1
|
Dallas ML, Bell D. Advances in ion channel high throughput screening: where are we in 2023? Expert Opin Drug Discov 2024; 19:331-337. [PMID: 38108110 DOI: 10.1080/17460441.2023.2294948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION Automated Patch Clamp (APC) technology has become an integral element in ion channel research, drug discovery and development pipelines to overcome the use of the highly time-consuming manual patch clamp (MPC) procedures. This automated technology offers increased throughput and promises a new model in obtaining ion channel recordings, which has significant relevance to the development of novel therapies and safety profiling of candidate therapeutic compounds. AREAS COVERED This article reviews the recent innovations in APC technology, including platforms, and highlights how they have facilitated usage in both industry and academia. The review also provides an overview of the ion channel research endeavors and how APC platforms have contributed to the understanding of ion channel research, pharmacological tools and therapeutics. Furthermore, the authors provide their opinion on the challenges and goals for APC technology going forward to accelerate academic research and drug discovery across a host of therapeutic areas. EXPERT OPINION It is clear that APC technology has progressed drug discovery programs, specifically in the field of neuroscience and cardiovascular research. The challenge for the future is to keep pace with fundamental research and improve translation of the large datasets obtained.
Collapse
Affiliation(s)
- Mark L Dallas
- Reading School of Pharmacy, University of Reading, Reading, UK
| | | |
Collapse
|
2
|
Ma JG, Vandenberg JI, Ng CA. Development of automated patch clamp assays to overcome the burden of variants of uncertain significance in inheritable arrhythmia syndromes. Front Physiol 2023; 14:1294741. [PMID: 38089476 PMCID: PMC10712320 DOI: 10.3389/fphys.2023.1294741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/13/2023] [Indexed: 10/16/2024] Open
Abstract
Advances in next-generation sequencing have been exceptionally valuable for identifying variants in medically actionable genes. However, for most missense variants there is insufficient evidence to permit definitive classification of variants as benign or pathogenic. To overcome the deluge of Variants of Uncertain Significance, there is an urgent need for high throughput functional assays to assist with the classification of variants. Advances in parallel planar patch clamp technologies has enabled the development of automated high throughput platforms capable of increasing throughput 10- to 100-fold compared to manual patch clamp methods. Automated patch clamp electrophysiology is poised to revolutionize the field of functional genomics for inheritable cardiac ion channelopathies. In this review, we outline i) the evolution of patch clamping, ii) the development of high-throughput automated patch clamp assays to assess cardiac ion channel variants, iii) clinical application of these assays and iv) where the field is heading.
Collapse
Affiliation(s)
- Joanne G. Ma
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Jamie I. Vandenberg
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Chai-Ann Ng
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
3
|
Boulos I, Jabbour J, Khoury S, Mikhael N, Tishkova V, Candoni N, Ghadieh HE, Veesler S, Bassim Y, Azar S, Harb F. Exploring the World of Membrane Proteins: Techniques and Methods for Understanding Structure, Function, and Dynamics. Molecules 2023; 28:7176. [PMID: 37894653 PMCID: PMC10608922 DOI: 10.3390/molecules28207176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/13/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
In eukaryotic cells, membrane proteins play a crucial role. They fall into three categories: intrinsic proteins, extrinsic proteins, and proteins that are essential to the human genome (30% of which is devoted to encoding them). Hydrophobic interactions inside the membrane serve to stabilize integral proteins, which span the lipid bilayer. This review investigates a number of computational and experimental methods used to study membrane proteins. It encompasses a variety of technologies, including electrophoresis, X-ray crystallography, cryogenic electron microscopy (cryo-EM), nuclear magnetic resonance spectroscopy (NMR), biophysical methods, computational methods, and artificial intelligence. The link between structure and function of membrane proteins has been better understood thanks to these approaches, which also hold great promise for future study in the field. The significance of fusing artificial intelligence with experimental data to improve our comprehension of membrane protein biology is also covered in this paper. This effort aims to shed light on the complexity of membrane protein biology by investigating a variety of experimental and computational methods. Overall, the goal of this review is to emphasize how crucial it is to understand the functions of membrane proteins in eukaryotic cells. It gives a general review of the numerous methods used to look into these crucial elements and highlights the demand for multidisciplinary approaches to advance our understanding.
