1
|
Divanbeigi A, Nasehi M, Vaseghi S, Amiri S, Zarrindast MR. Tropisetron But Not Granisetron Ameliorates Spatial Memory Impairment Induced by Chronic Cerebral Hypoperfusion. Neurochem Res 2020; 45:2631-2640. [PMID: 32797381 DOI: 10.1007/s11064-020-03110-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 12/16/2022]
Abstract
Tropisetron and Granisetorn are 5-HT3 antagonists with antiemetic effects. Tropisetron also has a partial agonistic effect on alpha-7 nicotinic acetylcholine receptors (α7 nAChRs). On the other hand, chronic cerebral hypoperfusion (CCH) attenuates cerebral blood flow and impairs cognitive functions. The goal of this study was to investigate the effect of Tropisetron and Granisetron on CCH-induced spatial memory impairment in rats. Forty-eight male Wistar rats were used in this study. 2-VO surgery was done to induce CCH and Radial Eight Arm Maz apparatus was used to evaluate spatial memory (working and reference memory). Tropisetron was injected intraperitoneally at the doses of 1 and 5 mg/kg, and Granisetron was injected intraperitoneally at the dose of 3 mg/kg. Dorsal hippocampal (CA1) neurons count, Interleukin 6 (IL-6) serum level, and serotonin-reuptake transporter (SERT) gene expression were also evaluated. The results showed, CCH impaired working and reference memory, increased IL-6 serum level, and decreased CA1 neurons and SERT expression. Tropisetron at the dose of 5 mg/kg restored all the effects of CCH. However, Granisetron did not restore CCH-induced memory impairment. Furthermore, Granisetron had no effect on IL-6. While, it increased SERT expression and CA1 neurons. In conclusion, Tropisetron but not Granisetron, ameliorated spatial memory impairment induced by CCH. We suggested conducting more detailed studies investigating the role of serotonergic system (5-HT3 receptors and serotonin transporters) and also α7 nAChRs in the effects of Tropisetron.
Collapse
Affiliation(s)
- Ashkan Divanbeigi
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran.,Scientific Research Committee, Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, P.O. Box 13145-784, Tehran, Iran.
| | - Salar Vaseghi
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran.,Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, P.O. Box 13145-784, Tehran, Iran
| | - Sepideh Amiri
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran.,Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, P.O. Box 13145-784, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Positive allosteric modulation of the α7 nicotinic acetylcholine receptor as a treatment for cognitive deficits after traumatic brain injury. PLoS One 2019; 14:e0223180. [PMID: 31581202 PMCID: PMC6776323 DOI: 10.1371/journal.pone.0223180] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/16/2019] [Indexed: 11/19/2022] Open
Abstract
Cognitive impairments are a common consequence of traumatic brain injury (TBI). The hippocampus is a subcortical structure that plays a key role in the formation of declarative memories and is highly vulnerable to TBI. The α7 nicotinic acetylcholine receptor (nAChR) is highly expressed in the hippocampus and reduced expression and function of this receptor are linked with cognitive impairments in Alzheimer's disease and schizophrenia. Positive allosteric modulation of α7 nAChRs with AVL-3288 enhances receptor currents and improves cognitive functioning in naïve animals and healthy human subjects. Therefore, we hypothesized that targeting the α7 nAChR with the positive allosteric modulator AVL-3288 would enhance cognitive functioning in the chronic recovery period of TBI. To test this hypothesis, adult male Sprague Dawley rats received moderate parasagittal fluid-percussion brain injury or sham surgery. At 3 months after recovery, animals were treated with vehicle or AVL-3288 at 30 min prior to cue and contextual fear conditioning and the water maze task. Treatment of TBI animals with AVL-3288 rescued learning and memory deficits in water maze retention and working memory. AVL-3288 treatment also improved cue and contextual fear memory when tested at 24 hr and 1 month after training, when TBI animals were treated acutely just during fear conditioning at 3 months post-TBI. Hippocampal atrophy but not cortical atrophy was reduced with AVL-3288 treatment in the chronic recovery phase of TBI. AVL-3288 application to acute hippocampal slices from animals at 3 months after TBI rescued basal synaptic transmission deficits and long-term potentiation (LTP) in area CA1. Our results demonstrate that AVL-3288 improves hippocampal synaptic plasticity, and learning and memory performance after TBI in the chronic recovery period. Enhancing cholinergic transmission through positive allosteric modulation of the α7 nAChR may be a novel therapeutic to improve cognition after TBI.
