1
|
Charbonneau T, Lowder L, Mauldin G, McKinney B, Mount R, Schick A. Total protein concentration and stability of Amb a 1 in glycerinated ragweed sublingual immunotherapy stored at room temperature and refrigerated cold temperature. Vet Dermatol 2025; 36:4-13. [PMID: 39469764 DOI: 10.1111/vde.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/17/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND Few studies have investigated optimal storage conditions or expiration dates for sublingual immunotherapy (SLIT) formulations prepared from glycerinated allergen extracts. HYPOTHESIS/OBJECTIVES The objective of this study was to compare concentrations of short ragweed major allergen (Amb a 1) and total protein in SLIT formulations stored at two different temperatures. It was hypothesised that protein concentrations would show greater decline over time in a formulation stored at room temperature (RT) than in one stored under refrigeration. MATERIALS AND METHODS Two SLIT samples containing equal volumes of 20,000 PNU Amb a 1 extract were prepared and stored at refrigerated cold (CT) (2-8°C) or RT (20-24°C) for 140 days. Changes in total protein and major allergen concentration and composition were measured by Bradford assay, two-site enzyme-linked immunosorbent assay and SDS-PAGE. Presence of Amb a 1 was confirmed with Western immunoblot. Data were analysed using an analysis of covariance, with p < 0.05 considered significant. RESULTS SDS-PAGE showed compositional changes in a ~26-30 kDa protein band under RT and not CT storage. The Amb a 1 concentration of the RT SLIT sample declined significantly over time, compared to that of the CT SLIT sample (F(1,8) = 47.69, p < 0.0001). There was no significant difference in total protein concentration over time between groups (F(1,8) = 1.79, p = 0.22). CONCLUSIONS AND CLINICAL RELEVANCE These results demonstrate that storage of glycerinated SLIT formulations in refrigerated CT preserved the highest concentration of the specific allergen Amb a 1, suggesting that SLIT formulations containing short ragweed should be stored under refrigeration.
Collapse
Affiliation(s)
| | - Levi Lowder
- Stallergenes Greer, Lenoir, North Carolina, USA
| | | | | | - Rebecca Mount
- Dermatology for Animals, Albuquerque, New Mexico, USA
| | | |
Collapse
|
2
|
Hensel P, Saridomichelakis M, Eisenschenk M, Tamamoto-Mochizuki C, Pucheu-Haston C, Santoro D. Update on the role of genetic factors, environmental factors and allergens in canine atopic dermatitis. Vet Dermatol 2024; 35:15-24. [PMID: 37840229 DOI: 10.1111/vde.13210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 07/14/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Canine atopic dermatitis (cAD) is a common, complex and multifactorial disease involving, among others, genetic predisposition, environmental factors and allergic sensitisation. OBJECTIVE This review summarises the current evidence on the role of genetic and environmental factors and allergic sensitisation in the pathogenesis of cAD since the last review by ICADA in 2015. MATERIALS AND METHODS Online citation databases and proceedings from international meetings on genetic factors, environmental factors and allergens relevant to cAD that had been published between 2015 and 2022 were reviewed. RESULTS Despite intensive research efforts, the detailed genetic background predisposing to cAD and the effect of a wide range of environmental factors still need more clarification. Genome-wide association studies and investigations on genetic biomarkers, such as microRNAs, have provided some new information. Environmental factors appear to play a major role. Lifestyle, especially during puppyhood, appears to have an important impact on the developing immune system. Factors such as growing up in a rural environment, large size of family, contact with other animals, and a nonprocessed meat-based diet may reduce the risk for subsequent development of cAD. It appears that Toxocara canis infection may have a protective effect against Dermatophagoides farinae-induced cAD. House dust mites (D. farinae and D. pteronyssinus) remain the most common allergen group to which atopic dogs react. Currently, the major allergens related to D. farinae in dogs include Der f 2, Der f 15, Der f 18 and Zen 1. CONCLUSIONS AND CLINICAL RELEVANCE Canine atopic dermatitis remains a complex, genetically heterogeneous disease that is influenced by multiple environmental factors. Further, well-designed studies are necessary to shed more light on the role of genetics, environmental factors and major allergens in the pathogenesis of cAD.
