1
|
Rojo AI, Buttari B, Cadenas S, Carlos AR, Cuadrado A, Falcão AS, López MG, Georgiev MI, Grochot-Przeczek A, Gumeni S, Jimenez-Villegas J, Horbanczuk JO, Konu O, Lastres-Becker I, Levonen AL, Maksimova V, Michaeloudes C, Mihaylova LV, Mickael ME, Milisav I, Miova B, Rada P, Santos M, Seabra MC, Strac DS, Tenreiro S, Trougakos IP, Dinkova-Kostova AT. Model organisms for investigating the functional involvement of NRF2 in non-communicable diseases. Redox Biol 2025; 79:103464. [PMID: 39709790 PMCID: PMC11733061 DOI: 10.1016/j.redox.2024.103464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/26/2024] [Accepted: 12/08/2024] [Indexed: 12/24/2024] Open
Abstract
Non-communicable chronic diseases (NCDs) are most commonly characterized by age-related loss of homeostasis and/or by cumulative exposures to environmental factors, which lead to low-grade sustained generation of reactive oxygen species (ROS), chronic inflammation and metabolic imbalance. Nuclear factor erythroid 2-like 2 (NRF2) is a basic leucine-zipper transcription factor that regulates the cellular redox homeostasis. NRF2 controls the expression of more than 250 human genes that share in their regulatory regions a cis-acting enhancer termed the antioxidant response element (ARE). The products of these genes participate in numerous functions including biotransformation and redox homeostasis, lipid and iron metabolism, inflammation, proteostasis, as well as mitochondrial dynamics and energetics. Thus, it is possible that a single pharmacological NRF2 modulator might mitigate the effect of the main hallmarks of NCDs, including oxidative, proteostatic, inflammatory and/or metabolic stress. Research on model organisms has provided tremendous knowledge of the molecular mechanisms by which NRF2 affects NCDs pathogenesis. This review is a comprehensive summary of the most commonly used model organisms of NCDs in which NRF2 has been genetically or pharmacologically modulated, paving the way for drug development to combat NCDs. We discuss the validity and use of these models and identify future challenges.
Collapse
Affiliation(s)
- Ana I Rojo
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain.
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, 00161, Rome, Italy
| | - Susana Cadenas
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Cantoblanco, Madrid, Spain
| | - Ana Rita Carlos
- CE3C-CHANGE, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Ana Sofia Falcão
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Manuela G López
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria La Princesa, Hospital Universitario de la Princesa, Madrid, Spain
| | - Milen I Georgiev
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Anna Grochot-Przeczek
- Department of Medical Biotechnology, Faculty of Biochemistry Biophysics and Biotechnology, Jagiellonian University, 30-387, Krakow, Poland
| | - Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - José Jimenez-Villegas
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Jarosław Olav Horbanczuk
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, 36A Postępu, Jastrzębiec, 05-552, Poland
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey; Department of Neuroscience, Bilkent University, Ankara, Turkey; UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Isabel Lastres-Becker
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Madrid, Spain; Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Institute Teófilo Hernando for Drug Discovery, Universidad Autónoma de Madrid, 28029, Madrid, Spain; Instituto de Investigaciones Biomédicas Sols-Morreale (CSIC-UAM), Madrid, Spain
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210, Kuopio, Finland
| | - Viktorija Maksimova
- Department of Applied Pharmacy, Division of Pharmacy, Faculty of Medical Sciences, Goce Delcev University, Stip, Krste Misirkov Str., No. 10-A, P.O. Box 201, 2000, Stip, Macedonia
| | | | - Liliya V Mihaylova
- Department of Plant Cell Biotechnology, Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria; Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, 139 Ruski Blvd., 4000, Plovdiv, Bulgaria
| | - Michel Edwar Mickael
- Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, 36A Postępu, Jastrzębiec, 05-552, Poland
| | - Irina Milisav
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloska 4, 1000, Ljubljana, Slovenia; Laboratory of oxidative stress research, Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000, Ljubljana, Slovenia