Collapse
|
3
|
Developing a cassette microdosing approach to enhance the throughput of PET imaging agent screening. J Pharm Biomed Anal 2018. [PMID: 29533858 DOI: 10.1016/j.jpba.2018.02.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cassette dosing is also known as N-in-One dosing: several compounds are simultaneously administrated to a single animal and then the samples are rapidly detected by LC-MS/MS. This approach is a successful strategy to enhance the efficiency of drug discovery and reduce animal usage. However, no report on the utility of the cassette approach in radiotracer discovery has appeared in the literature. This study designed a cassette microdose with LC-MS/MS method to enhance the throughput for screening radiopharmaceutical biodistribution in the rat brain directly. Three unradiolabeled compounds (FPBM FPBM2 and AV-133) were chosen as model drugs administrated intravenously to the rats as a cassette as opposed to discrete study. The rat brain biodistribution data, target localization, the differential uptake ratio (%ID/g) and the brain tissue-specific binding ratio were obtained by the LC-MS/MS analysis. These data matched very well with the values obtained by the standard radioactivity measurements. Moreover, no significant differences between discrete dosing and cassette dosing were observed. By circumventing the need for radiolabeled molecules, this method may be high-throughput and safe for the research and development of new PET imaging agents. The combination of cassette microdosing and LC-MS/MS would be a medium throughput screening tool at an early stage in the discovery/development process of PET imaging agents.
Collapse
|
4
|
Poddar I, Callahan PM, Hernandez CM, Yang X, Bartlett MG, Terry AV. Tropisetron enhances recognition memory in rats chronically treated with risperidone or quetiapine. Biochem Pharmacol 2017; 151:180-187. [PMID: 29175423 DOI: 10.1016/j.bcp.2017.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/22/2017] [Indexed: 12/16/2022]
Abstract
While impairments of cognition in schizophrenia have the greatest impact on long-term functional outcome, the currently prescribed treatments, antipsychotic drugs (APDs), do not effectively improve cognition. Moreover, while more than 20 years have been devoted to the development of new drugs to treat cognitive deficits in schizophrenia, none have been approved to date. One area that has not been given proper attention at the preclinical or clinical stage of drug development is the chronic medication history of the test subject. Hence, very little is known about how chronic treatment with drugs that affect multiple receptors like APDs influence the response to a potential pro-cognitive agent. Therefore, the purpose of this study was to evaluate the α7 nicotinic acetylcholine receptor (α7 nAChR) partial agonist, tropisetron in rats chronically treated with APDs with distinct pharmacological profiles. Rats were treated orally with either risperidone (2.5 mg/kg/day) or quetiapine (25.0 mg/kg/day) for 30 or 90 days and then an acute injection of vehicle or tropisetron (3.0 mg/kg) was administered before training in a novel object recognition (NOR) task. After a 48 h delay (when recollection of the familiar object was impaired in vehicle-treated animals) neither 30 nor 90 days of risperidone or quetiapine treatment improved NOR performance. In contrast, tropisetron markedly improved NOR performance in rats treated with either APD for 30 or 90 days. These animal data reinforce the argument that two commonly prescribed APDs are not pro-cognitive agents and that α7 nAChR ligands like tropisetron have potential as adjunctive treatments in schizophrenia.
Collapse
Affiliation(s)
- Indrani Poddar
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, Georgia
| | - Patrick M Callahan
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, Georgia; Small Animal Behavior Core, Augusta University, Augusta, GA 30912, Georgia
| | - Caterina M Hernandez
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, Georgia; Small Animal Behavior Core, Augusta University, Augusta, GA 30912, Georgia
| | - Xiangkun Yang
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA 30607, Georgia
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia College of Pharmacy, Athens, GA 30607, Georgia
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, Georgia; Small Animal Behavior Core, Augusta University, Augusta, GA 30912, Georgia.
