1
|
Gautier T, Olivieiro N, Ferron S, Le Pogam P, David-Le Gall S, Sauvager A, Leroyer P, Cannie I, Dion S, Sweidan A, Loréal O, Tomasi S, Bousarghin L. Bacteroides fragilis derived metabolites, identified by molecular networking, decrease Salmonella virulence in mice model. Front Microbiol 2022; 13:1023315. [DOI: 10.3389/fmicb.2022.1023315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022] Open
Abstract
In the gut microbiota, resident bacteria prevent pathogens infection by producing specific metabolites. Among bacteria belonging to phylum Bacteroidota, we have previously shown that Bacteroides fragilis or its cell-free supernatant inhibited in vitro Salmonella Heidelberg translocation. In the present study, we have analyzed this supernatant to identify bioactive molecules after extraction and subsequent fractionation using a semi-preparative reversed-phase Liquid Chromatography High-Resolution Tandem Mass Spectrometry (LC-HRMS/MS). The results indicated that only two fractions (F3 and F4) strongly inhibited S. Heidelberg translocation in a model mimicking the intestinal epithelium. The efficiency of the bioactive fractions was evaluated in BALB/c mice, and the results showed a decrease of S. Heidelberg in Peyer’s patches and spleen, associated with a decrease in inflammatory cytokines and neutrophils infiltration. The reduction of the genus Alistipes in mice receiving the fractions could be related to the anti-inflammatory effects of bioactive fractions. Furthermore, these bioactive fractions did not alter the gut microbiota diversity in mice. To further characterize the compounds present in these bioactive fractions, Liquid Chromatography High-Resolution Tandem Mass Spectrometry (LC-HRMS/MS) data were analyzed through molecular networking, highlighting cholic acid (CA) and deoxycholic acid. In vitro, CA had inhibitory activity against the translocation of S. Heidelberg by significantly decreasing the expression of Salmonella virulence genes such as sipA. The bioactive fractions also significantly downregulated the flagellar gene fliC, suggesting the involvement of other active molecules. This study showed the interest to characterize better the metabolites produced by B. fragilis to make them means of fighting pathogenic bacteria by targeting their virulence factor without modifying the gut microbiota.
Collapse
|
2
|
Accounting for the Biological Complexity of Pathogenic Fungi in Phylogenetic Dating. J Fungi (Basel) 2021; 7:jof7080661. [PMID: 34436200 PMCID: PMC8400180 DOI: 10.3390/jof7080661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
In the study of pathogen evolution, temporal dating of phylogenies provides information on when species and lineages may have diverged in the past. When combined with spatial and epidemiological data in phylodynamic models, these dated phylogenies can also help infer where and when outbreaks occurred, how pathogens may have spread to new geographic locations and/or niches, and how virulence or drug resistance has developed over time. Although widely applied to viruses and, increasingly, to bacterial pathogen outbreaks, phylogenetic dating is yet to be widely used in the study of pathogenic fungi. Fungi are complex organisms with several biological processes that could present issues with appropriate inference of phylogenies, clock rates, and divergence times, including high levels of recombination and slower mutation rates although with potentially high levels of mutation rate variation. Here, we discuss some of the key methodological challenges in accurate phylogeny reconstruction for fungi in the context of the temporal analyses conducted to date and make recommendations for future dating studies to aid development of a best practices roadmap in light of the increasing threat of fungal outbreaks and antifungal drug resistance worldwide.
Collapse
|
3
|
Vernay T, Cannie I, Gaboriau F, Gall SDL, Tamanai-Shacoori Z, Burel A, Jolivet-Gougeon A, Loréal O, Bousarghin L. Bacteroides fragilis prevents Salmonella Heidelberg translocation in co-culture model mimicking intestinal epithelium. Benef Microbes 2020; 11:391-401. [PMID: 32720833 DOI: 10.3920/bm2020.0004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Salmonella Heidelberg is one of the most common serovar causing foodborne illnesses. To limit the development of digestive bacterial infection, food supplements containing probiotic bacteria can be proposed. Commensal non-toxigenic Bacteroides fragilis has recently been suggested as a next-generation probiotic candidate. By using an original triple co-culture model including Caco-2 cells (representing human enterocytes), HT29-MTX (representing mucus-secreting goblet cells), and M cells differentiated from Caco-2 by addition of Raji B lymphocytes, bacterial translocation was evaluated. The data showed that S. Heidelberg could translocate in the triple co-culture model with high efficiency, whereas for B. fragilis a weak translocation was obtained. When cells were exposed to both bacteria, S. Heidelberg translocation was inhibited. The cell-free supernatant of B. fragilis also inhibited S. Heidelberg translocation without impacting epithelial barrier integrity. This supernatant did not affect the growth of S. Heidelberg. The non-toxigenic B. fragilis confers health benefits to the host by reducting bacterial translocation. These results suggested that the multicellular model provides an efficient in vitro model to evaluate the translocation of pathogens and to screen for probiotics that have a potential inhibitory effect on this translocation.