| | - Biljana Miova
- Department of Experimental Physiology and Biochemistry, Institute of Biology, Faculty of Natural Sciences and Mathematics, University "St Cyril and Methodius", Skopje, Macedonia
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Marlene Santos
- REQUIMTE/LAQV, Escola Superior de Saúde (E2S), Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 400, 4200-072, Porto, Portugal; Molecular Oncology & Viral Pathology, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology, 4200-072, Porto, Portugal
| | - Miguel C Seabra
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, 10 000, Zagreb, Croatia
| | - Sandra Tenreiro
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Ioannis P Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Marques ES, Severance EG, Arsenault P, Zahn SM, Timme-Laragy AR. Activation of Nrf2 at Critical Windows of Development Alters Tissue-Specific Protein S-Glutathionylation in the Zebrafish ( Danio rerio) Embryo. Antioxidants (Basel) 2024; 13:1006. [PMID: 39199250 PMCID: PMC11352166 DOI: 10.3390/antiox13081006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Activation of Nrf2-the master regulator of antioxidative response-at different stages of embryonic development has been shown to result in changes in gene expression, but the tissue-specific and downstream effects of Nrf2 activation during development remain unclear. This work seeks to elucidate the tissue-specific Nrf2 cellular localization and the downstream changes in protein S-glutathionylation during critical windows of zebrafish (Danio rerio) development. Wild-type and mutant zebrafish embryos with a loss-of-function mutation in Nrf2a were treated with two canonical activators, sulforaphane (SFN; 40 µM) or tert-butylhydroquinone (tBHQ; 1 µM), for 6 h at either pharyngula, hatching, or the protruding-mouth stage. Nrf2a protein and S-glutathionylation were visualized in situ using immunohistochemistry. At the hatching stage, Nrf2a protein levels were decreased with SFN, but not tBHQ, exposure. Exposure to both activators, however, decreased downstream S-glutathionylation. Stage- and tissue-specific differences in Nrf2a protein and S-glutathionylation were identified in the pancreatic islet and liver. Protein S-glutathionylation in Nrf2a mutant fish was increased in the liver by both activators, but not the islets, indicating a tissue-specific and Nrf2a-dependent dysregulation. This work demonstrates that critical windows of exposure and Nrf2a activity may influence redox homeostasis and highlights the importance of considering tissue-specific outcomes and sensitivity in developmental redox biology.
Collapse
Affiliation(s)
| | | | | | | | - Alicia R. Timme-Laragy
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA (E.G.S.)
| |
Collapse
|
3
|
Zhao F, Ding X, Liu Z, Yan X, Chen Y, Jiang Y, Chen S, Wang Y, Kang T, Xie C, He M, Zheng J. Application of CRISPR/Cas9-based genome editing in ecotoxicology. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122458. [PMID: 37633433 DOI: 10.1016/j.envpol.2023.122458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Chemicals are widely used and released into the environment, and their degradation, accumulation, migration, and transformation processes in the environment can pose a threat to the ecosystem. The advancement in analytical methods with high-throughput screening of biomolecules has revolutionized the way toxicologists used to explore the effects of chemicals on organisms. CRISPR/Cas is a newly developed tool, widely used in the exploration of basic science and biologically engineered products given its high efficiency and low cost. For example, it can edit target genes efficiently, and save loss of the crop yield caused by environmental pollution as well as gain a better understanding of the toxicity mechanisms from various chemicals. This review briefly introduces the development history of CRISPR/Cas and summarizes the current application of CRISPR/Cas in ecotoxicology, including its application on improving crop yield and drug resistance towards agricultural pollution, antibiotic pollution and other threats. The benefits by applying the CRISPR/Cas9 system in conventional toxicity mechanism studies are fully demonstrated here together with its foreseeable expansions in other area of ecotoxicology. Finally, the prospects and disadvantages of CRISPR/Cas system in the field of ecotoxicology are also discussed.
