1
|
Liyanage KLDTD, Vaz PK, Jabbar A, Hufschmid J. Towards a pan marsupial sero-immunological tool in the demanding field of wildlife serology: Marsupial immunoglobulin-binding capability with protein A/G, protein L and anti-kangaroo antibody. PLoS One 2023; 18:e0295820. [PMID: 38096165 PMCID: PMC10721001 DOI: 10.1371/journal.pone.0295820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
Detection of infections in wildlife species is increasingly important to reduce the risk of spreading zoonotic and economically important parasites, understand disease epidemiology and promote the conservation of wildlife species. Serological tests are key in disease diagnosis and surveillance by detecting immunoglobulins against infectious agents. However, the need for species-specific reagents has limited the application of serological tests in wildlife species. This study evaluated the serum immunoglobulin-binding capability of polyclonal anti-kangaroo antibody and two non-species-specific reagents, including protein A/G and protein L, with the largest range of Australian marsupial species so far, including 32 species representing three major marsupial orders. Immunoglobulin-binding capability was assessed using immunoblotting, enzyme-linked immunosorbent assay and Western blot techniques. Variation in immunoglobulin-binding capability was observed between the three reagents and across the species tested, both across but also within taxonomic groups. Taxonomic distance was thus not always a good predictor of immunoglobulin-binding affinity, emphasizing the need to validate these reagents for each species separately. However, all three reagents bound with the serum immunoglobulins of most marsupial species tested. The findings of this study provide a valuable reference for species differences in affinity to protein A/G, protein L and anti-kangaroo antibody, assisting in the selection of appropriate reagents and the development of sero-immunological assays in Australian marsupials.
Collapse
Affiliation(s)
- K. L. D. Tharaka D. Liyanage
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Paola K. Vaz
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Abdul Jabbar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Werribee, Victoria, Australia
| | - Jasmin Hufschmid
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Werribee, Victoria, Australia
| |
Collapse
|
2
|
Silver LW, Cheng Y, Quigley BL, Robbins A, Timms P, Hogg CJ, Belov K. A targeted approach to investigating immune genes of an iconic Australian marsupial. Mol Ecol 2022; 31:3286-3303. [PMID: 35510793 PMCID: PMC9325493 DOI: 10.1111/mec.16493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 03/02/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022]
Abstract
Disease is a contributing factor to the decline of wildlife populations across the globe. Koalas, iconic yet declining Australian marsupials, are predominantly impacted by two pathogens, Chlamydia and koala retrovirus. Chlamydia is an obligate intracellular bacterium and one of the most widespread sexually transmitted infections in humans worldwide. In koalas, Chlamydia infections can present as asymptomatic or can cause a range of ocular and urogenital disease signs, such as conjunctivitis, cystitis and infertility. In this study, we looked at differences in response to Chlamydia in two northern populations of koalas using a targeted gene sequencing of 1209 immune genes in addition to genome‐wide reduced representation data. We identified two MHC Class I genes associated with Chlamydia disease progression as well as 25 single nucleotide polymorphisms across 17 genes that were associated with resolution of Chlamydia infection. These genes are involved in the innate immune response (TLR5) and defence (TLR5, IFNγ, SERPINE1, STAT2 and STX4). This study deepens our understanding of the role that genetics plays in disease progression in koalas and leads into future work that will use whole genome resequencing of a larger sample set to investigate in greater detail regions identified in this study. Elucidation of the role of host genetics in disease progression and resolution in koalas will directly contribute to better design of Chlamydia vaccines and management of koala populations which have recently been listed as “endangered.”
