1
|
Visone R, Lozano-Juan F, Marzorati S, Rivolta MW, Pesenti E, Redaelli A, Sassi R, Rasponi M, Occhetta P. Predicting human cardiac QT alterations and pro-arrhythmic effects of compounds with a 3D beating heart-on-chip platform. Toxicol Sci 2022; 191:47-60. [PMID: 36226800 PMCID: PMC9887672 DOI: 10.1093/toxsci/kfac108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Determining the potential cardiotoxicity and pro-arrhythmic effects of drug candidates remains one of the most relevant issues in the drug development pipeline (DDP). New methods enabling to perform more representative preclinical in vitro studies by exploiting induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) are under investigation to increase the translational power of the outcomes. Here we present a pharmacological campaign conducted to evaluate the drug-induced QT alterations and arrhythmic events on uHeart, a 3D miniaturized in vitro model of human myocardium encompassing iPSC-CM and dermal fibroblasts embedded in fibrin. uHeart was mechanically trained resulting in synchronously beating cardiac microtissues in 1 week, characterized by a clear field potential (FP) signal that was recorded by means of an integrated electrical system. A drug screening protocol compliant with the new International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) guidelines was established and uHeart was employed for testing the effect of 11 compounds acting on single or multiple cardiac ion channels and well-known to elicit QT prolongation or arrhythmic events in clinics. The alterations of uHeart's electrophysiological parameters such as the beating period, the FP duration, the FP amplitude, and the detection of arrhythmic events prior and after drug administration at incremental doses were effectively analyzed through a custom-developed algorithm. Results demonstrated the ability of uHeart to successfully anticipate clinical outcome and to predict the QT prolongation with a sensitivity of 83.3%, a specificity of 100% and an accuracy of 91.6%. Cardiotoxic concentrations of drugs were notably detected in the range of the clinical highest blood drug concentration (Cmax), qualifying uHeart as a fit-to-purpose preclinical tool for cardiotoxicity studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Alberto Redaelli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, 20133, Italy
| | - Roberto Sassi
- Department of Computer Science, Università degli Studi di Milano, Milan, 20133, Italy
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, 20133, Italy
| | | |
Collapse
|
2
|
Schmid C, Abi-Gerges N, Leitner MG, Zellner D, Rast G. Ion Channel Expression and Electrophysiology of Singular Human (Primary and Induced Pluripotent Stem Cell-Derived) Cardiomyocytes. Cells 2021; 10:3370. [PMID: 34943878 PMCID: PMC8699770 DOI: 10.3390/cells10123370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 01/19/2023] Open
Abstract
Subtype-specific human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are promising tools, e.g., to assess the potential of drugs to cause chronotropic effects (nodal hiPSC-CMs), atrial fibrillation (atrial hiPSC-CMs), or ventricular arrhythmias (ventricular hiPSC-CMs). We used single-cell patch-clamp reverse transcriptase-quantitative polymerase chain reaction to clarify the composition of the iCell cardiomyocyte population (Fujifilm Cellular Dynamics, Madison, WI, USA) and to compare it with atrial and ventricular Pluricytes (Ncardia, Charleroi, Belgium) and primary human atrial and ventricular cardiomyocytes. The comparison of beating and non-beating iCell cardiomyocytes did not support the presence of true nodal, atrial, and ventricular cells in this hiPSC-CM population. The comparison of atrial and ventricular Pluricytes with primary human cardiomyocytes showed trends, indicating the potential to derive more subtype-specific hiPSC-CM models using appropriate differentiation protocols. Nevertheless, the single-cell phenotypes of the majority of the hiPSC-CMs showed a combination of attributes which may be interpreted as a mixture of traits of adult cardiomyocyte subtypes: (i) nodal: spontaneous action potentials and high HCN4 expression and (ii) non-nodal: prominent INa-driven fast inward current and high expression of SCN5A. This may hamper the interpretation of the drug effects on parameters depending on a combination of ionic currents, such as beat rate. However, the proven expression of specific ion channels supports the evaluation of the drug effects on ionic currents in a more realistic cardiomyocyte environment than in recombinant non-cardiomyocyte systems.