Collapse
Affiliation(s)
| | | | | | - Chie Tamamoto-Mochizuki
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Cherie Pucheu-Haston
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Domenico Santoro
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
3
|
Enterocytes in Food Hypersensitivity Reactions. Animals (Basel) 2021; 11:ani11092713. [PMID: 34573679 PMCID: PMC8466009 DOI: 10.3390/ani11092713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Hypersensitivity to food, affecting both animals and humans, is increasing. Until a decade ago, it was thought that enterocytes, the most abundant constituent of the intestinal surface mucosa layer, served only to absorb digested food and prevent foreign and non-digested substances from passing below the intestinal layer. Growing evidence supports the involvement of enterocytes in immunological responses. Here, we present a comprehensive review of the new roles of enterocytes in food hypersensitivity conducted in animal models in order to better understand complicated immune pathological conditions. In addition, resources for further work in this area are suggested, along with a literature overview of the specific roles of enterocytes in maintaining oral tolerance. Lastly, it will be beneficial to investigate the various animal models involved in food hypersensitivity to reach the needed momentum necessary for the complete and profound understanding of the mechanisms of the ever-growing number of food allergies in animal and human populations. Abstract Food hypersensitivity reactions are adverse reactions to harmless dietary substances, whose causes are hidden within derangements of the complex immune machinery of humans and mammals. Until recently, enterocytes were considered as solely absorptive cells providing a physical barrier for unwanted lumen constituents. This review focuses on the enterocytes, which are the hub for innate and adaptive immune reactions. Furthermore, the ambiguous nature of enterocytes is also reflected in the fact that enterocytes can be considered as antigen-presenting cells since they constitutively express major histocompatibility complex (MHC) class II molecules. Taken together, it becomes clear that enterocytes have an immense role in maintaining oral tolerance to foreign antigens. In general, the immune system and its mechanisms underlying food hypersensitivity are still unknown and the involvement of components belonging to other anatomical systems, such as enterocytes, in these mechanisms make their elucidation even more difficult. The findings from studies with animal models provide us with valuable information about allergic mechanisms in the animal world, while on the other hand, these models are used to extrapolate results to the pathological conditions occurring in humans. There is a constant need for studies that deal with this topic and can overcome the glitches related to ethics in working with animals.
Collapse
|
4
|
Smiljanic K, Prodic I, Apostolovic D, Cvetkovic A, Veljovic D, Mutic J, van Hage M, Burazer L, Cirkovic Velickovic T. In-depth quantitative profiling of post-translational modifications of Timothy grass pollen allergome in relation to environmental oxidative stress. ENVIRONMENT INTERNATIONAL 2019; 126:644-658. [PMID: 30856452 DOI: 10.1016/j.envint.2019.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/02/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
An association between pollution (e.g., from traffic emissions) and the increased prevalence of respiratory allergies has been observed. Field-realistic exposure studies provide the most relevant assessment of the effects of the intensity and diversity of urban and industrial contamination on pollen structure and allergenicity. The significance of in-depth post-translational modification (PTM) studies of pollen proteomes, when compared with studies on other aspects of pollution and altered pollen allergenicity, has not yet been determined; hence, little progress has been made within this field. We undertook a comprehensive comparative analysis of multiple polluted and environmentally preserved Phleum pratense (Timothy grass) pollen samples using scanning electron microscopy, in-depth PTM profiling, determination of organic and inorganic pollutants, analysis of the release of sub-pollen particles and phenols/proteins, and analysis of proteome expression using high resolution tandem mass spectrometry. In addition, we used quantitative enzyme-linked immunosorbent assays (ELISA) and immunoglobulin E (IgE) immunoblotting. An increased phenolic content and release of sub-pollen particles was found in pollen samples from the polluted area, including a significantly higher content of mercury, cadmium, and manganese, with irregular long spines on pollen grain surface structures. Antioxidative defense-related enzymes were significantly upregulated and seven oxidative PTMs were significantly increased (methionine, histidine, lysine, and proline oxidation; tyrosine glycosylation, lysine 4-hydroxy-2-nonenal adduct, and lysine carbamylation) in pollen exposed to the chemical plant and road traffic pollution sources. Oxidative modifications affected several Timothy pollen allergens; Phl p 6, in particular, exhibited several different oxidative modifications. The expression of Phl p 6, 12, and 13 allergens were downregulated in polluted pollen, and IgE binding to pollen extract was substantially lower in the 18 patients studied, as measured by quantitative ELISA. Quantitative, unrestricted, and detailed PTM searches using an enrichment-free approach pointed to modification of Timothy pollen allergens and suggested that heavy metals are primarily responsible for oxidative stress effects observed in pollen proteins.
