1
|
Dinh MN, Hitomi M, Al-Turaihi ZA, Scott JG. Alamar Blue assay optimization to minimize drug interference and inter assay viability. MethodsX 2024; 13:103024. [PMID: 39553738 PMCID: PMC11566963 DOI: 10.1016/j.mex.2024.103024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/24/2024] [Indexed: 11/19/2024] Open
Abstract
Alamar Blue (AB) has become an increasingly popular reagent of choice for cell viability assays. We chose AB over other reagents such as MTT and Cell-Titer Glo due to its cost effectiveness and its ability to be a nondestructive assay. While analyzing the effect of osimertinib, an EGFR inhibitor on the non-small cell lung cancer cell line, PC-9, we noticed unexpected right-shifts of dose response curves as compared to the curves obtained by Cell Titer Glo assay. Here, we describe our modified AB assay method to avoid that right shift in dose response curves.•Removal of the drug containing medium prior to AB addition eliminated the falsely increased readings, giving comparable dose response curves as determined by Cell Titer Glo assay.•Plate-to-plate variability can be minimized by adding an appropriate concentration of a common fluorescence calibration standard to the assay plates to calibrate fluorimeter sensitivity.•Alamar Blue can be used as a continuous longitudinal assay to monitor cell growth or recovery from drug toxicity over time.
Collapse
Affiliation(s)
- Mina N. Dinh
- Department of Translational Hematology & Oncology Research, Cleveland Clinic, Cleveland, OH, United States of America
| | - Masahiro Hitomi
- Department of Translational Hematology & Oncology Research, Cleveland Clinic, Cleveland, OH, United States of America
| | - Zahraa A. Al-Turaihi
- Department of Translational Hematology & Oncology Research, Cleveland Clinic, Cleveland, OH, United States of America
| | - Jacob G. Scott
- Department of Translational Hematology & Oncology Research, Cleveland Clinic, Cleveland, OH, United States of America
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH, United States of America
| |
Collapse
|
2
|
Bérubé R, LeFauve MK, Khalaf A, Aminioroomi D, Kassotis CD. Effects of organic and inorganic contaminants and their mixtures on metabolic health and gene expression in developmentally exposed zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620642. [PMID: 39554096 PMCID: PMC11565930 DOI: 10.1101/2024.10.28.620642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Organic and inorganic chemicals co-occur in household dust, and these chemicals have been determined to have endocrine and metabolic disrupting effects. While there is increasing study of chemical mixtures, the effects of complex mixtures mimicking household dust and other environmental matrices have not been well studied and their potential metabolism disrupting effects are thus poorly understood. Previous research has demonstrated high potency adipogenic effects of residential household dust extracts using in vitro adipogenesis assays. More recent research simplified this to a mixture relevant to household dust and comprised of common co-occurring organic and inorganic contaminants, finding that these complex combinations often exhibited additive or even synergistic effects in cell models. This study aimed to translate our previous in vitro observation to an in vivo model, the developing zebrafish, to evaluate the metabolic effects of early exposure to organic and inorganic chemicals, individually and in mixtures. Zebrafish embryos were exposed from 1 day post fertilization (dpf) to 6 dpf, then metabolic energy expenditure, swimming behavior and gene expression were measured. Globally, we observed that most mixtures did not reflect the effects of individual chemicals; the BFR mixture produced a less potent effect when compared to the individual chemicals, while the PFAS and the inorganic mixtures seemed to have a more potent effect than the individual chemicals. Finally, the environmental mixture, mimicking household dust proportions, was less potent than the inorganic chemical mix alone. Additional work is necessary to better understand the mixture effect of inorganic and organic chemicals combined.