Collapse
Affiliation(s)
- Imad Boulos
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Joy Jabbour
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Serena Khoury
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Nehme Mikhael
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Victoria Tishkova
- CNRS, CINaM (Centre Interdisciplinaire de Nanosciences de Marseille), Campus de Luminy, Case 913, Aix-Marseille University, CEDEX 09, F-13288 Marseille, France; (V.T.); (N.C.); (S.V.)
| | - Nadine Candoni
- CNRS, CINaM (Centre Interdisciplinaire de Nanosciences de Marseille), Campus de Luminy, Case 913, Aix-Marseille University, CEDEX 09, F-13288 Marseille, France; (V.T.); (N.C.); (S.V.)
| | - Hilda E. Ghadieh
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Stéphane Veesler
- CNRS, CINaM (Centre Interdisciplinaire de Nanosciences de Marseille), Campus de Luminy, Case 913, Aix-Marseille University, CEDEX 09, F-13288 Marseille, France; (V.T.); (N.C.); (S.V.)
| | - Youssef Bassim
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Sami Azar
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| | - Frédéric Harb
- Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli P.O. Box 100, Lebanon; (I.B.); (J.J.); (S.K.); (N.M.); (H.E.G.); (Y.B.); (S.A.)
| |
Collapse
|
4
|
ActionPytential: An open source tool for analyzing and visualizing cardiac action potential data. Heliyon 2023; 9:e14440. [PMID: 36967904 PMCID: PMC10031321 DOI: 10.1016/j.heliyon.2023.e14440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023] Open
Abstract
The action potential forms the basis of cardiac pacemaking, conduction, and contraction. Action potentials can be recorded from numerous preparation types, including ventricular or atrial trabecules, Purkinje fibers, isolated cardiac myocytes. Numerous techniques are also available as well, such as the conventional microelectrode and the single-cell current clamp techniques, optical mapping, or in silico modeling. With such a vast array of electrophysiological methods comes an array of available hardware and software solutions. In this work, we present a software with an intuitive graphical user interface, ActionPytential, that enables the analysis of any type of cardiac action potential, regardless of acquisition method or tissue type. In most available software tools, the analysis of continuous (gap-free) recordings often requires manual user interaction to segment the individual action potentials. We provide an automated solution for this, both for slow-response and for externally paced action potentials. As of now, ActionPytential calculates 34 parameters from each action potential. The most often utilized ones, including amplitude, maximal rate of depolarization, and action potential duration values, were validated on 1200 action potentials from human, dog, rabbit, guinea pig, and rat cardiac preparations. We also provide new parameters that were previously only measurable manually, including the position and the depth of the notch in potentials showing a spike-and-dome morphology. Further notable features include a Butterworth-type low-pass filter, the averaging of multiple potentials, automated corrections for baseline drifting, aided manual analysis, high-quality plots, and batch processing for any number of potentials. ActionPytential is available for all major platforms (Windows, MacOS, GNU + Linux, BSD).
Collapse
|
5
|
Watt ED, Lee T, Feng SL, Kilfoil P, Ackley D, Keefer C, Wisialowski T, Jenkinson S. Use of high throughput ion channel profiling and statistical modeling to predict off-target arrhythmia risk - One pharma's experience and perspective. J Pharmacol Toxicol Methods 2022; 118:107213. [PMID: 36084863 DOI: 10.1016/j.vascn.2022.107213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/18/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION The use of high throughput patch clamp profiling to determine mixed ion channel-mediated arrhythmia risk was assessed using profiling data generated using proprietary internal and clinical reference compounds. We define the reproducibility of the platform and highlight inherent platform issues. The data generated was used to develop predictive models for cardiac arrhythmia risk, specifically Torsades de Pointes (TdP). METHODS A retrospective analysis was performed using profiling data generated over a 3-year period, including patch clamp data from hERG, Cav1.2, and Nav1.5 (peak/late), together with hERG binding. RESULTS Assay reproducibility was robust over the 3-year period examined. High throughput hERG patch IC50 values correlated well with GLP-hERG data (Pearson = 0.87). A disconnect between hERG binding and patch was observed for ∼10% compounds and trended with passive cellular permeability. hERG and Cav1.2 potency did not correlate for proprietary compounds, with more potent hERG compounds showing selectivity versus Cav1.2. For clinical compounds where hERG and Cav1.2 activity was more balanced, an analysis of TdP risk versus hERG/Cav1.2 ratio demonstrated low TdP probability when the hERG/Cav1.2 potency ratios were < 1. Modeling of clinical compound data revealed a lack of impact of the Nav1.5 (late) current in predicting TdP. Moreover, models using hERG binding data (ROC AUC = 0.876) showed an improved ability to predict TdP risk versus hERG patch clamp (ROC AUC = 0.787). DISCUSSION The data highlight the value of high throughput patch clamp data in the prediction of TdP risk, as well as some potential limitations with this approach.