Collapse
Affiliation(s)
- Katarina Smiljanic
- University of Belgrade-Faculty of Chemistry, Centre of Excellence for Molecular Food Sciences and Department of Biochemistry, Belgrade, Serbia.
| | - Ivana Prodic
- Innovation Center Ltd, University of Belgrade-Faculty of Chemistry, Belgrade, Serbia
| | | | - Anka Cvetkovic
- Institute of Public Health of Belgrade, Belgrade, Serbia
| | - Djordje Veljovic
- University of Belgrade-Faculty of Technology and Metallurgy, Belgrade, Serbia
| | - Jelena Mutic
- University of Belgrade-Faculty of Chemistry, Centre of Excellence for Molecular Food Sciences and Department of Biochemistry, Belgrade, Serbia; Ghent University Global Campus, Incheon, South Korea
| | - Marianne van Hage
- Karolinska Institute, Department of Medicine, Solna, Stockholm, Sweden
| | - Lidija Burazer
- Institute of Immunology, Virology and Sera Production, Torlak Institut, Belgrade, Serbia
| | - Tanja Cirkovic Velickovic
- University of Belgrade-Faculty of Chemistry, Centre of Excellence for Molecular Food Sciences and Department of Biochemistry, Belgrade, Serbia; Ghent University Global Campus, Incheon, South Korea; Ghent University, Faculty of Bioscience Engineering, Ghent, Belgium; Serbian Academy of Sciences and Arts, Belgrade, Serbia.
| |
Collapse
|
5
|
Kiss T, Szabó A, Oszlánczi G, Lukács A, Tímár Z, Tiszlavicz L, Csupor D. Repeated-dose toxicity of common ragweed on rats. PLoS One 2017; 12:e0176818. [PMID: 28472131 PMCID: PMC5417505 DOI: 10.1371/journal.pone.0176818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 03/13/2017] [Indexed: 12/19/2022] Open
Abstract
Ambrosia artemisiifolia L. is an invasive species with highly allergenic pollens. Ragweed originates from North America, but it also occurs and is spreading in Europe, causing seasonal allergic rhinitis for millions of people. Recently, the herb of A. artemisiifolia has gained popularity as medicinal plant and food. The effects of its long-term intake are unknown; there are no toxicological data to support the safe use of this plant. The aim of our study was to assess the repeated dose toxicity of A. artemisiifolia on animals. Ragweed puree was administered in low dose (500 mg/kg b. w.) and high dose (1000 mg/kg b. w.) to male Wistar rats according to 407 OECD Guidelines for the Testing of Chemicals. Clinical symptoms, various blood chemical parameters, body weight and organ weights of the rats were measured. Reduced liver function enzymes (AST, ALT), reduced triglyceride level in the low dose and increased carbamide level in the high dose group were observed. The weight of the liver relative to body weight was significantly reduced in both groups, while the brain weight relative to body weight was significantly elevated in both groups. According to our results, the repeated use of ragweed resulted in toxic effects in rats and these results question the safety of long-term human consumption of common ragweed.