Collapse
Affiliation(s)
- Roxanne Bérubé
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202
| | - Matthew K. LeFauve
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202
| | - Aicha Khalaf
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202
| | - Darya Aminioroomi
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202
| | - Christopher D. Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202
| |
Collapse
|
3
|
Dinh MN, Hitomi M, Al-Turaihi ZA, Scott JG. Alamar Blue assay optimization to minimize drug interference and inter-assay viability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532999. [PMID: 36993631 PMCID: PMC10055072 DOI: 10.1101/2023.03.16.532999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Alamar Blue (AB) has become an increasingly popular reagent of choice for cell viability assays. We chose AB over other reagents such as MTT and Cell-Titer Glo due to its cost effectiveness and its ability to be a nondestructive assay. While analyzing the effect of osimertinib, an EGFR inhibitor on the non-small cell lung cancer cell line, PC-9, we noticed unexpected right-shifts of dose response curves as compared to the curve obtained by Cell Titer Glo assay. Here, we describe our modified AB assay method to avoid right shift right shift in dose response curve. Unlike some of the redox drugs that were reported to directly affected AB reading, osimertinib itself did not directly increase AB reading. Yet, the removal of the drug containing medium prior to AB addition eliminated falsely increased reading giving comparable dose response curve as the one determined by Cell Titer Glo assay. When a panel of 11 drugs were assessed, we found that this modified AB assay eliminated unexpected similar right shifts detected in other epidermal growth factor receptor (EGFR) inhibitors. We also found that plate-to-plate variability can be minimized by adding an appropriate concentration of rhodamine B solution to the assay plates to calibrate fluorimeter sensitivity. This calibration method also enables a continuous longitudinal assay to monitor cell growth or recovery from drug toxicity over time. Our new modified AB assay is expected to provide accurate in vitro measurement of EGFR targeted therapies.
Collapse
Affiliation(s)
- Mina N. Dinh
- Department of Translational Hematology & Oncology Research, Cleveland Clinic, Cleveland, OH
| | - Masahiro Hitomi
- Department of Translational Hematology & Oncology Research, Cleveland Clinic, Cleveland, OH
| | - Zahraa A. Al-Turaihi
- Department of Translational Hematology & Oncology Research, Cleveland Clinic, Cleveland, OH
| | - Jacob G. Scott
- Department of Translational Hematology & Oncology Research, Cleveland Clinic, Cleveland, OH
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
4
|
A Comparative Study on the Viability of Normal and Cancerous Cells upon Irradiation with a Steady Beam of THz Rays. Life (Basel) 2022; 12:life12030376. [PMID: 35330127 PMCID: PMC8951499 DOI: 10.3390/life12030376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 11/17/2022] Open
Abstract
Terahertz (THz) electromagnetic radiation is commonly used in astronomy, security screening, imaging, and biomedicine, among other applications. Such approach has raised the question of the influence of THz irradiation on biological objects, especially the human body. However, the results obtained to date are quite controversial. Therefore, we performed a comparative study on the viability of normal cells and cancer cells upon irradiation with a steady beam of THz rays. We used human peripheral blood mononuclear cells and cancer cell lines. Primary human mononuclear blood cells (monocytes, and B-, and T-cells) showed an increased death rate, determined by cell counting and fluorescence microscopy, upon 0.14 THz irradiation. The effect of THz radiation was different among malignant cells of B- and T-cell origin (Ramos and Jurkat cells) and epithelial cancer cells (MCF7 and LNCaP). This was demonstrated by cell counting and by the alamarBlue assay. In conclusion, THz radiation can result in the death of human primary and malignant cells. However, the mechanism of this phenomenon is largely unknown. Hence, more work should be done to shed some light on the mechanism of action of THz irradiation in living organisms to enhance technologic developments.