Collapse
Affiliation(s)
- Christina Schmid
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany; (M.G.L.); (G.R.)
- Food Chemistry and Toxicology, Department of Chemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | | | - Michael Georg Leitner
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany; (M.G.L.); (G.R.)
| | - Dietmar Zellner
- Non-Clinical Statistics, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | - Georg Rast
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany; (M.G.L.); (G.R.)
| |
Collapse
|
3
|
Fenix AM, Miyaoka Y, Bertero A, Blue SM, Spindler MJ, Tan KKB, Perez-Bermejo JA, Chan AH, Mayerl SJ, Nguyen TD, Russell CR, Lizarraga PP, Truong A, So PL, Kulkarni A, Chetal K, Sathe S, Sniadecki NJ, Yeo GW, Murry CE, Conklin BR, Salomonis N. Gain-of-function cardiomyopathic mutations in RBM20 rewire splicing regulation and re-distribute ribonucleoprotein granules within processing bodies. Nat Commun 2021; 12:6324. [PMID: 34732726 PMCID: PMC8566601 DOI: 10.1038/s41467-021-26623-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022] Open
Abstract
Mutations in the cardiac splicing factor RBM20 lead to malignant dilated cardiomyopathy (DCM). To understand the mechanism of RBM20-associated DCM, we engineered isogenic iPSCs with DCM-associated missense mutations in RBM20 as well as RBM20 knockout (KO) iPSCs. iPSC-derived engineered heart tissues made from these cell lines recapitulate contractile dysfunction of RBM20-associated DCM and reveal greater dysfunction with missense mutations than KO. Analysis of RBM20 RNA binding by eCLIP reveals a gain-of-function preference of mutant RBM20 for 3' UTR sequences that are shared with amyotrophic lateral sclerosis (ALS) and processing-body associated RNA binding proteins (FUS, DDX6). Deep RNA sequencing reveals that the RBM20 R636S mutant has unique gene, splicing, polyadenylation and circular RNA defects that differ from RBM20 KO. Super-resolution microscopy verifies that mutant RBM20 maintains very limited nuclear localization potential; rather, the mutant protein associates with cytoplasmic processing bodies (DDX6) under basal conditions, and with stress granules (G3BP1) following acute stress. Taken together, our results highlight a pathogenic mechanism in cardiac disease through splicing-dependent and -independent pathways.
Collapse
Affiliation(s)
- Aidan M Fenix
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
- Center for Cardiovascular Biology, University of Washington, 850 Republican Street, Brotman Building, Seattle, WA, 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, WA, 98109, USA
| | - Yuichiro Miyaoka
- Regenerative Medicine Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
- Gladstone Institutes, 1650 Owens St, San Francisco, CA, 94158, USA
| | - Alessandro Bertero
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
- Center for Cardiovascular Biology, University of Washington, 850 Republican Street, Brotman Building, Seattle, WA, 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, WA, 98109, USA
| | - Steven M Blue
- Department of Cellular and Molecular Medicine, Stem Cell Program, and Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | | | - Kenneth K B Tan
- Gladstone Institutes, 1650 Owens St, San Francisco, CA, 94158, USA
| | | | - Amanda H Chan
- Gladstone Institutes, 1650 Owens St, San Francisco, CA, 94158, USA
| | - Steven J Mayerl
- Gladstone Institutes, 1650 Owens St, San Francisco, CA, 94158, USA
| | - Trieu D Nguyen
- Gladstone Institutes, 1650 Owens St, San Francisco, CA, 94158, USA
| | | | | | - Annie Truong
- Gladstone Institutes, 1650 Owens St, San Francisco, CA, 94158, USA
| | - Po-Lin So
- Gladstone Institutes, 1650 Owens St, San Francisco, CA, 94158, USA
| | - Aishwarya Kulkarni
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, 45221, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Kashish Chetal
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Shashank Sathe
- Department of Cellular and Molecular Medicine, Stem Cell Program, and Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nathan J Sniadecki
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA
- Center for Cardiovascular Biology, University of Washington, 850 Republican Street, Brotman Building, Seattle, WA, 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, WA, 98109, USA
- Department of Mechanical Engineering, University of Washington, 3720 15th Avenue NE, Seattle, WA, 98105, USA
- Department of Bioengineering, University of Washington, 3720 15th Avenue NE, Seattle, WA, 98105, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, Stem Cell Program, and Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Charles E Murry
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA.