Collapse
Affiliation(s)
- T Vernay
- INSERM, Univ Rennes, INRAE, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), UMR-1241, Biosit, MRic/ISFR, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - I Cannie
- INSERM, Univ Rennes, INRAE, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), UMR-1241, Biosit, MRic/ISFR, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - F Gaboriau
- INSERM, Univ Rennes, INRAE, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), UMR-1241, Biosit, MRic/ISFR, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - S David-Le Gall
- INSERM, Univ Rennes, INRAE, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), UMR-1241, Biosit, MRic/ISFR, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - Z Tamanai-Shacoori
- INSERM, Univ Rennes, INRAE, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), UMR-1241, Biosit, MRic/ISFR, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - A Burel
- Plateforme microscopie électronique MRic/ISFR Biosit/campus Santé, Rennes 1, 2 Avenue du Professeur Léon Bernard, 35000 Rennes, France
| | - A Jolivet-Gougeon
- INSERM, Univ Rennes, INRAE, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), UMR-1241, Biosit, MRic/ISFR, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - O Loréal
- INSERM, Univ Rennes, INRAE, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), UMR-1241, Biosit, MRic/ISFR, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - L Bousarghin
- INSERM, Univ Rennes, INRAE, CHU Rennes, Nutrition Metabolisms and Cancer (NuMeCan), UMR-1241, Biosit, MRic/ISFR, 2 rue Henri Le Guilloux, 35033 Rennes, France
| |
Collapse
|
4
|
Deihim B, Hassanzadeh M, Shafiei-Jandaghi NZ, Amanlou M, Douraghi M. Characterization of the DNA mismatch repair proteins MutS and MutL in a hypermutator Acinetobacter baumannii. Microb Pathog 2017; 113:74-84. [PMID: 28988868 DOI: 10.1016/j.micpath.2017.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 10/04/2017] [Indexed: 10/18/2022]
Abstract
Mutations of mutS and mutL genes have been linked with the emergence of hypermutator (HPM) phenotype in several bacteria. Nevertheless, there is scarce evidence that these mutations occurred in HPM Acinetobacter baumannii, therefore, it remains unknown whether the mutations located in domains mediating the functions of MutS and MutL. To address this information gap, the nucleotide sequences of mutS and mutL were characterized and their mutations were identified. Additionally, we proposed in silico models of mutated proteins and analyzed the secondary and tertiary structures, and the interaction interfaces of MutL and MutS. The HPM A. baumannii and a wild-type strain were subjected to PCR amplification of full length mutS and mutL, cloning, and sequencing. Following several reads of both strands of each gene and sequence assembly, the mutations were identified. Thereafter, the three-dimensional (3-D) structure of A. baumannii ATCC 19606 was developed and utilized as a template for homology modeling of the mutated amino acid sequences using the Phyre2 and I-TASSER, VMD 1.9.3, LigPlus v.1.4.5, PyMOL v.0.99 software. Regardless of silent mutations (n = 43), 11 missense mutations were identified in the MutS domains of HPM strain such as A4T, T272S, D278N in N-terminus, connector, and core domains, respectively. Three mutations -I357T, A408S, N447S- and 16 silent mutations were observed in MutL. Secondary structure prediction of MutS revealed that the amount of alpha helices, beta sheets, and coils in HPM were 35, 29, and 63, respectively, while these values were 36, 28, and 63 for A. baumannii ATCC 19606 as non mutator. In the case of MutL, for both HPM and non-mutator, 20, 21, and 39 of complete protein were alpha helices, beta sheets, and coils, respectively. Superimposition of structures of MutS of HPM on non-mutator revealed that T272, D278, G457, S528, A533, Y715, and E747 are closely matched with S272, D278, A457, P528, V533, C715, and K747, respectively in non-mutator strain. When the structure of MutL model in HPM was superimposed on its counterpart in non-mutator, all but residues S447, S408, and T357 were identical. Many mutations along the mutS and mutL were noted, but most of the mutations were observed in the interaction interfaces of MutS and MutL. Other substitutions were predominantly detected in C-terminus of MutS that may lead to reduced ATP binding and hydrolysis. Three substitution mutations were adjacent to C-terminus of MutL and are raising the suggestion of reduction in MutL dimerization. It seems that a combination of these mutations is implicated in increased mutation frequency and accordingly emergence of HPM strain.