Collapse
Affiliation(s)
- Eric D Watt
- Worldwide Research, Development and Medical, Pfizer Inc., Groton, CT 06340, USA
| | - Tiffany Lee
- Worldwide Research, Development and Medical, Pfizer Inc., San Diego, CA 92121, USA
| | - Shuyun Lily Feng
- Worldwide Research, Development and Medical, Pfizer Inc., San Diego, CA 92121, USA
| | - Peter Kilfoil
- Worldwide Research, Development and Medical, Pfizer Inc., San Diego, CA 92121, USA
| | - David Ackley
- Worldwide Research, Development and Medical, Pfizer Inc., Groton, CT 06340, USA
| | - Christopher Keefer
- Worldwide Research, Development and Medical, Pfizer Inc., Groton, CT 06340, USA
| | - Todd Wisialowski
- Worldwide Research, Development and Medical, Pfizer Inc., Groton, CT 06340, USA
| | - Stephen Jenkinson
- Worldwide Research, Development and Medical, Pfizer Inc., San Diego, CA 92121, USA.
| |
Collapse
|
6
|
Rosholm KR, Badone B, Karatsiompani S, Nagy D, Seibertz F, Voigt N, Bell DC. Adventures and Advances in Time Travel With Induced Pluripotent Stem Cells and Automated Patch Clamp. Front Mol Neurosci 2022; 15:898717. [PMID: 35813069 PMCID: PMC9258620 DOI: 10.3389/fnmol.2022.898717] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/13/2022] [Indexed: 01/21/2023] Open
Abstract
In the Hollywood blockbuster “The Curious Case of Benjamin Button” a fantastical fable unfolds of a man’s life that travels through time reversing the aging process; as the tale progresses, the frail old man becomes a vigorous, vivacious young man, then man becomes boy and boy becomes baby. The reality of cellular time travel, however, is far more wondrous: we now have the ability to both reverse and then forward time on mature cells. Four proteins were found to rewind the molecular clock of adult cells back to their embryonic, “blank canvas” pluripotent stem cell state, allowing these pluripotent stem cells to then be differentiated to fast forward their molecular clocks to the desired adult specialist cell types. These four proteins – the “Yamanaka factors” – form critical elements of this cellular time travel, which deservedly won Shinya Yamanaka the Nobel Prize for his lab’s work discovering them. Human induced pluripotent stem cells (hiPSCs) hold much promise in our understanding of physiology and medicine. They encapsulate the signaling pathways of the desired cell types, such as cardiomyocytes or neurons, and thus act as model cells for defining the critical ion channel activity in healthy and disease states. Since hiPSCs can be derived from any patient, highly specific, personalized (or stratified) physiology, and/or pathophysiology can be defined, leading to exciting developments in personalized medicines and interventions. As such, hiPSC married with high throughput automated patch clamp (APC) ion channel recording platforms provide a foundation for significant physiological, medical and drug discovery advances. This review aims to summarize the current state of affairs of hiPSC and APC: the background and recent advances made; and the pros, cons and challenges of these technologies. Whilst the authors have yet to finalize a fully functional time traveling machine, they will endeavor to provide plausible future projections on where hiPSC and APC are likely to carry us. One future projection the authors are confident in making is the increasing necessity and adoption of these technologies in the discovery of the next blockbuster, this time a life-enhancing ion channel drug, not a fantastical movie.
Collapse
Affiliation(s)
- Kadla R. Rosholm
- Sophion Bioscience A/S, Ballerup, Denmark
- *Correspondence: Kadla R. Rosholm,
| | | | | | - David Nagy
- Sophion Bioscience Inc., Woburn, MA, United States
| | - Fitzwilliam Seibertz
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Göttingen, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | | |
Collapse
|