Collapse
Affiliation(s)
- Fang Zhao
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China; State Environmental Protection Key laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Environmental Protection, Guangzhou, China; School of Public Health, Guizhou Medical University, Guizhou, China
| | - Xiaofan Ding
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Zimeng Liu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xiao Yan
- State Environmental Protection Key laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Environmental Protection, Guangzhou, China
| | - Yanzhen Chen
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Yaxin Jiang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Shunjie Chen
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yuanfang Wang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Tingting Kang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Chun Xie
- School of Public Health, Guizhou Medical University, Guizhou, China
| | - Mian He
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| | - Jing Zheng
- State Environmental Protection Key laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences. Ministry of Environmental Protection, Guangzhou, China
| |
Collapse
|
4
|
Xu Y, Peng T, Zhou Q, Zhu J, Liao G, Zou F, Meng X. Evaluation of the oxidative toxicity induced by lead, manganese, and cadmium using genetically modified nrf2a-mutant zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2023; 266:109550. [PMID: 36717045 DOI: 10.1016/j.cbpc.2023.109550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/03/2023] [Accepted: 01/15/2023] [Indexed: 01/30/2023]
Abstract
Heavy metal pollution has become a serious environmental concern and a threat to public health. Three of the most common heavy metals are cadmium (Cd), lead (Pb), and manganese (Mn). Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important transcription factor activated in the response to oxidative stress. In this study, mutant zebrafish with an nrf2a deletion of 7 bp were constructed by the CRISPR/Cas9 system to investigate the oxidative toxicity of these three heavy metals. The results of general toxicity tests showed that Pb exposure did not cause significant damage to mutant zebrafish compared with wild-type (WT) zebrafish. However, high Mn exposure increased mortality and malformation rates in mutant zebrafish. Of concern, Cd exposure caused significant toxic damage, including increased mortality and malformation rates, apoptosis of brain neurons, and severe locomotor behavior aberration in mutant zebrafish. The results of qRT-PCR indicated that Cd exposure could induce the activation of genes related to oxidative stress resistance in WT zebrafish, while the expression of these genes was inhibited in mutant zebrafish. This study showed that of the three heavy metals, Cd had the strongest oxidative toxicity, Mn had medium toxicity, and Pb had the weakest toxicity.
Collapse
Affiliation(s)
- Yongjie Xu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Tao Peng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Qin Zhou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiawei Zhu
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Gengze Liao
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Moossavi M, Lu X, Herrmann J, Xu X. Molecular mechanisms of anthracycline induced cardiotoxicity: Zebrafish come into play. Front Cardiovasc Med 2023; 10:1080299. [PMID: 36970353 PMCID: PMC10036604 DOI: 10.3389/fcvm.2023.1080299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Anthracyclines are among the most potent chemotherapeutics; however, cardiotoxicity significantly restricts their use. Indeed, anthracycline-induced cardiotoxicity (AIC) fares among the worst types of cardiomyopathy, and may only slowly and partially respond to standard heart failure therapies including β-blockers and ACE inhibitors. No therapy specifically designed to treat anthracycline cardiomyopathy at present, and neither is it known if any such strategy could be developed. To address this gap and to elucidate the molecular basis of AIC with a therapeutic goal in mind, zebrafish has been introduced as an in vivo vertebrate model about a decade ago. Here, we first review our current understanding of the basic molecular and biochemical mechanisms of AIC, and then the contribution of zebrafish to the AIC field. We summarize the generation of embryonic zebrafish AIC models (eAIC) and their use for chemical screening and assessment of genetic modifiers, and then the generation of adult zebrafish AIC models (aAIC) and their use for discovering genetic modifiers via forward mutagenesis screening, deciphering spatial-temporal-specific mechanisms of modifier genes, and prioritizing therapeutic compounds via chemical genetic tools. Several therapeutic target genes and related therapies have emerged, including a retinoic acid (RA)-based therapy for the early phase of AIC and an autophagy-based therapy that, for the first time, is able to reverse cardiac dysfunction in the late phase of AIC. We conclude that zebrafish is becoming an important in vivo model that would accelerate both mechanistic studies and therapeutic development of AIC.