Collapse
Affiliation(s)
- Behnaz Deihim
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Malihe Hassanzadeh
- Department of Medicinal Chemistry and Drug Design and Development Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Massoud Amanlou
- Department of Medicinal Chemistry and Drug Design and Development Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Douraghi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Deiham B, Douraghi M, Adibhesami H, Yaseri M, Rahbar M. Screening of mutator phenotype in clinical strains of Acinetobacter baumannii. Microb Pathog 2017; 104:175-179. [PMID: 28111327 DOI: 10.1016/j.micpath.2017.01.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/12/2017] [Accepted: 01/18/2017] [Indexed: 11/30/2022]
Abstract
To our knowledge, no study has considered the growing colonies of A. baumannii in the inhibition zone of antibiotic disks as an indication of mutator. Here, we screened the mutator phenotype in a large series of clinical strains of A. baumannii. A collection of 300 strains were tested for antibiotic susceptibility and yielding colonies in the inhibition zone of antibiotic disks. The mutation frequency (MF) of strains was determined using rifampicin screen agar (300 μg/mL). Among strains tested, 180 had colonies in the inhibition zone of at least one or more than one (≤7) antibiotic. Sixty strains also generated mutant colonies on rifampicin screen agar with MF mean of 4.9 × 10-9. One strain was found with 59-fold (2.9 × 10-7) increase of MF than the mean value, only yielded colonies in the inhibition zone of imipenem, and classified as strong mutator or hypermutator. The MF ranged from 1 × 10-12 to 6.6 × 10-10 in remaining strains (n = 59), corresponded to non-mutator phenotype. There was a significant correlation between the number of colonies that grew in inhibition zone of amikacin disk and MF (P = 0.002). We showed that mutator phenotype emerged among clinical strains of A. baumannii as expected frequency in other bacterial species from non-chronic infections. This study revealed that wide screening of strains yielding colonies in the inhibition zone of antibiotics can be utilized to identify mutators. The mutant colonies need to be considered as a subpopulation of bacteria that may affect the interpretation of antibiotic susceptibility testing and consequently lead to treatment failure.
Collapse
Affiliation(s)
- Behnaz Deiham
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Douraghi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Habibeh Adibhesami
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Yaseri
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rahbar
- Department of Microbiology, Reference Health Laboratories, Ministry of Health, Tehran, Iran
| |
Collapse
|
6
|
Hypermutator Salmonella Heidelberg induces an early cell death in epithelial cells. Vet Microbiol 2015; 180:65-74. [PMID: 26320605 DOI: 10.1016/j.vetmic.2015.07.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 11/22/2022]
Abstract
We have previously described that a strain of Salmonella Heidelberg with a hypermutator phenotype, B182, adhered strongly to HeLa cells. In this work, we showed that this hypermutator Salmonella strain invaded HeLa epithelial cells and induced cytoskeleton alteration. Those changes lead to HeLa cell death which was characteristic of apoptosis. For the first time, we showed that this hypermutator strain induced apoptosis associated with the activation of caspases 2, 9 and 3. Complementation of B182 strain showed a decrease in cells death induction. In the presence of other Salmonella Heidelberg with a normomutator phenotype, such as WT and SL486, cell death and caspase 3 were undetectable. These results suggested that early apoptosis and caspase 3 activation were specific to B182. Besides, B182 induced LDH release and caspase 3 activation in CaCo-2 and HCT116 cells. Heat-treated B182 and diffusible products failed to induce this phenotype. Epithelial cells treatment with cytochalasin D caused the inhibition of B182 internalisation and caspase 3 activation. These results showed that this cell death required active S. Heidelberg B182 protein synthesis and bacterial internalisation. However sipB and sopB, usually involved in apoptosis induced by Salmonella were not overexpressed in B182, contrary to fimA and fliC. Comparative genome analysis showed numerous mutations as in rpoS which would be more investigated. The role of the hypermutator phenotype might be suspected to be implicated in these specific features. This result expands our knowledge about strong mutators frequently found in bacterial organisms isolated from clinical specimens.