| |
Collapse
|
5
|
Kalejaiye O, Getachew B, Ferguson CL, Taylor RE, Tizabi Y. Alcohol-Induced Increases in Inflammatory Cytokines Are Attenuated by Nicotine in Region-Selective Manner in Male Rats. JOURNAL OF DRUG AND ALCOHOL RESEARCH 2017; 6:236036. [PMID: 29416901 PMCID: PMC5798246 DOI: 10.4303/jdar/236036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Heavy use of alcohol is commonly associated with heavy smoking (nicotine intake). Although many factors, including mood effects of these two drugs may contribute to their co-use, the exact neurobiological underpinnings are far from clear. It is well known that chronic alcohol exposure induces neuroinflammation that may precipitate depressive-like behavior, which is considered an important factor in alcohol relapse. Nicotine, on the other hand, possesses anti-inflammatory and antidepressant effects. PURPOSE In this study, we sought to determine which proinflammatory markers may be associated with the depressogenic effects of chronic alcohol and whether nicotine pretreatment may normalize these changes. STUDY DESIGN For this purpose, we treated adult male Wistar rats with alcohol (1.0 g/kg, IP), nicotine (0.3 mg/kg, IP) or their combination once daily for 14 days. Two prominent proinflammatory cytokines (IL-1β and TNF-α) in two primary brain regions, namely the hippocampus and frontal cortex that are intimately involved in mood regulation, were evaluated. RESULTS Chronic alcohol resulted in increases in both cytokines in both regions as determined by Western blot. Nicotine completely blocked alcohol-induced effects in the hippocampus, but not in the frontal cortex. These data suggest that nicotine may mitigate the inflammatory effects of alcohol in brain-selective region. Hence, the previously observed depressogenic effects of alcohol and the antidepressant effects of nicotine may at least be partially mediated through manipulations of proinflammatory cytokines in the hippocampus. CONCLUSION These findings suggest possible therapeutic potential of anti-inflammatory cytokines in combating alcohol-induced depression and/or relapse.
Collapse
Affiliation(s)
- Olubukola Kalejaiye
- Department of Pharmacology, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Bruk Getachew
- Department of Pharmacology, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Clifford L Ferguson
- Department of Pharmacology, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Robert E Taylor
- Department of Pharmacology, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Yousef Tizabi
- Department of Pharmacology, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
6
|
Callahan PM, Bertrand D, Bertrand S, Plagenhoef MR, Terry AV. Tropisetron sensitizes α7 containing nicotinic receptors to low levels of acetylcholine in vitro and improves memory-related task performance in young and aged animals. Neuropharmacology 2017; 117:422-433. [PMID: 28259598 DOI: 10.1016/j.neuropharm.2017.02.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/06/2017] [Accepted: 02/25/2017] [Indexed: 01/02/2023]
Abstract
Tropisetron, a 5-HT3 receptor antagonist commonly prescribed for chemotherapy-induced nausea and vomiting also exhibits high affinity, partial agonist activity at α7 nicotinic acetylcholine receptors (α7 nAChRs). α7 nAChRs are considered viable therapeutic targets for neuropsychiatric disorders such as Alzheimer's disease (AD). Here we further explored the nAChR pharmacology of tropisetron to include the homomeric α7 nAChR and recently characterized heteromeric α7β2 nAChR (1:10 ratio) and we evaluated its cognitive effects in young and aged animals. Electrophysiological studies on human nAChRs expressed in Xenopus oocytes confirmed the partial agonist activity of tropisetron at α7 nAChRs (EC50 ∼2.4 μM) with a similar effect at α7β2 nAChRs (EC50 ∼1.5 μM). Moreover, currents evoked by irregular pulses of acetylcholine (40 μM) at α7 and α7β2 nAChRs were enhanced during sustained exposure to low concentrations of tropisetron (10 and 30 nM) indicative of a "priming" or co-agonist effect. Tropisetron (0.1-10 mg/kg) improved novel object recognition performance in young Sprague-Dawley rats and in aged Fischer rats. In aged male and female rhesus monkeys, tropisetron (0.03-1 mg/kg) produced a 17% increase from baseline levels in delayed match to sample long delay accuracy while combination of non-effective doses of donepezil (0.1 mg/kg) and tropisetron (0.03 and 0.1 mg/kg) produced a 24% change in accuracy. Collectively, these animal experiments indicate that tropisetron enhances cognition and has the ability to improve the effective dose range of currently prescribed AD therapy (donepezil). Moreover, these effects may be explained by tropisetron's ability to sensitize α7 containing nAChRs to low levels of acetylcholine.