- Center for Cardiovascular Biology, University of Washington, 850 Republican Street, Brotman Building, Seattle, WA, 98109, USA.
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, WA, 98109, USA.
- Department of Bioengineering, University of Washington, 3720 15th Avenue NE, Seattle, WA, 98105, USA.
- Department of Medicine/Cardiology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195, USA.
- Sana Biotechnology, 188 E Blaine Street, Seattle, WA, 98102, USA.
| | - Bruce R Conklin
- Gladstone Institutes, 1650 Owens St, San Francisco, CA, 94158, USA.
- Department of Medicine, Cellular and Molecular Pharmacology, and Ophthalmology, University of California San Francisco, San Francisco, CA, 94158, USA.
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45229, USA.
| |
Collapse
|
4
|
Hortigon-Vinagre MP, Zamora V, Burton FL, Smith GL. The Use of Voltage Sensitive Dye di-4-ANEPPS and Video-Based Contractility Measurements to Assess Drug Effects on Excitation-Contraction Coupling in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. J Cardiovasc Pharmacol 2021; 77:280-290. [PMID: 33109927 DOI: 10.1097/fjc.0000000000000937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/09/2020] [Indexed: 12/21/2022]
Abstract
ABSTRACT Because cardiotoxicity is one of the leading causes of drug failure and attrition, the design of new protocols and technologies to assess proarrhythmic risks on cardiac cells is in continuous development by different laboratories. Current methodologies use electrical, intracellular Ca2+, or contractility assays to evaluate cardiotoxicity. Increasingly, the human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are the in vitro tissue model used in commercial assays because it is believed to recapitulate many aspects of human cardiac physiology. In this work, we demonstrate that the combination of a contractility and voltage measurements, using video-based imaging and fluorescence microscopy, on hiPSC-CMs allows the investigation of mechanistic links between electrical and mechanical effects in an assay design that can address medium throughput scales necessary for drug screening, offering a view of the mechanisms underlying drug toxicity. To assess the accuracy of this novel technique, 10 commercially available inotropic drugs were tested (5 positive and 5 negative). Included were drugs with simple and specific mechanisms, such as nifedipine, Bay K8644, and blebbistatin, and others with a more complex action such as isoproterenol, pimobendan, digoxin, and amrinone, among others. In addition, the results provide a mechanism for the toxicity of itraconazole in a human model, a drug with reported side effects on the heart. The data demonstrate a strong negative inotropic effect because of the blockade of L-type Ca2+ channels and additional action on the cardiac myofilaments. We can conclude that the combination of contractility and action potential measurements can provide wider mechanistic knowledge of drug cardiotoxicity for preclinical assays.