Collapse
Affiliation(s)
- Maryam Moossavi
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Xiaoguang Lu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Joerg Herrmann
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- Correspondence: Xiaolei Xu
| |
Collapse
|
6
|
Chowdhury S, Saikia SK. Use of Zebrafish as a Model Organism to Study Oxidative Stress: A Review. Zebrafish 2022; 19:165-176. [PMID: 36049069 DOI: 10.1089/zeb.2021.0083] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
Dioxygen is an integral part of every living organism, but its concentration varies from organ to organ. Production of metabolites from dioxygen may result in oxidative stress. Since oxidative stress has the potential to damage various biomolecules in the cell, therefore, it has presently become an active field of research. Oxidative stress has been studied in a wide range of model organisms from vertebrates to invertebrates, from rodents to piscine organisms, and from in vivo to in vitro models. But zebrafish (adults, larvae, or embryonic stage) emerged out to be the most promising vertebrate model organism to study oxidative stress because of its vast advantages (transparent embryo, cost-effectiveness, similarity to human genome, easy developmental processes, numerous offspring per spawning, and many more). This is evidenced by voluminous number of researches on oxidative stress in zebrafish exposed to chemicals, radiations, nanoparticles, pesticides, heavy metals, etc. On these backgrounds, this review attempts to highlight the potentiality of zebrafish as model of oxidative stress compared with other companion models. Several areas, from biomedical to environmental research, have been covered to explain it as a more convenient and reliable animal model for experimental research on oxidative mechanisms.
Collapse
Affiliation(s)
- Sabarna Chowdhury
- Aquatic Ecology and Fish Biology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal, India
| | - Surjya Kumar Saikia
- Aquatic Ecology and Fish Biology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal, India
| |
Collapse
|
7
|
Higuchi A, Wakai E, Tada T, Koiwa J, Adachi Y, Shiromizu T, Goto H, Tanaka T, Nishimura Y. Generation of a Transgenic Zebrafish Line for In Vivo Assessment of Hepatic Apoptosis. Pharmaceuticals (Basel) 2021; 14:ph14111117. [PMID: 34832899 PMCID: PMC8618266 DOI: 10.3390/ph14111117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 01/09/2023] Open
Abstract
Hepatic apoptosis is involved in a variety of pathophysiologic conditions in the liver, including hepatitis, steatosis, and drug-induced liver injury. The development of easy-to-perform and reliable in vivo assays would thus greatly enhance the efforts to understand liver diseases and identify associated genes and potential drugs. In this study, we developed a transgenic zebrafish line that was suitable for the assessment of caspase 3 activity in the liver by using in vivo fluorescence imaging. The larvae of transgenic zebrafish dominantly expressed Casper3GR in the liver under control of the promoter of the phosphoenolpyruvate carboxykinase 1 gene. Casper3GR is composed of two fluorescent proteins, tagGFP and tagRFP, which are connected via a peptide linker that can be cleaved by activated caspase 3. Under tagGFP excitation conditions in zebrafish that were exposed to the well-characterized hepatotoxicant isoniazid, we detected increased and decreased fluorescence associated with tagGFP and tagRFP, respectively. This result suggests that isoniazid activates caspase 3 in the zebrafish liver, which digests the linker between tagGFP and tagRFP, resulting in a reduction in the Förster resonance energy transfer to tagRFP upon tagGFP excitation. We also detected isoniazid-induced inhibition of caspase 3 activity in zebrafish that were treated with the hepatoprotectants ursodeoxycholic acid and obeticholic acid. The transgenic zebrafish that were developed in this study could be a powerful tool for identifying both hepatotoxic and hepatoprotective drugs, as well as for analyzing the effects of the genes of interest to hepatic apoptosis.