Collapse
Affiliation(s)
- Tivadar Kiss
- University of Szeged, Faculty of Pharmacy, Department of Pharmacognosy, Szeged, Hungary
- University of Szeged, Interdisciplinary Centre for Natural Products, Szeged, Hungary
| | - Andrea Szabó
- University of Szeged, Interdisciplinary Centre for Natural Products, Szeged, Hungary
- University of Szeged, Faculty of Medicine, Department of Public Health, Szeged, Hungary
| | - Gábor Oszlánczi
- University of Szeged, Faculty of Medicine, Department of Public Health, Szeged, Hungary
| | - Anita Lukács
- University of Szeged, Faculty of Medicine, Department of Public Health, Szeged, Hungary
| | | | - László Tiszlavicz
- University of Szeged, Faculty of Medicine, Department of Pathology, Szeged, Hungary
| | - Dezső Csupor
- University of Szeged, Faculty of Pharmacy, Department of Pharmacognosy, Szeged, Hungary
- University of Szeged, Interdisciplinary Centre for Natural Products, Szeged, Hungary
| |
Collapse
|
6
|
Allergy to grass pollen: mapping of Dactylis glomerata and Phleum pratense allergens for dogs by two-dimensional immunoblotting. Postepy Dermatol Alergol 2017; 34:60-69. [PMID: 28261033 PMCID: PMC5329108 DOI: 10.5114/ada.2017.65623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/25/2015] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Much less is known about grass-pollen allergens to dogs, when compared with humans. Genetic-based patterns might play an important role in sensitization profiles, conditioning the success of allergen-specific immunotherapy. AIM Mapping of Dactylis glomerata (D. glomerata) and Phleum pratense (P. pratense) allergens for grass pollen-sensitized atopic dogs, for better understanding how individual allergograms may influence the response to grass-pollen immunotherapy. MATERIAL AND METHODS To identify D. glomerata and P. pratense allergoms for dogs, 15 individuals allergic to grass pollen and sensitized to D. glomerata and P. pratense were selected. D. glomerata and P. pratense proteomes were separated by isoelectric focusing (IEF), one-dimensional (1-D) and two-dimensional (2-D) sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Separated proteins were blotted onto Polyvinylidene difluoride (PVDF) membranes and allergens were identified by patient sera IgE in Western Blotting (WB). RESULTS In D. glomerata, 17 allergens were identified from IEF and 11 from 1-D SDS-PAGE, while from P. pratense, 18 and 6 allergens were identified, respectively. From 2-D SDS-PAGE 13 spots were identified from D. glomerata and 27 from P. pratense. CONCLUSIONS Several similarities were found between dog and human D. glomerata and P. pratense sensitization profiles but no relationship between clinical signs and a specific pattern of allergen recognition was observed. Similarities were found in each patient pattern of sensitization between D. glomerata and P. pratense, also suggesting cross-reactive phenomena. Further molecular epidemiology approach is needed to understand the role of the sensitization pattern in allergen-specific immunotherapy effectiveness in grass-pollen allergic dogs.