Collapse
MESH Headings
- Action Potentials/drug effects
- Arrhythmias, Cardiac/chemically induced
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/physiopathology
- Calcium Channels, L-Type/drug effects
- Calcium Channels, L-Type/metabolism
- Cardiotoxicity
- Cell Differentiation
- Cells, Cultured
- Excitation Contraction Coupling/drug effects
- Fluorescent Dyes/chemistry
- Humans
- Induced Pluripotent Stem Cells/drug effects
- Induced Pluripotent Stem Cells/metabolism
- Induced Pluripotent Stem Cells/pathology
- Microscopy, Fluorescence
- Microscopy, Video
- Myocardial Contraction/drug effects
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Myofibrils/drug effects
- Myofibrils/metabolism
- Myofibrils/pathology
- Pyridinium Compounds/chemistry
- Risk Assessment
- Time Factors
- Toxicity Tests
Collapse
Affiliation(s)
- Maria Pura Hortigon-Vinagre
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universdad de Extremadura, Badajoz, Spain
| | - Victor Zamora
- Departamento de Ingeniería Mecánica, Energética y de los Materiales, Escuela de Ingerierias Industriales, Universidad de Extremadura, Badajoz, Spain
| | - Francis L Burton
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom ; and
- Clyde Biosciences Ltd, BioCity Scotland, Newhouse, United Kingdom
| | - Godfrey L Smith
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Science, University of Glasgow, Glasgow, United Kingdom ; and
- Clyde Biosciences Ltd, BioCity Scotland, Newhouse, United Kingdom
| |
Collapse
|
5
|
Gintant G, Kaushik EP, Feaster T, Stoelzle-Feix S, Kanda Y, Osada T, Smith G, Czysz K, Kettenhofen R, Lu HR, Cai B, Shi H, Herron TJ, Dang Q, Burton F, Pang L, Traebert M, Abassi Y, Pierson JB, Blinova K. Repolarization studies using human stem cell-derived cardiomyocytes: Validation studies and best practice recommendations. Regul Toxicol Pharmacol 2020; 117:104756. [PMID: 32822771 DOI: 10.1016/j.yrtph.2020.104756] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/24/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
Abstract
Human stem cell-derived cardiomyocytes (hSC-CMs) hold great promise as in vitro models to study the electrophysiological effects of novel drug candidates on human ventricular repolarization. Two recent large validation studies have demonstrated the ability of hSC-CMs to detect drug-induced delayed repolarization and "cellrhythmias" (interrupted repolarization or irregular spontaneous beating of myocytes) linked to Torsade-de-Pointes proarrhythmic risk. These (and other) studies have also revealed variability of electrophysiological responses attributable to differences in experimental approaches and experimenter, protocols, technology platforms used, and pharmacologic sensitivity of different human-derived models. Thus, when evaluating drug-induced repolarization effects, there is a need to consider 1) the advantages and disadvantages of different approaches, 2) the need for robust functional characterization of hSC-CM preparations to define "fit for purpose" applications, and 3) adopting standardized best practices to guide future studies with evolving hSC-CM preparations. Examples provided and suggested best practices are instructional in defining consistent, reproducible, and interpretable "fit for purpose" hSC-CM-based applications. Implementation of best practices should enhance the clinical translation of hSC-CM-based cell and tissue preparations in drug safety evaluations and support their growing role in regulatory filings.
Collapse
Affiliation(s)
- Gary Gintant
- Department of Integrative Pharmacology, Integrated Sciences and Technology, AbbVie, North Chicago, IL, 60064, USA.
| | | | - Tromondae Feaster
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, 20993, USA.
| | | | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, Japan.
| | | | - Godfrey Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland, UK; Clyde Biosciences Ltd., Scotland, UK.
| | | | - Ralf Kettenhofen
- Fraunhofer-Institute for Biomed Engineering IBMT, Sulzbach, Germany.
| | - Hua Rong Lu
- Nonclinical Safety, Johnson & Johnson R&D, Beerse, Belgium.
| | - Beibei Cai
- Takeda California, Inc., San Diego, CA, 92121, USA.
| | - Hong Shi
- Bristol-Myers Squibb, New York, NY, 10016, USA.
| | - Todd Joseph Herron
- Frankel Cardiovascular Regeneration Core Laboratory, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Qianyu Dang
- Office of Biostatistics, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA.
| | - Francis Burton
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Scotland, UK; Clyde Biosciences Ltd., Scotland, UK.
| | - Li Pang
- Division of Systems Biology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, 72079, USA.
| | | | - Yama Abassi
- Agilent Technologies, San Diego, CA, 92121, USA.
| | | | - Ksenia Blinova
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, 20993, USA.