Collapse
Affiliation(s)
- Aina Higuchi
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (A.H.); (E.W.); (J.K.); (Y.A.); (T.S.)
| | - Eri Wakai
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (A.H.); (E.W.); (J.K.); (Y.A.); (T.S.)
| | - Tomoko Tada
- Ise Red Cross Hospital, Ise 516-8512, Mie, Japan;
| | - Junko Koiwa
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (A.H.); (E.W.); (J.K.); (Y.A.); (T.S.)
| | - Yuka Adachi
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (A.H.); (E.W.); (J.K.); (Y.A.); (T.S.)
| | - Takashi Shiromizu
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (A.H.); (E.W.); (J.K.); (Y.A.); (T.S.)
| | - Hidemasa Goto
- Department of Histology and Cell Biology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan;
| | - Toshio Tanaka
- Department of Systems Pharmacology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan;
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (A.H.); (E.W.); (J.K.); (Y.A.); (T.S.)
- Correspondence:
| |
Collapse
|
8
|
Miyawaki I. Application of zebrafish to safety evaluation in drug discovery. J Toxicol Pathol 2020; 33:197-210. [PMID: 33239838 PMCID: PMC7677624 DOI: 10.1293/tox.2020-0021] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Traditionally, safety evaluation at the early stage of drug discovery research has been done using in silico, in vitro, and in vivo systems in this order because of limitations on the amount of compounds available and the throughput ability of the assay systems. While these in vitro assays are very effective tools for detecting particular tissue-specific toxicity phenotypes, it is difficult to detect toxicity based on complex mechanisms involving multiple organs and tissues. Therefore, the development of novel high throughput in vivo evaluation systems has been expected for a long time. The zebrafish (Danio rerio) is a vertebrate with many attractive characteristics for use in drug discovery, such as a small size, transparency, gene and protein similarity with mammals (80% or more), and ease of genetic modification to establish human disease models. Actually, in recent years, the zebrafish has attracted interest as a novel experimental animal. In this article, the author summarized the features of zebrafish that make it a suitable laboratory animal, and introduced and discussed the applications of zebrafish to preclinical toxicity testing, including evaluations of teratogenicity, hepatotoxicity, and nephrotoxicity based on morphological findings, evaluation of cardiotoxicity using functional endpoints, and assessment of seizure and drug abuse liability.
Collapse
Affiliation(s)
- Izuru Miyawaki
- Preclinical Research Laboratories, Sumitomo Dainippon Pharma
Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| |
Collapse
|
9
|
Zhang J, Yang Z, Zhang S, Xie Z, Han S, Wang L, Zhang B, Sun S. Investigation of endogenous malondialdehyde through fluorescent probe MDA-6 during oxidative stress. Anal Chim Acta 2020; 1116:9-15. [DOI: 10.1016/j.aca.2020.04.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/02/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
|
10
|
Silvestre F. Signaling pathways of oxidative stress in aquatic organisms exposed to xenobiotics. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:436-448. [DOI: 10.1002/jez.2356] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Frédéric Silvestre
- Institute of Life, Earth, and Environment (ILEE)University of Namur Bruxelles Namur Belgium
| |
Collapse
|
11
|
Mills MG, Ramsden R, Ma EY, Corrales J, Kristofco LA, Steele WB, Saari GN, Melnikov F, Kostal J, Kavanagh TJ, Zimmerman JB, Voutchkova-Kostal AM, Brooks BW, Coish P, Anastas PT, Gallagher E. CRISPR-Generated Nrf2a Loss- and Gain-of-Function Mutants Facilitate Mechanistic Analysis of Chemical Oxidative Stress-Mediated Toxicity in Zebrafish. Chem Res Toxicol 2020; 33:426-435. [PMID: 31858786 PMCID: PMC7749997 DOI: 10.1021/acs.chemrestox.9b00346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The transcription factor Nrf2a induces a cellular antioxidant response and provides protection against chemical-induced oxidative stress, as well as playing a critical role in development and disease. Zebrafish are a powerful model to study the role of Nrf2a in these processes but have been limited by