Collapse
|
7
|
Wang Y, Liu C, Zhang Z, Hu Y, Cao C, Wang X, Xi M, Xia X, Yang B, Meng J. Distribution and Molecular Characterization of Salmonella enterica Hypermutators in Retail Food in China. J Food Prot 2015; 78:1481-7. [PMID: 26219361 DOI: 10.4315/0362-028x.jfp-14-462] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hypermutable pathogens can easily acquire mutation opportunities, as well as antimicrobial resistance, and are tremendous hazards to food safety and public health. In this study, a total of 96 (7.6%) hypermutators were identified from 1,264 Salmonella isolates recovered from retail foods. Pulsed-field gel electrophoresis analysis indicated that hypermutators were genetically diverse. Amino acid substitution of Val421Phe was detected in MutS in one hypermutator and Val246Ala in 56 other hypermutators, while no mutation in MutS was found among the remaining 39 hypermutators. Hypermutators in Salmonella isolates recovered in 2010 (9.3%) and 2008 (7.7%) were significantly more prevalent than those in 2007 (1.4%). The rate of hypermutators in mutton (22.2%) was significantly higher than that in chicken (7.9%) and pork (4.7%). In Salmonella Leimo isolates (60.0%), hypermutators were most frequently detected, followed by Salmonella Essen (50.0%), Salmonella Indiana (36.6%), Salmonella Kallo (25.0%), Salmonella Heidelberg (23.8%), Salmonella Typhimurium (14.0%), Salmonella Shubra (13.0%), Salmonella Albany (11.1%), Salmonella Agona (7.0%), Salmonella Gueuletapee (6.3%), and Salmonella Enteritidis (1.7%). Salmonella hypermutators in isolates recovered from retail food stored at ambient temperature (15.7%) were significantly more prevalent than those stored in chilled (3.1%) and frozen (5.4%) condition. The overall distributions of mutation frequencies of the 96 hypermutators (selected by rifampin) were from 2.16 × 10(-5) to 4.25 × 10(-1). Mutation frequencies of hypermutators of Salmonella Leimo, Salmonella Essen, Salmonella Kallo, and Salmonella Agona were relative low, while those of Salmonella Typhimurium, Salmonella Indiana, and Salmonella Shubra were extremely high. No significant correlation was found between mutation frequency and antimicrobial resistance of the hypermutators.
Collapse
Affiliation(s)
- Yin Wang
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, People's Republic of China, 712100
| | - Chongyang Liu
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, People's Republic of China, 712100
| | - Zengfeng Zhang
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, People's Republic of China, 712100
| | - Yuanyuan Hu
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, People's Republic of China, 712100; College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, People's Republic of China, 710062
| | - Chenyang Cao
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, People's Republic of China, 712100
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, People's Republic of China, 712100
| | - Meili Xi
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, People's Republic of China, 712100
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, People's Republic of China, 712100
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, People's Republic of China, 712100.