| |
Collapse
|
6
|
Paci M, Passini E, Klimas A, Severi S, Hyttinen J, Rodriguez B, Entcheva E. All-Optical Electrophysiology Refines Populations of In Silico Human iPSC-CMs for Drug Evaluation. Biophys J 2020; 118:2596-2611. [PMID: 32298635 PMCID: PMC7231889 DOI: 10.1016/j.bpj.2020.03.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022] Open
Abstract
High-throughput in vitro drug assays have been impacted by recent advances in human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) technology and by contact-free all-optical systems simultaneously measuring action potentials (APs) and Ca2+ transients (CaTrs). Parallel computational advances have shown that in silico simulations can predict drug effects with high accuracy. We combine these in vitro and in silico technologies and demonstrate the utility of high-throughput experimental data to refine in silico hiPSC-CM populations and to predict and explain drug action mechanisms. Optically obtained hiPSC-CM APs and CaTrs were used from spontaneous activity and under optical pacing in control and drug conditions at multiple doses. An updated version of the Paci2018 model was developed to refine the description of hiPSC-CM spontaneous electrical activity; a population of in silico hiPSC-CMs was constructed and calibrated using simultaneously recorded APs and CaTrs. We tested in silico five drugs (astemizole, dofetilide, ibutilide, bepridil, and diltiazem) and compared the outcomes to in vitro optical recordings. Our simulations showed that physiologically accurate population of models can be obtained by integrating AP and CaTr control records. Thus, constructed population of models correctly predicted the drug effects and occurrence of adverse episodes, even though the population was optimized only based on control data and in vitro drug testing data were not deployed during its calibration. Furthermore, the in silico investigation yielded mechanistic insights; e.g., through simulations, bepridil's more proarrhythmic action in adult cardiomyocytes compared to hiPSC-CMs could be traced to the different expression of ion currents in the two. Therefore, our work 1) supports the utility of all-optical electrophysiology in providing high-content data to refine experimentally calibrated populations of in silico hiPSC-CMs, 2) offers insights into certain limitations when translating results obtained in hiPSC-CMs to humans, and 3) shows the strength of combining high-throughput in vitro and population in silico approaches.
Collapse
Affiliation(s)
- Michelangelo Paci
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Elisa Passini
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Aleksandra Klimas
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Stefano Severi
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi," University of Bologna, Cesena, Italy
| | - Jari Hyttinen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Washington, D.C
| |
Collapse
|
7
|
Gintant G, Burridge P, Gepstein L, Harding S, Herron T, Hong C, Jalife J, Wu JC. Use of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes in Preclinical Cancer Drug Cardiotoxicity Testing: A Scientific Statement From the American Heart Association. Circ Res 2019; 125:e75-e92. [PMID: 31533542 DOI: 10.1161/res.0000000000000291] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
It is now well recognized that many lifesaving oncology drugs may adversely affect the heart and cardiovascular system, including causing irreversible cardiac injury that can result in reduced quality of life. These effects, which may manifest in the short term or long term, are mechanistically not well understood. Research is hampered by the reliance on whole-animal models of cardiotoxicity that may fail to reflect the fundamental biology or cardiotoxic responses of the human myocardium. The emergence of human induced pluripotent stem cell-derived cardiomyocytes as an in vitro research tool holds great promise for understanding drug-induced cardiotoxicity of oncological drugs that may manifest as contractile and electrophysiological dysfunction, as well as structural abnormalities, making it possible to deliver novel drugs free from cardiac liabilities and guide personalized therapy. This article briefly reviews the challenges of cardio-oncology, the strengths and limitations of using human induced pluripotent stem cell-derived cardiomyocytes to represent clinical findings in the nonclinical research space, and future directions for their further use.