Collapse
|
5
|
Touchette D, Altshuler I, Raymond-Bouchard I, Fernández-Martínez MÁ, Bourdages LJ, O'Connor B, Ricco AJ, Whyte LG. Microfluidics Microbial Activity MicroAssay: An Automated In Situ Microbial Metabolic Detection System. ASTROBIOLOGY 2022; 22:158-170. [PMID: 35049343 DOI: 10.1089/ast.2021.0072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With no direct extant-life detection instrumentation included in a space mission since the 1970s, the advancement of new technologies to be included in future space missions is imperative. We developed, optimized, and tested a semi-automated prototype, the microfluidics Microbial Activity MicroAssay (μMAMA). This system metabolically characterizes and detects extant microbial life by way of metabolism-indicator redox dyes. We first evaluated the robustness and sensitivity of six redox dye/buffer combinations, and we then tested their responses to metabolic activity in astrobiological analog high-Arctic samples. We determined that the Biolog Inoculating Fluid (IF)-C and AlamarBlue buffered in IF-0a (aB-IF0a) dye/buffer combinations were optimal, as they detected metabolic activity from the fewest microbial cells (102 cells/mL) while maintaining efficacy over a broad physiochemical range of pH (0-13), temperature (-10°C to 37°C), salinity and perchlorate (tested up to 30%), and in the presence of a Mars regolith simulant (MMS-2). The μMAMA, which incorporated these redox dyes, detected extant active cold-adapted microbial life from high Arctic analog sites, including samples amended with substrates targeting chemolithoautotrophic metabolisms. Given μMAMA's small size (we estimate a complete planetary instrument could occupy as little as 3 L) and potential for automation, it could easily be incorporated into almost any landed platform for life detection missions.
Collapse
Affiliation(s)
- David Touchette
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- McGill Space Institute, Montréal, Québec, Canada
| | - Ianina Altshuler
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- Department of Animal and Aquaculture Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Isabelle Raymond-Bouchard
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- McGill Space Institute, Montréal, Québec, Canada
| | - Miguel Ángel Fernández-Martínez
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- McGill Space Institute, Montréal, Québec, Canada
| | - Louis-Jacques Bourdages
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- Department of Mechanical Engineering, Faculty of Engineering, McGill University, Montréal, Québec, Canada
| | - Brady O'Connor
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- McGill Space Institute, Montréal, Québec, Canada
| | | | - Lyle G Whyte
- Department of Natural Resource Sciences, McGill University, Sainte-Anne-de-Bellevue, Québec, Canada
- McGill Space Institute, Montréal, Québec, Canada
| |
Collapse
|
6
|
Scimone A, Redfern J, Patiphatpanya P, Thongtem T, Ratova M, Kelly P, Verran J. Development of a rapid method for assessing the efficacy of antibacterial photocatalytic coatings. Talanta 2021; 225:122009. [PMID: 33592748 DOI: 10.1016/j.talanta.2020.122009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/08/2020] [Accepted: 12/12/2020] [Indexed: 11/28/2022]
Abstract
Visible-light activated photocatalytic coatings may represent an attractive antimicrobial solution in domains such as food, beverage, pharmaceutical, biomedical and wastewater remediation. However, testing methods to determine the antibacterial effects of photocatalytic coatings are limited and require specialist expertise. This paper describes the development of a method that enables rapid screening of coatings for photocatalytic-antibacterial activity. Relying on the ability of viable microorganisms to reduce the dye resazurin from a blue to a pink colour, the method relates the time taken to detect this colour change with number of viable microorganisms. The antibacterial activity of two photocatalytic materials (bismuth oxide and titanium dioxide) were screened against two pathogenic organisms (Escherichia coli and Klebsiella pneumoniae) that represent potential target microorganisms using traditional testing and enumeration techniques (BS ISO 27447:2009) and the novel rapid method. Bismuth oxide showed excellent antibacterial activity under ambient visible light against E. coli, but was less effective against K. pneumoniae. The rapid method showed excellent agreement with existing tests in terms of number of viable cells recovered. Due to advantages such as low cost, high throughput, and less reliance on microbiological expertise, this method is recommended for researchers seeking an inexpensive first-stage screen for putative photocatalytic-antibacterial coatings.