reliance on transient gene knockdown techniques or mutants with only partial functional alteration. We developed several lines of zebrafish carrying different null (loss of function, LOF) or hyperactive (gain of function, GOF) mutations to facilitate our understanding of the Nrf2a pathway in protecting against oxidative stress. The mutants confirmed Nrf2a dependence for induction of the antioxidant genes gclc, gstp, prdx1, and gpx1a and identified a role for Nrf2a in the baseline expression of these genes, as well as for sod1. Specifically, the 4-fold induction of gstp by tert-butyl hydroperoxide (tBHP) in wild type fish was abolished in LOF mutants. In addition, baseline gstp expression in GOF mutants increased by 12.6-fold and in LOF mutants was 0.8-fold relative to wild type. Nrf2a LOF mutants showed increased sensitivity to the acute toxicity of cumene hydroperoxide (CHP) and tBHP throughout the first 4 days of development. Conversely, GOF mutants were less sensitive to CHP toxicity during the first 4 days of development and were protected against the toxicity of both hydroperoxides after 4 dpf. Neither gain nor loss of Nrf2a modulated the toxicity of R-(-)-carvone (CAR), despite the ability of this compound to potently induce Nrf2a-dependent antioxidant genes. Similar to other species, GOF zebrafish mutants exhibited significant growth and survival defects. In summary, these new genetic tools can be used to facilitate the identification of downstream gene targets of Nrf2a, better define the role of Nrf2a in the toxicity of environmental chemicals, and further the study of diseases involving altered Nrf2a function.
Collapse
Affiliation(s)
- Margaret G. Mills
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way NE, Seattle, Washington 98105, United States
| | - Richard Ramsden
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way NE, Seattle, Washington 98105, United States
| | - Eva Y. Ma
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way NE, Seattle, Washington 98105, United States
| | - Jone Corrales
- Department of Environmental Sciences, Baylor University, Baylor Sciences Building, One Bear Place #97266, Waco Texas 76798, United States
| | - Lauren A. Kristofco
- Department of Environmental Sciences, Baylor University, Baylor Sciences Building, One Bear Place #97266, Waco Texas 76798, United States
| | - W. Baylor Steele
- Department of Environmental Sciences, Baylor University, Baylor Sciences Building, One Bear Place #97266, Waco Texas 76798, United States
| | - Gavin N. Saari
- Department of Environmental Sciences, Baylor University, Baylor Sciences Building, One Bear Place #97266, Waco Texas 76798, United States
| | - Fjodor Melnikov
- School of Forestry and Environmental Science, Yale University, 195 Prospect St., New Haven, Connecticut 06511, United States
| | - Jakub Kostal
- Department of Chemistry, The George Washington University, Science & Engineering Hall, Suite 4000, 800 22nd St NW, Washington, DC 20052, United States
| | - Terrance J. Kavanagh
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way NE, Seattle, Washington 98105, United States
| | - Julie B. Zimmerman
- School of Forestry and Environmental Science, Yale University, 195 Prospect St., New Haven, Connecticut 06511, United States
- Department of Chemical and Environmental Engineering, Yale University, PO Box 208292, New Haven, Connecticut 06520, United States
| | - Adelina M. Voutchkova-Kostal
- Department of Chemistry, The George Washington University, Science & Engineering Hall, Suite 4000, 800 22nd St NW, Washington, DC 20052, United States
| | - Bryan W. Brooks
- Department of Environmental Sciences, Baylor University, Baylor Sciences Building, One Bear Place #97266, Waco Texas 76798, United States
| | - Philip Coish
- School of Forestry and Environmental Science, Yale University, 195 Prospect St., New Haven, Connecticut 06511, United States
| | - Paul T. Anastas
- School of Forestry and Environmental Science, Yale University, 195 Prospect St., New Haven, Connecticut 06511, United States
- School of Public Health, Yale University, PO Box 208034, New Haven, Connecticut 06520, United States
| | - Evan Gallagher
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way NE, Seattle, Washington 98105, United States
| |
Collapse
|