1
|
Tighsazzadeh M, Boateng J. Matrix hyaluronic acid and bilayer poly-hydroxyethyl methacrylate-hyaluronic acid films as potential ocular drug delivery platforms. Int J Biol Macromol 2024; 260:129496. [PMID: 38244742 DOI: 10.1016/j.ijbiomac.2024.129496] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/01/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
This study aimed to design hydrogel based films comprising hyaluronic acid (HA) to overcome limitations of currently used eye drops. Timolol-loaded crosslinked (X2) HA-based and bilayer (B2) (pHEMA/PVP-HA-based layers) films were designed and characterized. The films were transparent (UV, visual observation) with crosslinked (<80 %) films showing lower light transmittance than bilayer (>80 %) films. X2 showed significantly higher swelling capacity, tensile strength and elastic modulus (5491.6 %, 1539.8 Nmm-2, 1777.2 mPa) than B2 (1905.0 %, 170.0N mm-2, 67.3 mPa) respectively. However, X2 showed lower cumulative drug released and adhesive force (27.3 %, 6.2 N) than B2 (57.5 %, 8.6 N). UV sterilization did not significantly alter physical properties, while SEM and IR microscopy showed smooth surface morphology and homogeneous drug distribution. Timolol permeation (EpiCorneal™/porcine cornea) depended on the film matrix with erodible films showing similar permeation to commercial eyedrops. Drug permeation for porcine cornea (X2 = 549.0.2, B2 = 312.1 μgcm-2 h-1) was significantly faster than EpiCorneal™ (X2 = 55.2, B2 = 37.6 μgcm-2 h-1), but with a linear correlation between them. All the selected optimized films showed acceptable compatibility (MTT assay) with both HeLa cells and EpiCorneal™. In conclusion, crosslinked and bilayer HA based films showed ideal characteristics suitable for potential ocular drug delivery, though further work is required to further optimize these properties and confirm their efficacy including in vivo tests.
Collapse
Affiliation(s)
- Mohammad Tighsazzadeh
- School of Science, Faculty of Engineering and Science, University of Greenwich, Medway, Kent ME4 4TB, UK
| | - Joshua Boateng
- School of Science, Faculty of Engineering and Science, University of Greenwich, Medway, Kent ME4 4TB, UK.
| |
Collapse
|
2
|
Wang K, Chen X. Autophagic tumor-associated macrophages promote the endothelial mesenchymal transition in lung adenocarcinomas through the FUT4/p-ezrin pathway. J Thorac Dis 2021; 13:5973-5985. [PMID: 34795945 PMCID: PMC8575842 DOI: 10.21037/jtd-21-1519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/16/2021] [Indexed: 12/24/2022]
Abstract
Background Lung adenocarcinoma is one of the most common malignant tumors with high morbidity and mortality, but the effect of Tumor-associated macrophages (TAMs) on lung adenocarcinoma has not been studied clearly now. Methods In this study, TAMs were stably transfected with Atg5 silence or overexpression lentiviral vectors to inhibit or induce autophagy of TAMs. In addition, the expression of fucosyltransferase IV (FUT4) or Ezrin were interfered in TAMs with autophagy. The above treated TAMs were then co-cultured with A549 or H1299 cells. The expressions of genes were detected by qPCR, western blotting, cell immunofluorescence, and enzyme-linked immunosorbent assay. Meanwhile, cell migration and invasion were analyzed by Transwell assay and wound healing assay. Furthermore, the effects of TAMs with autophagy were explored in lung adenocarcinoma xenograft model of mice. Results The results showed that overexpression of autophagy-related gene 5 (ATG5) induced autophagy in TAMs, which increased the expression of FUT4, TGF-β1, and p-ezrin, and promoted epithelial-mesenchymal transition (EMT) in lung adenocarcinoma cells. However, FUT4 silencing partially reversed the effects of TAM autophagy, specifically, the expression of TGF-β1 and p-ezrin was inhibited and EMT in lung adenocarcinoma cells was suppressed. Notably, ezrin deletion in autophagic TAMs induced by rapamycin reduced TGF-β1 expression and suppressed EMT in lung adenocarcinoma cells. Consistently, in vivo experiments also revealed that autophagic TAMs increased the expression of FUT4, TGF-β1, and p-ezrin, and promoted EMT in lung adenocarcinomas. Similarly, FUT4 silencing partially reversed the effects of autophagic TAMs on EMT in lung adenocarcinomas. Conclusions In conclusion, autophagic TAMs promoted TGF-β1 secretion through the FUT4/p-ezrin pathway and induced EMT in co-cultured lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Kangwu Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiao Chen
- Department of Geriatrics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
3
|
Ko KY, Jeon HL, Kim J, Kim TS, Hong YH, Jeong MK, Park KH, Kim BH, Park S, Jang WH, Cho SA, An S, Cho AR, Yi JS, Kim JY, Kim H, Lee JK, Park KS. Two tiered approaches combining alternative test methods and minimizing the use of reconstructed human cornea-like epithelium tests for the evaluation of eye irritation potency of test chemicals. Toxicol In Vitro 2019; 63:104675. [PMID: 31648046 DOI: 10.1016/j.tiv.2019.104675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 05/04/2019] [Accepted: 10/01/2019] [Indexed: 11/29/2022]
Abstract
In order to overcome the limitations of single in vitro eye irritation tests, Integrated Approaches to Testing Assessment strategies have been suggested for evaluating eye irritation. This study developed two tiered approaches combining alternative test methods. They were designed in consideration of the solubility property of test chemicals and to use the RhCE tests at final steps. The tiered approach A is composed of the STE, BCOP, HET-CAM or RhCE tests, whereas the tiered approach B is designed to perform simultaneously two in vitro test methods at the first stage and the RhCE test at the final stage. The predictive capacity of the two tiered approaches was estimated using 47 chemicals. The accuracy, sensitivity, and specificity value of the tiered approach A were 95.7% (45/47), 100% (34/34), and 84.6% (11/13), respectively, whereas those of the tiered approach B were 95.7% (45/47), 97.1% (33/34), and 92.3% (12/13), respectively. The approach A and B were considered to be available methods for distinguishing test chemicals of Category 1 (all 73.3%) and No Category (84.6% and 92.3%), respectively. Especially, the approach B was considered as an efficient method as the Bottom-Up approach, because it predicted correctly test chemicals classified as No Category.