Collapse
|
8
|
Kügler P, Rast G, Guth BD. Comparison of in vitro and computational experiments on the relation of inter-beat interval and duration of repolarization in a specific type of human induced pluripotent stem cell-derived cardiomyocytes. PLoS One 2019; 14:e0221763. [PMID: 31498812 PMCID: PMC6733510 DOI: 10.1371/journal.pone.0221763] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 08/14/2019] [Indexed: 12/20/2022] Open
Abstract
We compared a published computational model of the action potential of a specific type of human induced pluripotent stem cell -derived cardiomyocytes (hiPSC-CM) with experimental field potential data with regard to their inter-beat interval and the duration of repolarization. In particular, concomitant changes in inter-beat interval and duration of repolarization were calculated after reduction and/or augmentation of specific ion channel conductances as a surrogate for pharmacological manipulation. The observed mismatches between calculations and experimental data indicate that there is information missing about the cellular test system. Based on our results we hypothesize that, among other currents, the actual If (“funny current”) may deviate from the prediction. We show that replacement of the If formulation by alternative equations causes the model predictions to change qualitatively, however, none of the available formulations is actually achieving a satisfactory match with experimental data. We suggest a strategy to clarify whether the mismatch can be completely resolved at all using single cell models and, if yes, how this goal could be reached.
Collapse
Affiliation(s)
- Philipp Kügler
- Institute of Applied Mathematics and Statistics, Computational Science Lab, University of Hohenheim, Stuttgart, Germany
| | - Georg Rast
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
- * E-mail:
| | - Brian D. Guth
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
- Department of Pharmaceutical Sciences, North-West University, Potchefstroom Campus, Potchefstroom, South Africa
| |
Collapse
|
9
|
Bertero A, Fields PA, Smith AST, Leonard A, Beussman K, Sniadecki NJ, Kim DH, Tse HF, Pabon L, Shendure J, Noble WS, Murry CE. Chromatin compartment dynamics in a haploinsufficient model of cardiac laminopathy. J Cell Biol 2019; 218:2919-2944. [PMID: 31395619 PMCID: PMC6719452 DOI: 10.1083/jcb.201902117] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/20/2019] [Accepted: 07/10/2019] [Indexed: 01/16/2023] Open
Abstract
Mutations in A-type nuclear lamins cause dilated cardiomyopathy, which is postulated to result from dysregulated gene expression due to changes in chromatin organization into active and inactive compartments. To test this, we performed genome-wide chromosome conformation analyses in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) with a haploinsufficient mutation for lamin A/C. Compared with gene-corrected cells, mutant hiPSC-CMs have marked electrophysiological and contractile alterations, with modest gene expression changes. While large-scale changes in chromosomal topology are evident, differences in chromatin compartmentalization are limited to a few hotspots that escape segregation to the nuclear lamina and inactivation during cardiogenesis. These regions exhibit up-regulation of multiple noncardiac genes including CACNA1A, encoding for neuronal P/Q-type calcium channels. Pharmacological inhibition of the resulting current partially mitigates the electrical alterations. However, chromatin compartment changes do not explain most gene expression alterations in mutant hiPSC-CMs. Thus, global errors in chromosomal compartmentation are not the primary pathogenic mechanism in heart failure due to lamin A/C haploinsufficiency.
Collapse
Affiliation(s)
- Alessandro Bertero
- Department of Pathology, University of Washington, Seattle, WA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Paul A Fields
- Department of Pathology, University of Washington, Seattle, WA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Alec S T Smith
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
- Department of Bioengineering, University of Washington, Seattle, WA
| | - Andrea Leonard
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
- Department of Mechanical Engineering, University of Washington, Seattle, WA
| | - Kevin Beussman
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
- Department of Mechanical Engineering, University of Washington, Seattle, WA
| | - Nathan J Sniadecki
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
- Department of Bioengineering, University of Washington, Seattle, WA
- Department of Mechanical Engineering, University of Washington, Seattle, WA
| | - Deok-Ho Kim
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