Collapse
Affiliation(s)
- Antony Scimone
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK.
| | - James Redfern
- Department of Natural Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Panudda Patiphatpanya
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Titipun Thongtem
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand; Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Marina Ratova
- Surface Engineering Group, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Peter Kelly
- Surface Engineering Group, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK
| | - Joanna Verran
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, UK.
| |
Collapse
|
7
|
Svozilová H, Plichta Z, Proks V, Studená R, Baloun J, Doubek M, Pospíšilová Š, Horák D. RGDS-Modified Superporous Poly(2-Hydroxyethyl Methacrylate)-Based Scaffolds as 3D In Vitro Leukemia Model. Int J Mol Sci 2021; 22:ijms22052376. [PMID: 33673496 PMCID: PMC7956824 DOI: 10.3390/ijms22052376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 01/05/2023] Open
Abstract
Superporous poly(2-hydroxyethyl methacrylate-co-2-aminoethyl methacrylate) (P(HEMA-AEMA)) hydrogel scaffolds are designed for in vitro 3D culturing of leukemic B cells. Hydrogel porosity, which influences cell functions and growth, is introduced by adding ammonium oxalate needle-like crystals in the polymerization mixture. To improve cell vitality, cell-adhesive Arg-Gly-Asp-Ser (RGDS) peptide is immobilized on the N-(γ-maleimidobutyryloxy)succinimide-activated P(HEMA-AEMA) hydrogels via reaction of SH with maleimide groups. This modification is especially suitable for the survival of primary chronic lymphocytic leukemia cells (B-CLLs) in 3D cell culture. No other tested stimuli (interleukin-4, CD40 ligand, or shaking) can further improve B-CLL survival or metabolic activity. Both unmodified and RGDS-modified P(HEMA-AEMA) scaffolds serve as a long-term (70 days) 3D culture platforms for HS-5 and M2-10B4 bone marrow stromal cell lines and MEC-1 and HG-3 B-CLL cell lines, although the adherent cells retain their physiological morphologies, preferably on RGDS-modified hydrogels. Moreover, the porosity of hydrogels allows direct cell lysis, followed by efficient DNA isolation from the 3D-cultured cells. P(HEMA-AEMA)-RGDS thus serves as a suitable 3D in vitro leukemia model that enables molecular and metabolic assays and allows imaging of cell morphology, interactions, and migration by confocal microscopy. Such applications can prospectively assist in testing of drugs to treat this frequently recurring or refractory cancer.
Collapse
Affiliation(s)
- Hana Svozilová
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (H.S.); (R.S.); (J.B.); (M.D.); (Š.P.)
- Department of Internal Medicine—Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Jihlavská 20, 625 00 Brno, Czech Republic
| | - Zdeněk Plichta
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic; (Z.P.); (V.P.)
| | - Vladimír Proks
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic; (Z.P.); (V.P.)
| | - Radana Studená
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (H.S.); (R.S.); (J.B.); (M.D.); (Š.P.)
| | - Jiří Baloun
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (H.S.); (R.S.); (J.B.); (M.D.); (Š.P.)
| | - Michael Doubek
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (H.S.); (R.S.); (J.B.); (M.D.); (Š.P.)
- Department of Internal Medicine—Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Jihlavská 20, 625 00 Brno, Czech Republic
| | - Šárka Pospíšilová
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (H.S.); (R.S.); (J.B.); (M.D.); (Š.P.)
- Department of Internal Medicine—Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Jihlavská 20, 625 00 Brno, Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, 162 06 Prague, Czech Republic; (Z.P.); (V.P.)