Collapse
Affiliation(s)
- Kyung Yuk Ko
- Toxicological Screening & Testing Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, Republic of Korea
| | - Hye Lyun Jeon
- Toxicological Screening & Testing Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, Republic of Korea
| | - Joohwan Kim
- Toxicological Screening & Testing Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, Republic of Korea
| | - Tae Sung Kim
- Toxicological Screening & Testing Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, Republic of Korea
| | - Yoon-Hee Hong
- Toxicological Screening & Testing Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, Republic of Korea
| | - Mi Kyung Jeong
- Major in Public Health, Faculty of Food and Health Sciences, Keimyung University, Daegu, Republic of Korea
| | - Kyo-Hyun Park
- Major in Public Health, Faculty of Food and Health Sciences, Keimyung University, Daegu, Republic of Korea
| | - Bae-Hwan Kim
- Major in Public Health, Faculty of Food and Health Sciences, Keimyung University, Daegu, Republic of Korea
| | - Sera Park
- AmorePacific R&D Center, Yongin-si, Republic of Korea
| | - Won-Hee Jang
- AmorePacific R&D Center, Yongin-si, Republic of Korea
| | - Sun-A Cho
- AmorePacific R&D Center, Yongin-si, Republic of Korea
| | - Susun An
- AmorePacific R&D Center, Yongin-si, Republic of Korea
| | - Ah Rang Cho
- Toxicological Screening & Testing Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, Republic of Korea
| | - Jung-Sun Yi
- Toxicological Screening & Testing Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, Republic of Korea
| | - Ji-Young Kim
- Toxicological Screening & Testing Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, Republic of Korea
| | - Hak Kim
- Toxicological Screening & Testing Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, Republic of Korea
| | - Jong Kwon Lee
- Toxicological Research Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, Republic of Korea
| | - Ki Sook Park
- Toxicological Screening & Testing Division, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju-si, Republic of Korea.
| |
Collapse
|
4
|
Ye DJ, Kwon YJ, Baek HS, Shin S, Lee C, Yun JW, Nam KT, Lim KM, Chun YJ. Discovery of Ezrin Expression as a Potential Biomarker for Chemically Induced Ocular Irritation Using Human Corneal Epithelium Cell Line and a Reconstructed Human Cornea-like Epithelium Model. Toxicol Sci 2019; 165:335-346. [PMID: 29893927 DOI: 10.1093/toxsci/kfy134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Numerous studies have attempted to develop a new in vitro eye irritation test (EIT). To obtain more reliable results from EIT, potential new biomarkers that reflect eye irritation by chemicals must be identified. We investigated candidate biomarkers for eye irritation, using a proteomics approach. Sodium lauryl sulfate (SLS) or benzalkonium chloride (BAC) was applied on a reconstructed human cornea-like epithelium model, MCTT HCE, and corneal protein expression was examined by two-dimensional gel electrophoresis. We found that ezrin (EZR) was significantly upregulated by SLS or BAC. In addition, upregulation of EZR in immortalized human corneal cells treated with SLS or BAC was confirmed by quantitative reverse transcription-PCR and western blot analysis. Furthermore, other well-known eye irritants such as cetylpyridinium bromide, Triton X-100, cyclohexanol, ethanol, 2-methyl-1-pentanol, and sodium hydroxide significantly increased EZR expression in immortalized human corneal cells. Induction of EZR promoter activity in irritant-treated human corneal cells was confirmed by a luciferase gene reporter assay. In conclusion, EZR expression may be a potential biomarker for detecting eye irritation, which may substantially improve the performance of in vitro EIT.
Collapse
Affiliation(s)
- Dong-Jin Ye
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yeo-Jung Kwon
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyoung-Seok Baek
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Sangyun Shin
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Choongho Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Jun-Won Yun
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Young-Jin Chun
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|