Collapse
Affiliation(s)
- Luke W Silver
- School of Life and Environmental Sciences, The University of Sydney, New South Wales, 2006, Australia
| | - Yuanyuan Cheng
- School of Life and Environmental Sciences, The University of Sydney, New South Wales, 2006, Australia
| | - Bonnie L Quigley
- Genecology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, 4556, Australia.,Provectus Algae Pty Ltd, 5 Bartlett Road, Noosaville, Queensland, 4566, Australia
| | - Amy Robbins
- Genecology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, 4556, Australia.,Endeavour Veterinary Ecology Pty Ltd, 1695 Pumicestone Road, Toorbul, Queensland, 4510, Australia
| | - Peter Timms
- Genecology Research Centre, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, 4556, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, New South Wales, 2006, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, New South Wales, 2006, Australia
| |
Collapse
|
3
|
Schraven AL, Hansen VL, Morrissey KA, Stannard HJ, Ong OT, Douek DC, Miller RD, Old JM. Developmental and comparative immunology single-cell transcriptome analysis of the B-cell repertoire reveals the usage of immunoglobulins in the gray short-tailed opossum (Monodelphis domestica). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104141. [PMID: 34038789 DOI: 10.1016/j.dci.2021.104141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
B-cells are key to humoral immunity, are found in multiple lymphoid organs, and have the unique ability to mediate the production of antigen-specific antibodies in the presence of pathogens. The marsupial immunoglobulin (Ig) heavy (H) chain locus encodes four constant region isotypes, IgA, IgG, IgM and IgE, but no IgD, and there are two light (L) chain isotypes, lambda (Igλ) and kappa (Igκ). To gain an understanding of the marsupial humoral immune system, B-cell transcriptomes generated by single-cell RNA sequencing from gray short-tailed opossum (Monodelphis domestica) splenocytes, and peripheral blood mononuclear cells were analysed. The cells used were from a single unimmunized animal and the majority of B-cells were transcribing IgM heavy chains. The ratio of Ig light chain use was roughly 2:1, Igλ:Igκ in this individual. This was not predicted due to Igκ being the more complex of the two L chain loci. The variable (V) gene segment pairs used in individual B-cells confirm greater diversity provided by the L chain V. This study is the first to report on using single cell analysis to investigate Ig repertoires in a marsupial and confirms a number of prior hypothesis, as well as revealing some surprises.
Collapse
Affiliation(s)
- Andrea L Schraven
- School of Science and Health, Hawkesbury Campus, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Victoria L Hansen
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico Albuquerque, New Mexico, USA
| | - Kimberly A Morrissey
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico Albuquerque, New Mexico, USA
| | - Hayley J Stannard
- Charles Sturt University, School of Animal and Veterinary Sciences, Wagga Wagga, NSW, 2678, Australia
| | - Oselyne Tw Ong
- Children's Medical Research Institute, Westmead, NSW, 2145, Australia
| | - Daniel C Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robert D Miller
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico Albuquerque, New Mexico, USA
| | - Julie M Old
- School of Science and Health, Hawkesbury Campus, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
4
|
Schraven AL, Stannard HJ, Ong OTW, Old JM. Immunogenetics of marsupial B-cells. Mol Immunol 2019; 117:1-11. [PMID: 31726269 DOI: 10.1016/j.molimm.2019.10.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/17/2019] [Accepted: 10/30/2019] [Indexed: 11/19/2022]
Abstract
Marsupials and eutherians are mammals that differ in their physiological traits, predominately their reproductive and developmental strategies; eutherians give birth to well-developed young, while marsupials are born highly altricial after a much shorter gestation. These developmental traits also result in differences in the development of the immune system of eutherian and marsupial species. In eutherians, B-cells are the key to humoral immunity as they are found in multiple lymphoid organs and have the unique ability to mediate the production of antigen-specific antibodies in the presence of extracellular pathogens. The development of B-cells in marsupials has been reported and hypothesised to be similar to that of eutherians, except that haematopoiesis occurs in the liver, postpartum, until the bone marrow fully matures. In eutherians, specific genes are linked to specific stages in B-cell development, maturation, and differentiation processes, and have been identified including immunoglobulins (heavy and light chains), cluster of differentiation markers (CD10, 19, 34 and CD79α/β), signal transduction molecules (BTK, Lyn and Syk) and transcriptional regulators (EBF1, E2A, and Pax5). This review aims to discuss the known similarities and differences between marsupial and eutherian B-cells, in regards to their genetic presence, homology, and developmental stages, as well as to highlight the areas requiring further investigation. By enhancing our understanding of the genes that are involved with B-cells in the marsupial lineage, it will, in turn, aid our understanding of the marsupial immune system and support the development of specific immunological reagents for research and wildlife conservation purposes.