- Correspondence: ; Tel.: +420-296-809-260
| |
Collapse
|
8
|
Howarth A, Schröder M, Montenegro RC, Drewry DH, Sailem H, Millar V, Müller S, Ebner DV. HighVia-A Flexible Live-Cell High-Content Screening Pipeline to Assess Cellular Toxicity. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2020; 25:801-811. [PMID: 32458721 PMCID: PMC7522770 DOI: 10.1177/2472555220923979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 02/03/2023]
Abstract
High-content screening to monitor disease-modifying phenotypes upon small-molecule addition has become an essential component of many drug and target discovery platforms. One of the most common phenotypic approaches, especially in the field of oncology research, is the assessment of cell viability. However, frequently used viability readouts employing metabolic proxy assays based on homogeneous colorimetric/fluorescent reagents are one-dimensional, provide limited information, and can in many cases yield conflicting or difficult-to-interpret results, leading to misinterpretation of data and wasted resources.The resurgence of high-content, phenotypic screening has significantly improved the quality and breadth of cell viability data, which can be obtained at the very earliest stages of drug and target discovery. Here, we describe a relatively inexpensive, high-throughput, high-content, multiparametric, fluorescent imaging protocol using a live-cell method of three fluorescent probes (Hoechst, Yo-Pro-3, and annexin V), that is amenable to the addition of further fluorophores. The protocol enables the accurate description and profiling of multiple cell death mechanisms, including apoptosis and necrosis, as well as accurate determination of compound IC50, and has been validated on a range of high-content imagers and image analysis software. To validate the protocol, we have used a small library of approximately 200 narrow-spectrum kinase inhibitors and clinically approved drugs. This fully developed, easy-to-use pipeline has subsequently been implemented in several academic screening facilities, yielding fast, flexible, and rich cell viability data for a range of early-stage high-throughput drug and target discovery programs.
Collapse
Affiliation(s)
- Alison Howarth
- Nuffield Department of Clinical Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- These authors contributed equally
| | - Martin Schröder
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Science, Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Frankfurt, Germany
- These authors contributed equally
| | - Raquel C. Montenegro
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium, University of Oxford, Oxford, UK
- Federal University of Ceará, Drug Research and Development Center (NPDM), Pharmacogenetics Laboratory, Fortaleza, CE, Brazil
- These authors contributed equally
| | - David H. Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Heba Sailem
- Department of Engineering, University of Oxford, Oxford, UK
| | - Val Millar
- Nuffield Department of Clinical Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| | - Susanne Müller
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Science, Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Daniel V. Ebner
- Nuffield Department of Clinical Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
High temperature CaSiO 3-Ca 3(PO 4) 2 ceramic promotes osteogenic differentiation in adult human mesenchymal stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110355. [PMID: 31761182 DOI: 10.1016/j.msec.2019.110355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/23/2019] [Accepted: 10/20/2019] [Indexed: 11/24/2022]
Abstract
Silicophosphate calcium ceramics are widely used in orthopedic and oral surgery applications because of their properties for stimulating bone formation and bone bonding. These bioceramics, together with multipotent undifferentiated adult human mesenchymal stem cells, are serious candidates in the field of bone tissue engineering and regenerative medicine. For this reason, the influence of a novel 30 wt%CaSiO3 - 70 wt%Ca3(PO4)2 ceramic over a primary adult human mesenchymal stem cells culture has been investigated in this study, observing a total colonization of the biomaterial by cells at 21 days. The osteoinductive capacity of the materials was also studied: alkaline phosphatase activity, gene quantification of osteoblastic genes and calcium deposits stained by Alizarin Red test, showed evidences of osteogenic differentiation of adult human mesenchymal stem cells seeded with this bioceramic both in growth medium and osteogenic medium. Therefore, the 30 wt%CaSiO3 - 70 wt%Ca3(PO4)2 bioceramic represents a potential scaffold which could be used in the field of biomaterials for bone tissue engineering, allowing cell adhesion, proliferation and promoting osteogenic differentiation of adult human mesenchymal stem cells.