Collapse
|
7
|
Smiljanic K, Apostolovic D, Trifunovic S, Ognjenovic J, Perusko M, Mihajlovic L, Burazer L, van Hage M, Cirkovic Velickovic T. Subpollen particles are rich carriers of major short ragweed allergens and NADH dehydrogenases: quantitative proteomic and allergomic study. Clin Exp Allergy 2017; 47:815-828. [DOI: 10.1111/cea.12874] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 01/01/2023]
Affiliation(s)
- K. Smiljanic
- Faculty of Chemistry; Centre of Excellence for Molecular Food Sciences; University of Belgrade; Belgrade Serbia
| | - D. Apostolovic
- Immunology and Allergy Unit; Department of Medicine Solna; Karolinska Institute and University Hospital; Stockholm Sweden
| | - S. Trifunovic
- Faculty of Chemistry; Centre of Excellence for Molecular Food Sciences; University of Belgrade; Belgrade Serbia
| | - J. Ognjenovic
- Faculty of Chemistry; Centre of Excellence for Molecular Food Sciences; University of Belgrade; Belgrade Serbia
- Department of Biochemistry and Molecular Genetics; University of Illinois at Chicago; Chicago IL USA
| | - M. Perusko
- Faculty of Chemistry; Centre of Excellence for Molecular Food Sciences; University of Belgrade; Belgrade Serbia
| | - L. Mihajlovic
- Faculty of Chemistry; Centre of Excellence for Molecular Food Sciences; University of Belgrade; Belgrade Serbia
| | - L. Burazer
- Institute of Immunology, Virology and Sera Production; Torlak Belgrade Serbia
| | - M. van Hage
- Immunology and Allergy Unit; Department of Medicine Solna; Karolinska Institute and University Hospital; Stockholm Sweden
| | - T. Cirkovic Velickovic
- Faculty of Chemistry; Centre of Excellence for Molecular Food Sciences; University of Belgrade; Belgrade Serbia
- Ghent University Global Campus; Incheon South Korea
- Faculty of Bioscience Engineering; Ghent University; Ghent Belgium
| |
Collapse
|
8
|
|
9
|
Affolter VK. Dermatopathology - the link between ancillary techniques and clinical lesions. Vet Dermatol 2016; 28:134-e28. [DOI: 10.1111/vde.12345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Verena K. Affolter
- Department of Pathology, Microbiology, Immunology; School of Veterinary Medicine; University California Davis; One Shields Avenue, VM3A, Room 4206 Davis CA 95616 USA
| |
Collapse
|
10
|
House-dust mite allergy: mapping of Dermatophagoides pteronyssinus allergens for dogs by two-dimensional immunoblotting. Postepy Dermatol Alergol 2015; 32:73-81. [PMID: 26015775 PMCID: PMC4436239 DOI: 10.5114/pdia.2015.48067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 10/05/2014] [Accepted: 11/12/2014] [Indexed: 11/17/2022] Open
Abstract
Introduction Specific immunotherapy has shown to be very useful for allergy control in dogs, with a common success rate ranging from 65% to 70%. However, this efficacy could probably be improved and the identification of individual allergomes, with the choice of more adequate molecular allergen pools for specific immunotherapy, being the strategy. Aim To map Dermatophagoides pteronyssinus (Der p) allergens for mite-sensitized atopic dogs, for better understanding how individual allergograms may influence the response to house-dust mite immunotherapy. Material and methods To identify the Der p mite allergome for dogs, 20 individuals allergic to dust-mites and sensitized to Der p, were selected. The extract from Der p was submitted to isoelectric focusing (IEF), one-dimensional (1-D) and two-dimensional (2-D) sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Separated proteins were blotted onto polyvinylidene difluoride (PVDF) membranes and immunoblottings were performed with patient sera. Allergen-bound specific IgE was detected. Results Eleven allergens were identified from isoelectric focusing (IEF), as well as from 1-D SDS PAGE. From 2-D SDS-PAGE, 24 spots were identified. Conclusions Several similarities were found between dog and human allergograms and no absolute correlation between sensitization and allergy was observed either. As in humans, different individual allergograms do not seem to implicate different clinical patterns, but may influence the response to specific immunotherapy. The molecular epidemiology approach in veterinary allergy management, by the characterization of individual patients’ allergoms and by choosing the best molecular allergen pool for each patient could also improve the efficacy of allergy immunotherapy.
Collapse
|