Collapse
Affiliation(s)
- Andrea L Schraven
- School of Science and Health, Hawkesbury Campus, Western Sydney University, Locked bag 1797, Penrith, NSW 2751, Australia
| | - Hayley J Stannard
- Charles Sturt University, School of Animal and Veterinary Sciences, Wagga Wagga, NSW 2678, Australia
| | - Oselyne T W Ong
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Julie M Old
- School of Science and Health, Hawkesbury Campus, Western Sydney University, Locked bag 1797, Penrith, NSW 2751, Australia.
| |
Collapse
|
5
|
Russell T, Madsen T, Thomas F, Raven N, Hamede R, Ujvari B. Oncogenesis as a Selective Force: Adaptive Evolution in the Face of a Transmissible Cancer. Bioessays 2018; 40. [DOI: 10.1002/bies.201700146] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 01/04/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Tracey Russell
- School of Life and Environmental Sciences The University of SydneySydneyNSW2006Australia
| | - Thomas Madsen
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin UniversityWaurn PondsVictoria3218Australia
| | - Frédéric Thomas
- CREEC/MIVEGEC, UMR IRD/CNRS/UM 5290911 Avenue Agropolis, BP 6450134394 Montpellier Cedex 5France
| | - Nynke Raven
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin UniversityWaurn PondsVictoria3218Australia
| | - Rodrigo Hamede
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin UniversityWaurn PondsVictoria3218Australia
- School of Natural Sciences University of TasmaniaPrivate Bag 55HobartTasmania7001Australia
| | - Beata Ujvari
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin UniversityWaurn PondsVictoria3218Australia
- School of Natural Sciences University of TasmaniaPrivate Bag 55HobartTasmania7001Australia
| |
Collapse
|
6
|
Bastianello G, Arakawa H. A double-strand break can trigger immunoglobulin gene conversion. Nucleic Acids Res 2016; 45:231-243. [PMID: 27701075 PMCID: PMC5224512 DOI: 10.1093/nar/gkw887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 12/23/2022] Open
Abstract
All three B cell-specific activities of the immunoglobulin (Ig) gene re-modeling system—gene conversion, somatic hypermutation and class switch recombination—require activation-induced deaminase (AID). AID-induced DNA lesions must be further processed and dissected into different DNA recombination pathways. In order to characterize potential intermediates for Ig gene conversion, we inserted an I-SceI recognition site into the complementarity determining region 1 (CDR1) of the Ig light chain locus of the AID knockout DT40 cell line, and conditionally expressed I-SceI endonuclease. Here, we show that a double-strand break (DSB) in CDR1 is sufficient to trigger Ig gene conversion in the absence of AID. The pattern and pseudogene usage of DSB-induced gene conversion were comparable to those of AID-induced gene conversion; surprisingly, sometimes a single DSB induced multiple gene conversion events. These constitute direct evidence that a DSB in the V region can be an intermediate for gene conversion. The fate of the DNA lesion downstream of a DSB had more flexibility than that of AID, suggesting two alternative models: (i) DSBs during the physiological gene conversion are in the minority compared to single-strand breaks (SSBs), which are frequently generated following DNA deamination, or (ii) the physiological gene conversion is mediated by a tightly regulated DSB that is locally protected from non-homologous end joining (NHEJ) or other non-homologous DNA recombination machineries.
Collapse
Affiliation(s)
- Giulia Bastianello
- IFOM - FIRC Institute of Molecular Oncology Foundation, Via Adamello 16, 20139 Milan, Italy.,Università degli Studi di Milano, Dipartimento di Bioscienze, Via Celoria 26, 20133 Milan, Italy
| | - Hiroshi Arakawa
- IFOM - FIRC Institute of Molecular Oncology Foundation, Via Adamello 16, 20139 Milan, Italy
| |
Collapse
|
7
|
Immunoglubolin dynamics and cancer prevalence in Tasmanian devils (Sarcophilus harrisii). Sci Rep 2016; 6:25093. [PMID: 27126067 PMCID: PMC4850387 DOI: 10.1038/srep25093] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 04/11/2016] [Indexed: 11/19/2022] Open
Abstract
Immunoglobulins such as IgG and IgM have been shown to induce anti-tumour cytotoxic activity. In the present study we therefore explore total serum IgG and IgM expression dynamics in 23 known-aged Tasmanian devils (Sarcophilus harrisii) of which 9 where affected by Devil Facial Tumour Disease (DFTD). DFTD is clonally transmissible cancer that has caused massive declines in devil numbers. Our analyses revealed that IgM and IgG expression levels as well as IgM/IgG ratios decreased with increasing devil age. Neither age, sex, IgM nor IgG expression levels affected devil DFTD status in our analyses. However, devils with increased IgM relative to IgG expression levels had significantly lower DFTD prevalence. Our results therefore suggest that IgM/IgG ratios may play an important role in determining devil susceptibility to DFTD. We consequently propose that our findings warrant further studies to elucidate the underpinning(s) of devil IgM/IgG ratios and DFTD status.
Collapse
|