Collapse
Affiliation(s)
- Patrick M Callahan
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30912, United States.
| | - Daniel Bertrand
- HiQScreen Sàrl, 6, rte de Compois, 1222 Vésenaz, Geneva, Switzerland
| | - Sonia Bertrand
- HiQScreen Sàrl, 6, rte de Compois, 1222 Vésenaz, Geneva, Switzerland
| | - Marc R Plagenhoef
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30912, United States
| | - Alvin V Terry
- Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30912, United States
| |
Collapse
|
7
|
Deng A, Wu X, Zhou X, Zhang Y, Yin W, Qiao J, Zhu L. Mapping the target localization and biodistribution of non-radiolabeled VMAT2 ligands in rat brain. AAPS JOURNAL 2014; 16:592-9. [PMID: 24706374 DOI: 10.1208/s12248-014-9584-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/21/2014] [Indexed: 01/02/2023]
Abstract
Imaging targeting vesicular monoamine transporter (VMAT2) alterations is a sensitive tool for early diagnosis of Parkinson's disease. Our group has reported several novel 2-amino-DTBZ derivatives as potential VMAT2 imaging agents. The objective of this paper is to develop a non-radiolabeled methodology to screen the candidate compounds for accelerating the drug discovery process. 9-[(18)F]fluoropropyl-(+)-dihydrotetrabenazine ([(18)F]AV-133) is a PET imaging agent targeting VMAT2 binding sites in the brain. Nonradioactive AV-133 was injected (iv) into rats, at the end of the allotted time, the animals were killed and six regions of brain and plasma from each animal were processed for quantitative measurement of AV-133 by LC-MS/MS. These data were converted to the percentage injected dose per gram tissue weight (%ID/g tissue) and the brain target tissue to background ratios to allow direct comparison with data obtained by gamma counting of the injected radioactive [(18)F]AV-133. The %ID/g and the brain target tissue to background ratios calculated using the LC-MS/MS method were highly correlated to the values obtained by standard radioactivity measurements of [(18)F]AV-133. The pattern of AV-133 in rat brain was consistent with the known distribution of VMAT2. The concordance indicated that high-sensitivity LC-MS/MS is an indispensable tool in evaluating the quantity of administered chemical in tissue as part of the development of new molecular imaging probes. Furthermore, several novel 2-amino-DTBZ derivatives were detected using this methodology, and their biodistribution data in rat brain were obtained. The information about target engagements of candidates was provided.
Collapse
Affiliation(s)
- Aifang Deng
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
8
|
Young JW, Geyer MA. Evaluating the role of the alpha-7 nicotinic acetylcholine receptor in the pathophysiology and treatment of schizophrenia. Biochem Pharmacol 2013; 86:1122-32. [PMID: 23856289 DOI: 10.1016/j.bcp.2013.06.031] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/27/2013] [Accepted: 06/28/2013] [Indexed: 12/16/2022]
Abstract
The group of schizophrenia disorders affects approximately 1% of the population and has both genetic and environmental etiologies. Sufferers report various behavioral abnormalities including hallucinations and delusions (positive symptoms), reduced joy and amotivation (negative symptoms), plus inattention and poor learning (cognitive deficits). Despite the heterogeneous symptoms experienced, most patients smoke. The self-medication hypothesis posits that patients smoke to alleviate symptoms, consistent with evidence for nicotine-induced enhancement of cognition. While nicotine acts on multiple nicotinic acetylcholine receptors (nAChRs), the primary target of research is often the homomeric α7 nAChR. Given genetic linkages between schizophrenia and this receptor, its association with P50 sensory gating deficits, and its reduced expression in post-mortem brains, many have attempted to develop α7 nAChR ligands for treating schizophrenia. Recent evidence that ligands can be orthosteric agonists or positive allosteric modulators (PAMs) has revitalized the hope for treatment discovery. Herein, we present evidence regarding: (1) pathophysiological alterations of α7 nAChRs that might occur in patients; (2) mechanistic evidence for the normal action of α7 nAChRs; (3) preclinical studies using α7 nAChR orthosteric agonists and type I/II PAMs; and (4) where successful translational testing has occurred for particular compounds, detailing what is still required. We report that the accumulating evidence is positive, but that greater work is required using positron emission tomography to understand current alterations in α7 nAChR expression and their relationship to symptoms. Finally, cross-species behavioral tasks should be used more regularly to determine the predictive efficacy of treatments.
Collapse
Affiliation(s)
- Jared W Young
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0804, United States; Research Service, San Diego Veteran's Affairs Hospital, 3350 La Jolla Drive, San Diego, CA 92037, United States.
| | | |
Collapse
|