| | - Jianghong Meng
- College of Food Science and Engineering, Northwest A&F University, 28 Xinong Road, Yangling, Shaanxi, People's Republic of China, 712100
| |
Collapse
|
8
|
Dhanani AS, Block G, Dewar K, Forgetta V, Topp E, Beiko RG, Diarra MS. Genomic Comparison of Non-Typhoidal Salmonella enterica Serovars Typhimurium, Enteritidis, Heidelberg, Hadar and Kentucky Isolates from Broiler Chickens. PLoS One 2015; 10:e0128773. [PMID: 26083489 PMCID: PMC4470630 DOI: 10.1371/journal.pone.0128773] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/01/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Non-typhoidal Salmonella enterica serovars, associated with different foods including poultry products, are important causes of bacterial gastroenteritis worldwide. The colonization of the chicken gut by S. enterica could result in the contamination of the environment and food chain. The aim of this study was to compare the genomes of 25 S. enterica serovars isolated from broiler chicken farms to assess their intra- and inter-genetic variability, with a focus on virulence and antibiotic resistance characteristics. METHODOLOGY/PRINCIPAL FINDING The genomes of 25 S. enterica isolates covering five serovars (ten Typhimurium including three monophasic 4,[5],12:i:, four Enteritidis, three Hadar, four Heidelberg and four Kentucky) were sequenced. Most serovars were clustered in strongly supported phylogenetic clades, except for isolates of serovar Enteritidis that were scattered throughout the tree. Plasmids of varying sizes were detected in several isolates independently of serovars. Genes associated with the IncF plasmid and the IncI1 plasmid were identified in twelve and four isolates, respectively, while genes associated with the IncQ plasmid were found in one isolate. The presence of numerous genes associated with Salmonella pathogenicity islands (SPIs) was also confirmed. Components of the type III and IV secretion systems (T3SS and T4SS) varied in different isolates, which could explain in part, differences of their pathogenicity in humans and/or persistence in broilers. Conserved clusters of genes in the T3SS were detected that could be used in designing effective strategies (diagnostic, vaccination or treatments) to combat Salmonella. Antibiotic resistance genes (CMY, aadA, ampC, florR, sul1, sulI, tetAB, and srtA) and class I integrons were detected in resistant isolates while all isolates carried multidrug efflux pump systems regardless of their antibiotic susceptibility profile. CONCLUSIONS/SIGNIFICANCE This study showed that the predominant Salmonella serovars in broiler chickens harbor genes encoding adhesins, flagellar proteins, T3SS, iron acquisition systems, and antibiotic and metal resistance genes that may explain their pathogenicity, colonization ability and persistence in chicken. The existence of mobile genetic elements indicates that isolates from a given serovar could acquire and transfer genetic material. Conserved genes in the T3SS and T4SS that we have identified are promising candidates for identification of diagnostic, antimicrobial or vaccine targets for the control of Salmonella in broiler chickens.
Collapse
Affiliation(s)
- Akhilesh S. Dhanani
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Glenn Block
- Pacific Agri-Food Research Center, Agriculture and Agri-Food Canada (AAFC), Agassiz, British Columbia, V0M 1A0, Canada
| | - Ken Dewar
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, H3A 1A4, Canada
| | - Vincenzo Forgetta
- Lady Davis Institute for Medical Research, Montréal, Québec, H3T 1E2, Canada
| | - Edward Topp
- Southern Crop Protection and Food Research Centre, AAFC, London, Ontario, N5V 4T3, Canada
| | - Robert G. Beiko
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Moussa S. Diarra
- Pacific Agri-Food Research Center, Agriculture and Agri-Food Canada (AAFC), Agassiz, British Columbia, V0M 1A0, Canada
- * E-mail:
| |
Collapse
|
9
|
Le Bars H, Bonnaure-Mallet M, Barloy-Hubler F, Jolivet-Gougeon A, Bousarghin L. Strong mutator phenotype drives faster adaptation from growth on glucose to growth on acetate in Salmonella. MICROBIOLOGY-SGM 2014; 160:2264-2271. [PMID: 25031423 DOI: 10.1099/mic.0.079244-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The metabolic adaptation of strong mutator strains was studied to better understand the link between the strong mutator phenotype and virulence. Analysis of the growth curves of isogenic strains of Salmonella, which were previously grown in M63 glucose media, revealed that the exponential phase of growth was reached earlier in an M63 acetate medium with strong mutator strains (mutated in mutS or in mutL) than with normomutator strains (P<0.05). Complemented strains confirmed the direct role of the strong mutator phenotype in this faster metabolic adaptation to the assimilation of acetate. In a mixed cell population, proliferation of strong mutators over normomutators was observed when the carbon source was switched from glucose to acetate. These results add to the sparse body of knowledge about strong mutators and highlight the selective advantage conferred by the strong mutator phenotype to adapt to a switch of carbon source in the environment. This work may provide clinically useful information given that there is a high prevalence of strong mutators among pathogenic strains of Salmonella and that acetate is the principal short chain fatty acid of the human terminal ileum and colon where Salmonella infection is localized.