Collapse
|
10
|
Liu B, Zhang Q, Zhao Y, Ren L, Yuan X. Trehalose-functional glycopeptide enhances glycerol-free cryopreservation of red blood cells. J Mater Chem B 2019; 7:5695-5703. [DOI: 10.1039/c9tb01089k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Arginine- and trehalose-modified ε-polylysine (ε-PL) demonstrated a high synergistic function with trehalose for RBC cryopreservation.
Collapse
Affiliation(s)
- Bo Liu
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials
- Tianjin University
- Tianjin 300350
- China
| | - Qifa Zhang
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials
- Tianjin University
- Tianjin 300350
- China
| | - Yunhui Zhao
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials
- Tianjin University
- Tianjin 300350
- China
| | - Lixia Ren
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials
- Tianjin University
- Tianjin 300350
- China
| | - Xiaoyan Yuan
- School of Materials Science and Engineering, and Tianjin Key Laboratory of Composite and Functional Materials
- Tianjin University
- Tianjin 300350
- China
| |
Collapse
|
11
|
Guo Q, Zhao Y, Dai X, Zhang T, Yu Y, Zhang X, Li C. Functional Silver Nanocomposites as Broad-Spectrum Antimicrobial and Biofilm-Disrupting Agents. ACS APPLIED MATERIALS & INTERFACES 2017; 9:16834-16847. [PMID: 28481506 DOI: 10.1021/acsami.7b02775] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Biofilms' tolerance has become a serious clinical concern due to their formidable resistance to conventional antibiotics and prevalent virulence. Therefore, there is an urgent need to develop alternative antimicrobial agents to eradicate biofilms but avoid using antibiotics. Herein, we successfully developed polymer functional silver nanocomposites by reduction of silver nitrate in the presence of a biocompatible carbohydrate polymer and a membrane-disrupting cationic polymer. The nanocomposites presented effective antimicrobial activity against Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus and Bacillus amyloliquefaciens). Confocal laser scanning macroscopy imaging demonstrated that the nanocomposites could efficiently disperse and eradicate the mature biofilms formed by the above four bacterial strains. The introduction of carbohydrate polymers onto nanocomposites effectively improved the biocompatibility, and these nanocomposites induced no significant red blood cell hemolysis and cytotoxicity toward mammalian cells. More importantly, the nanocomposites were able to well eradicate the bacterial biofilms formed on the silicone implants in vivo. In conclusion, the nanocomposites as the broad-spectrum biofilm-disrupting agent are significant in the design of new strategies to eradicate biofilms on indwelling medical devices.
Collapse
Affiliation(s)
- Qianqian Guo
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University , Tianjin 300071, China
| | - Yu Zhao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University , Tianjin 300071, China
| | - Xiaomei Dai
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University , Tianjin 300071, China
| | - Tianqi Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University , Tianjin 300071, China
| | - Yunjian Yu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University , Tianjin 300071, China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University , Tianjin 300071, China
| | - Chaoxing Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, Nankai University , Tianjin 300071, China
| |
Collapse
|
12
|
Zhong H, Xuan L, Wang D, Zhou J, Li Y, Jiang Q. Generation of a co-culture cell micropattern model to simulate lung cancer bone metastasis for anti-cancer drug evaluation. RSC Adv 2017. [DOI: 10.1039/c7ra01868a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A549/OB co-culture micropattern was fabricated through μ-eraser strategy to mimic lung cancer bone metastasis for DOX efficacy evaluation.