- Department of Bioengineering, University of Washington, Seattle, WA
| | - Hung-Fat Tse
- Cardiology Division, Department of Medicine, University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Lil Pabon
- Department of Pathology, University of Washington, Seattle, WA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA
- Howard Hughes Medical Institute, Seattle, WA
| | - William S Noble
- Department of Genome Sciences, University of Washington, Seattle, WA
| | - Charles E Murry
- Department of Pathology, University of Washington, Seattle, WA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA
- Department of Bioengineering, University of Washington, Seattle, WA
- Department of Medicine/Cardiology, University of Washington, Seattle, WA
| |
Collapse
|
10
|
Ribeiro AJS, Guth BD, Engwall M, Eldridge S, Foley CM, Guo L, Gintant G, Koerner J, Parish ST, Pierson JB, Brock M, Chaudhary KW, Kanda Y, Berridge B. Considerations for an In Vitro, Cell-Based Testing Platform for Detection of Drug-Induced Inotropic Effects in Early Drug Development. Part 2: Designing and Fabricating Microsystems for Assaying Cardiac Contractility With Physiological Relevance Using Human iPSC-Cardiomyocytes. Front Pharmacol 2019; 10:934. [PMID: 31555128 PMCID: PMC6727630 DOI: 10.3389/fphar.2019.00934] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022] Open
Abstract
Contractility of the myocardium engines the pumping function of the heart and is enabled by the collective contractile activity of its muscle cells: cardiomyocytes. The effects of drugs on the contractility of human cardiomyocytes in vitro can provide mechanistic insight that can support the prediction of clinical cardiac drug effects early in drug development. Cardiomyocytes differentiated from human-induced pluripotent stem cells have high potential for overcoming the current limitations of contractility assays because they attach easily to extracellular materials and last long in culture, while having human- and patient-specific properties. Under these conditions, contractility measurements can be non-destructive and minimally invasive, which allow assaying sub-chronic effects of drugs. For this purpose, the function of cardiomyocytes in vitro must reflect physiological settings, which is not observed in cultured cardiomyocytes derived from induced pluripotent stem cells because of the fetal-like properties of their contractile machinery. Primary cardiomyocytes or tissues of human origin fully represent physiological cellular properties, but are not easily available, do not last long in culture, and do not attach easily to force sensors or mechanical actuators. Microengineered cellular systems with a more mature contractile function have been developed in the last 5 years to overcome this limitation of stem cell-derived cardiomyocytes, while simultaneously measuring contractile endpoints with integrated force sensors/actuators and image-based techniques. Known effects of engineered microenvironments on the maturity of cardiomyocyte contractility have also been discovered in the development of these systems. Based on these discoveries, we review here design criteria of microengineered platforms of cardiomyocytes derived from pluripotent stem cells for measuring contractility with higher physiological relevance. These criteria involve the use of electromechanical, chemical and morphological cues, co-culture of different cell types, and three-dimensional cellular microenvironments. We further discuss the use and the current challenges for developing and improving these novel technologies for predicting clinical effects of drugs based on contractility measurements with cardiomyocytes differentiated from induced pluripotent stem cells. Future research should establish contexts of use in drug development for novel contractility assays with stem cell-derived cardiomyocytes.
Collapse
Affiliation(s)
- Alexandre J S Ribeiro
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translation Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Brian D Guth
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany.,PreClinical Drug Development Platform (PCDDP), North-West University, Potchefstroom, South Africa
| | - Michael Engwall
- Safety Pharmacology and Animal Research Center, Amgen Research, Thousand Oaks, CA, United States
| | - Sandy Eldridge
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - C Michael Foley
- Department of Integrative Pharmacology, Integrated Sciences and Technology, AbbVie, North Chicago, IL, United States
| | - Liang Guo
- Laboratory of Investigative Toxicology, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Gary Gintant
- Department of Integrative Pharmacology, Integrated Sciences and Technology, AbbVie, North Chicago, IL, United States
| | - John Koerner