Collapse
Affiliation(s)
- Hervé Le Bars
- CHU, 2 rue Henri Le Guilloux, 35033 Rennes cedex 9, France.,Equipe Microbiologie, EA 1254, SFR BIOSIT, Université Européenne de Bretagne, Université de Rennes I, 2 Avenue du Professeur Léon Bernard, 35043 Rennes, France
| | - Martine Bonnaure-Mallet
- CHU, 2 rue Henri Le Guilloux, 35033 Rennes cedex 9, France.,Equipe Microbiologie, EA 1254, SFR BIOSIT, Université Européenne de Bretagne, Université de Rennes I, 2 Avenue du Professeur Léon Bernard, 35043 Rennes, France
| | - Frédérique Barloy-Hubler
- Amadeus Platform, SFR BIOSIT, Rennes, France.,CNRS UMR 6290, IGDR, Equipe Sp@rte, Université de Rennes 1, Campus de Beaulieu, Rennes, France
| | - Anne Jolivet-Gougeon
- CHU, 2 rue Henri Le Guilloux, 35033 Rennes cedex 9, France.,Equipe Microbiologie, EA 1254, SFR BIOSIT, Université Européenne de Bretagne, Université de Rennes I, 2 Avenue du Professeur Léon Bernard, 35043 Rennes, France
| | - Latifa Bousarghin
- Equipe Microbiologie, EA 1254, SFR BIOSIT, Université Européenne de Bretagne, Université de Rennes I, 2 Avenue du Professeur Léon Bernard, 35043 Rennes, France
| |
Collapse
|
10
|
Girish R, Kumar A, Khan S, Dinesh KR, Karim S. Revised Ciprofloxacin Breakpoints for Salmonella: Is it Time to Write an Obituary? J Clin Diagn Res 2013; 7:2467-9. [PMID: 24392374 DOI: 10.7860/jcdr/2013/7312.3581] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 10/18/2013] [Indexed: 11/24/2022]
Abstract
OBJECTIVES To determine the minimum inhibitory concentration of ciprofloxacin among 50 blood stream isolates of Salmonella enterica. MATERIAL AND METHODS A total of 50 consecutive isolates of Salmonella enterica were tested for susceptibility to antimicrobials using the Kirby Bauer disk diffusion method. Minimum inhibitory concentrations were determined using Hi-Comb strips. All results were interpreted according to the CLSI guidelines. RESULTS Of the 50 isolates 70%were Salmonella Typhi, 4% Salmonella paratyphi A, 2% Salmonella paratyphi B and the remaining 10% were identified only as Salmonella species. Using the CLSI 2011 breakpoints for disc diffusion, 86% (43/50) were resistant to nalidixic acid(NA), 22% (11/50) to ciprofloxacin, 12% to azithromycin, 6% to cotrimoxazole, 4% to ampicillin and 1% to chloramphenicol. The MIC50 and MIC90 of ciprofloxacin for S.Typhi were 0.181 μg/mL and 5.06 μg/mL respectively. While the same for S. paratyphi A was 0.212μg/mL and 0.228μg/mL respectively. None of the isolates were multi drug resistant and all were susceptible to ceftriaxone. Using the CLSI 2012 revised ciprofloxacin breakpoints for disc diffusion (>31mm) & MIC (<0.06 μg/mL), 90% (45/50) of these isolates were found to be resistant. CONCLUSION MIC's of ciprofloxacin should be reported for all salmonella isolates and should be used to guide treatment. Blindly following western guidelines for a disease which is highly endemic in the subcontinent will spell the death knell of a cheap and effective drug in our armamentarium. Therefore it will be too premature to declare that "the concept of using ciprofloxacin in typhoid fever is dead!"