Collapse
Affiliation(s)
- Huixiang Zhong
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou
| | - Liuyang Xuan
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou
| | - Dandan Wang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou
| | - Jianhua Zhou
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou
| | - Yan Li
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou
| | - Qing Jiang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument
- Department of Biomedical Engineering
- School of Engineering
- Sun Yat-sen University
- Guangzhou
| |
Collapse
|
13
|
Passos MF, Fernández-Gutiérrez M, Vázquez-Lasa B, Román JS, Filho RM. PHEMA-PLLA semi-interpenetrating polymer networks: A study of their swelling kinetics, mechanical properties and cellular behavior. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.10.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Al-Kutubi H, Zafarani HR, Rassaei L, Mathwig K. Electrofluorochromic systems: Molecules and materials exhibiting redox-switchable fluorescence. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.04.033] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Lim KT, Zahari Z, Amanah A, Zainuddin Z, Adenan MI. Development of resazurin-based assay in 384-well format for high throughput whole cell screening of Trypanosoma brucei rhodesiense strain STIB 900 for the identification of potential anti-trypanosomal agents. Exp Parasitol 2016; 162:49-56. [PMID: 26772786 DOI: 10.1016/j.exppara.2016.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 12/23/2015] [Accepted: 01/05/2016] [Indexed: 11/25/2022]
Abstract
To accelerate the discovery of novel leads for the treatment of Human African Trypanosomiasis (HAT), it is necessary to have a simple, robust and cost-effective assay to identify positive hits by high throughput whole cell screening. Most of the fluorescence assay was made in black plate however in this study the HTS assay developed in 384-well format using clear plate and black plate, for comparison. The HTS assay developed is simple, sensitive, reliable and reproducible in both types of plates. Assay robustness and reproducibility were determined under the optimized conditions in 384-well plate was well tolerated in the HTS assay, including percentage of coefficient of variation (% CV) of 4.68% and 4.74% in clear and black 384-well plate, signal-to-background ratio (S/B) of 12.75 in clear 384-well plate and 12.07 in black 384-well plate, Z' factor of 0.79 and 0.82 in clear 384-well plate and black 384-well plate, respectively and final concentration of 0.30% dimethylsulfoxide (DMSO) in both types of plate. Drug sensitivity was found to be comparable to the reported anti-trypanosomal assay in 96-well format. The reproducibility and sensitivity of this assay make it compliant to automated liquid handler use in HTS applications.
Collapse
Affiliation(s)
- Kah Tee Lim
- Malaysian Institute of Pharmaceuticals and Nutraceuticals (IPharm), National Insitutes of Biotechnology Malaysia, Ministry of Science, Technology and Innovation, Blok 5-A, Halaman Bukit Gambir, 11700 Penang, Malaysia
| | - Zuriati Zahari
- Malaysian Institute of Pharmaceuticals and Nutraceuticals (IPharm), National Insitutes of Biotechnology Malaysia, Ministry of Science, Technology and Innovation, Blok 5-A, Halaman Bukit Gambir, 11700 Penang, Malaysia
| | - Azimah Amanah
- Malaysian Institute of Pharmaceuticals and Nutraceuticals (IPharm), National Insitutes of Biotechnology Malaysia, Ministry of Science, Technology and Innovation, Blok 5-A, Halaman Bukit Gambir, 11700 Penang, Malaysia
| | - Zafarina Zainuddin
- Malaysian Institute of Pharmaceuticals and Nutraceuticals (IPharm), National Insitutes of Biotechnology Malaysia, Ministry of Science, Technology and Innovation, Blok 5-A, Halaman Bukit Gambir, 11700 Penang, Malaysia
| | - Mohd Ilham Adenan
- Malaysian Institute of Pharmaceuticals and Nutraceuticals (IPharm), National Insitutes of Biotechnology Malaysia, Ministry of Science, Technology and Innovation, Blok 5-A, Halaman Bukit Gambir, 11700 Penang, Malaysia; Atta-ur-Rahman Institute for Natural Product Discovery (AURINS), Aras 9, FF3, UiTM Puncak Alam, Bandar Puncak Alam, 42300 Selangor, Malaysia.
| |
Collapse
|
16
|
Zhang F, Li J, Zhu T, Zhang S, Kundu SC, Lu S. Potential of biocompatible regenerated silk fibroin/sodium N-lauroyl sarcosinate hydrogels. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:780-95. [DOI: 10.1080/09205063.2015.1058576] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|