly elevated the E2-induced immune potency whether it was fused or mixed with E2 • This study provided novel insights into the immunoregulatory properties of IL-28B used for the optimized subunit vaccine design.
Collapse
Affiliation(s)
- Hong Yuan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yunjuan Jiao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Jie Gao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Tao Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yingju Xia
- National Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing, 100081, China
| | - Kun Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Yuxuan Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Jing Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Huifang Bao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Lihao Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Pu Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Dong Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Pinghua Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yimei Cao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China
| | - Zhixun Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Zaixin Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Zengjun Lu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| | - Yebing Liu
- National Reference Laboratory for Classical Swine Fever, China Institute of Veterinary Drug Control, Beijing, 100081, China.
| | - Xingwen Bai
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China.
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, 730046, China.
| |
Collapse
|
2
|
Cheng J, Zhang Y, Tian Y, Cao L, Liu X, Miao S, Zhao L, Ye Q, Zhou Y, Tan WS. Development of a novel tyrosine-based selection system for generation of recombinant Chinese hamster ovary cells. J Biosci Bioeng 2024; 137:221-229. [PMID: 38220502 DOI: 10.1016/j.jbiosc.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024]
Abstract
Efficiently expanding Chinese hamster ovary (CHO) cells, which serve as the primary host cells for recombinant protein production, have gained increasing industrial significance. A significant hurdle in stable cell line development is the low efficiency of the target gene integrated into the host genome, implying the necessity for an effective screening and selection procedure to separate these stable cells. In this study, the genes of phenylalanine hydroxylase (PAH) and pterin 4 alpha carbinolamine dehydratase 1 (PCBD1), which are key enzymes in the tyrosine synthesis pathway, were utilized as selection markers and transduced into host cells together with the target genes. This research investigated the enrichment effect of this system and advanced further in understanding its benefits for cell line development and rCHO cell culture. A novel tyrosine-based selection system that only used PCBD1 as a selection marker was designed to promote the enrichment effect. Post 9 days of starvation, positive transductants in the cell pool approached 100%. Applied the novel tyrosine-based selection system, rCHO cells expressing E2 protein were generated and named CHO TS cells. It could continue to grow, and the yield of E2 achieved 95.95 mg/L in a tyrosine-free and chemically-defined (CD) medium. Herein, we introduced an alternative to antibiotic-based selections for the establishment of CHO cell lines and provided useful insights for the design and development of CD medium.
Collapse
Affiliation(s)
- Jun Cheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanmin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuan Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Cao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuping Liu
- Shanghai BioEngine Sci-Tech Co., Ltd, Shanghai 201203, China
| | - Shiwei Miao
- Hangzhou Sumgen Biotech Co., Ltd., Hangzhou 310051, China
| | - Liang Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Mohammadkhani N, Rahimpour A, Hoseinpoor R, Rajabibazl M. Development of Stable CHO-K1 Cell Lines Overexpressing Full-Length Human CD20 Antigen. IRANIAN BIOMEDICAL JOURNAL 2023; 27:269-79. [PMID: 37873643 PMCID: PMC10707815 DOI: 10.61186/ibj.27.5.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/19/2023] [Indexed: 12/17/2023]
Abstract
Background CD20 is a differentiation-related antigen exclusively expressed on the membrane of B lymphocytes. CD20 amplification is observed in numerous immune-related disorders, making it an ideal target for immunotherapy of hematological malignancies and autoimmune diseases. MAb-based therapies targeting CD20 have a principal role in the treatment of several immune-related disordes and cancers, including CLL. Fc gamma receptors mediate CD20 internalization in hematopoietic cells; therefore, this study aimed to establish non-hematopoietic stable cell lines overexpressing full-length human CD20 antigen as an in vitro model for CD20-related studies. Methods CD20 gene was cloned into the transfer vector. The lentivirus system was transfected to packaging HEK 293T cells, and the supernatants were harvested. CHO-K1 cells were transduced using recombinant viruses, and a stable cell pool was developed by the antibiotic selection. CD20 expression was confirmed at the mRNA and protein levels. Results Simultaneous expression of GFP protein facilitated the detection of CD20-expressing cells. Immunophenotyping analysis of stable clones demonstrated expression of CD20 antigen. In addition, the mean fluorescence intensity was significantly higher in the CD20-CHO-K1 clones than the wild-type CHO-K1 cells. Conclusion This study is the first report on using second-generation lentiviral vectors for the establishment of a non-hematopoietic cell-based system, which stably expresses full-length human CD20 antigen. Results of stable CHO cell lines with different levels of CD20 antigen are well suited to be used for CD20-based investigations, including binding and functional assays.
Collapse
Affiliation(s)
- Niloufar Mohammadkhani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Rahimpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Reyhaneh Hoseinpoor
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|