Collapse
Affiliation(s)
- Revathy Girish
- MSc, Department of Microbiology, Amrita Institute of Medical Sciences , Ponekara, Kochi-682041, Kerala India
| | - Anil Kumar
- Clinical Associate Professor, Department of Microbiology, Amrita Institute of Medical Sciences , Ponekara, Kochi-682041, Kerala India
| | - Sadia Khan
- Clinical Assistant Professor, Department of Microbiology, Amrita Institute of Medical Sciences , Ponekara, Kochi-682041, Kerala, India
| | - Kavitha R Dinesh
- Clinical Professor, Department of Microbiology, Amrita Institute of Medical Sciences , Ponekara, Kochi-682041, Kerala India
| | - Shamsul Karim
- Professor & Head, Department of Microbiology, Amrita Institute of Medical Sciences , Ponekara, Kochi-682041, Kerala India
| |
Collapse
|
11
|
Kovacs B, Le Gall-David S, Vincent P, Le Bars H, Buffet-Bataillon S, Bonnaure-Mallet M, Jolivet-Gougeon A. Is biofilm formation related to the hypermutator phenotype in clinical Enterobacteriaceae isolates? FEMS Microbiol Lett 2013; 347:116-22. [PMID: 23909976 DOI: 10.1111/1574-6968.12229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/18/2013] [Accepted: 07/26/2013] [Indexed: 12/29/2022] Open
Abstract
In bacteria, complex adaptive processes are involved during transition from the planktonic to the biofilm mode of growth, and mutator strains are more prone to producing biofilms. Enterobacteriaceae species were isolated from urinary tract infections (UTIs; 222 strains) and from bloodstream infections (BSIs; 213 strains). Relationship between the hypermutable phenotype and biofilm forming capacity was investigated in these clinical strains. Mutation frequencies were estimated by monitoring the capacity of each strain to generate mutations that conferred rifampicin resistance on supplemented medium. Initiation of biofilm formation was assayed by determining the ability of the cells to adhere to a 96-well polystyrene microtitre plate. UTI Enterobacteriaceae strains showed significantly higher biofilm-forming capacity: 63.1% (54.0% for E. coli strains) vs. 42.3% for BSI strains (47.7% for E. coli). Strains isolated from UTIs did not present higher mutation frequencies than those from BSIs: contrary to what has been widely described for P. aeruginosa strains, isolated from pulmonary samples in patients suffering from cystic fibrosis, no relationship was found between the hypermutator phenotype in Enterobacteriaceae and the ability to initiate a biofilm.
Collapse
Affiliation(s)
- Bela Kovacs
- Department of Urology, Jahn Ferenc South-Pest Hospital, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
12
|
Wang S, Wang Y, Shen J, Wu Y, Wu C. Polymorphic mutation frequencies in clinical isolates of Staphylococcus aureus: the role of weak mutators in the development of fluoroquinolone resistance. FEMS Microbiol Lett 2013; 341:13-7. [PMID: 23330696 DOI: 10.1111/1574-6968.12085] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/08/2013] [Indexed: 11/28/2022] Open
Abstract
The polymorphic mutation frequencies for 154 Staphylococcus aureus isolates from Chinese bovine clinical mastitis cases were investigated. We found that nearly 29% of the isolates presented as weak mutators, while only two (1.3%) strong mutators were detected. Of the 15 weak mutators that exhibited ciprofloxacin resistance phenotypes, only one isolate was found to be mutS deficient. All of the ciprofloxacin-resistant isolates had the classic ciprofloxacin resistance mutations at codon 80 within the ParC subunit of topoisomerase IV and codon 84/88 within the GyrA subunit of DNA gyrase. The proportion of ciprofloxacin-resistant isolates among the weak mutators (34.1%) was significantly higher than that found in the normomutators (11.4%) and hypomutators (0%) (P < 0.001, Fisher's exact test), suggesting a positive correlation between weak mutators and ciprofloxacin resistance.