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translation Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Stanley T Parish
- Health and Environmental Sciences Institute, Washington, DC, United States
| | - Jennifer B Pierson
- Health and Environmental Sciences Institute, Washington, DC, United States
| | - Mathew Brock
- Department of Safety Assessment, Genentech, South San Francisco, CA, United States
| | - Khuram W Chaudhary
- Global Safety Pharmacology, GlaxoSmithKline plc, Collegeville, PA, United States
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, Japan
| | - Brian Berridge
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| |
Collapse
|
11
|
Millard D, Dang Q, Shi H, Zhang X, Strock C, Kraushaar U, Zeng H, Levesque P, Lu HR, Guillon JM, Wu JC, Li Y, Luerman G, Anson B, Guo L, Clements M, Abassi YA, Ross J, Pierson J, Gintant G. Cross-Site Reliability of Human Induced Pluripotent stem cell-derived Cardiomyocyte Based Safety Assays Using Microelectrode Arrays: Results from a Blinded CiPA Pilot Study. Toxicol Sci 2019; 164:550-562. [PMID: 29718449 PMCID: PMC6061700 DOI: 10.1093/toxsci/kfy110] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recent in vitro cardiac safety studies demonstrate the ability of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to detect electrophysiologic effects of drugs. However, variability contributed by unique approaches, procedures, cell lines, and reagents across laboratories makes comparisons of results difficult, leading to uncertainty about the role of hiPSC-CMs in defining proarrhythmic risk in drug discovery and regulatory submissions. A blinded pilot study was conducted to evaluate the electrophysiologic effects of 8 well-characterized drugs on 4 cardiomyocyte lines using a standardized protocol across 3 microelectrode array platforms (18 individual studies). Drugs were selected to define assay sensitivity of prominent repolarizing currents (E-4031 for IKr, JNJ303 for IKs) and depolarizing currents (nifedipine for ICaL, mexiletine for INa) as well as drugs affecting multichannel block (flecainide, moxifloxacin, quinidine, and ranolazine). Inclusion criteria for final analysis was based on demonstrated sensitivity to IKr block (20% prolongation with E-4031) and L-type calcium current block (20% shortening with nifedipine). Despite differences in baseline characteristics across cardiomyocyte lines, multiple sites, and instrument platforms, 10 of 18 studies demonstrated adequate sensitivity to IKr block with E-4031 and ICaL block with nifedipine for inclusion in the final analysis. Concentration-dependent effects on repolarization were observed with this qualified data set consistent with known ionic mechanisms of single and multichannel blocking drugs. hiPSC-CMs can detect repolarization effects elicited by single and multichannel blocking drugs after defining pharmacologic sensitivity to IKr and ICaL block, supporting further validation efforts using hiPSC-CMs for cardiac safety studies.
Collapse
Affiliation(s)
| | - Qianyu Dang
- US Food and Drug Administration, Center for Drug Evaluation and Research, Silver Spring, Maryland 20993
| | - Hong Shi
- Bristol-Myers Squibb Company, Princeton, New Jersey 08543
| | - Xiaou Zhang
- Acea Biosciences, San Diego, California 92121
| | | | - Udo Kraushaar
- Naturwissenschaftliches und Medizinisches Institut, Reutlingen, Germany
| | - Haoyu Zeng
- Merck & Co., Inc., Safety & Exploratory Pharmacology Department, West Point, Pennsylvania
| | - Paul Levesque
- Bristol-Myers Squibb Company, Princeton, New Jersey 08543
| | | | | | - Joseph C Wu
- Stanford University School of Medicine, Stanford Cardiovascular Institute, Stanford, California
| | - Yingxin Li
- Stanford University School of Medicine, Stanford Cardiovascular Institute, Stanford, California
| | | | - Blake Anson
- Cellular Dynamics International a FujiFilm, Company, Madison, Wisconsin 53508
| | - Liang Guo
- Cellular Dynamics International a FujiFilm, Company, Madison, Wisconsin 53508.,Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc, Frederick, Maryland 21702
| | | | | | - James Ross
- Axion Biosystems Inc, Atlanta, Georgia 30309
| | - Jennifer Pierson
- ILSI-Health and Environmental Sciences Institute, Washington, District of Columbia 20009
| | - Gary Gintant
- Integrative Pharmacology (Dept ZR13), Integrated Science and Technology. AbbVie, North Chicago, Illinois 60064
| |
Collapse
|
12
|
Electrophysiological characteristics and pharmacological sensitivity of two lines of human induced pluripotent stem cell derived cardiomyocytes coming from two different suppliers. J Pharmacol Toxicol Methods 2018; 90:58-66. [DOI: 10.1016/j.vascn.2017.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 11/21/2017] [Accepted: 12/18/2017] [Indexed: 01/08/2023]
|