Collapse
Affiliation(s)
- Shaochen Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | | | | | | | | |
Collapse
|
13
|
Martinez-Argudo I, Veenendaal AKJ, Liu X, Roehrich AD, Ronessen MC, Franzoni G, van Rietschoten KN, Morimoto YV, Saijo-Hamano Y, Avison MB, Studholme DJ, Namba K, Minamino T, Blocker AJ. Isolation of Salmonella mutants resistant to the inhibitory effect of Salicylidene acylhydrazides on flagella-mediated motility. PLoS One 2013; 8:e52179. [PMID: 23300965 PMCID: PMC3534715 DOI: 10.1371/journal.pone.0052179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 11/12/2012] [Indexed: 12/23/2022] Open
Abstract
Salicylidene acylhydrazides identified as inhibitors of virulence-mediating type III secretion systems (T3SSs) potentially target their inner membrane export apparatus. They also lead to inhibition of flagellar T3SS-mediated swimming motility in Salmonella enterica serovar. Typhimurium. We show that INP0404 and INP0405 act by reducing the number of flagella/cell. These molecules still inhibit motility of a Salmonella ΔfliH-fliI-fliJ/flhB(P28T) strain, which lacks three soluble components of the flagellar T3S apparatus, suggesting that they are not the target of this drug family. We implemented a genetic screen to search for the inhibitors' molecular target(s) using motility assays in the ΔfliH-fliI/flhB(P28T) background. Both mutants identified were more motile than the background strain in the absence of the drugs, although HM18 was considerably more so. HM18 was more motile than its parent strain in the presence of both drugs while DI15 was only insensitive to INP0405. HM18 was hypermotile due to hyperflagellation, whereas DI15 was not hyperflagellated. HM18 was also resistant to a growth defect induced by high concentrations of the drugs. Whole-genome resequencing of HM18 indicated two alterations within protein coding regions, including one within atpB, which encodes the inner membrane a-subunit of the FOF1-ATP synthase. Reverse genetics indicated that the alteration in atpB was responsible for all of HM18's phenotypes. Genome sequencing of DI15 uncovered a single A562P mutation within a gene encoding the flagellar inner membrane protein FlhA, the direct role of which in mediating drug insensitivity could not be confirmed. We discuss the implications of these findings in terms of T3SS export apparatus function and drug target identification.
Collapse
Affiliation(s)
- Isabel Martinez-Argudo
- Schools of Cellular & Molecular Medicine and Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Andreas K. J. Veenendaal
- Schools of Cellular & Molecular Medicine and Biochemistry, University of Bristol, Bristol, United Kingdom
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Xia Liu
- Schools of Cellular & Molecular Medicine and Biochemistry, University of Bristol, Bristol, United Kingdom
| | - A. Dorothea Roehrich
- Schools of Cellular & Molecular Medicine and Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Maria C. Ronessen
- Schools of Cellular & Molecular Medicine and Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Giulia Franzoni
- Schools of Cellular & Molecular Medicine and Biochemistry, University of Bristol, Bristol, United Kingdom
| | | | - Yusuke V. Morimoto
- Graduate School of Frontier Biosciences, University of Osaka, Osaka, Japan
| | | | - Matthew B. Avison
- Schools of Cellular & Molecular Medicine and Biochemistry, University of Bristol, Bristol, United Kingdom
| | - David J. Studholme
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, University of Osaka, Osaka, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, University of Osaka, Osaka, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Ariel J. Blocker
- Schools of Cellular & Molecular Medicine and Biochemistry, University of Bristol, Bristol, United Kingdom
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
14
|
Le Bars H, Bousarghin L, Bonnaure-Mallet M, Jolivet-Gougeon A. Role of a short tandem leucine/arginine repeat in strong mutator phenotype acquisition in a clinical isolate ofSalmonellaTyphimurium. FEMS Microbiol Lett 2012; 338:101-6. [DOI: 10.1111/1574-6968.12039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/15/2012] [Accepted: 10/19/2012] [Indexed: 11/28/2022] Open
Affiliation(s)
| | - Latifa Bousarghin
- Equipe Microbiologie; EA 1254; SFR BIOSIT; Université Européenne de Bretagne; Rennes; France
| | | | | |
Collapse
|
15
|
Impact of a mutator phenotype on motility and cell adherence in Salmonella Heidelberg. Vet Microbiol 2012; 159:99-106. [DOI: 10.1016/j.vetmic.2012.03.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 03/13/2012] [Accepted: 03/16/2012] [Indexed: 02/04/2023]
|
16
|
Complete genome sequence of the strong mutator Salmonella enterica subsp. enterica serotype Heidelberg strain B182. J Bacteriol 2012; 194:3537-8. [PMID: 22689230 DOI: 10.1128/jb.00498-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In bacteria, normal mutation frequencies are mostly around 10(-10) per base pair. However, there exists natural isolates, called "mutators," that exhibit permanent mutation occurrences up to 1,000-fold greater than usual. As mutations play essential roles, particularly in the evolution of antibiotic resistance, bacteria showing elevated mutation rates could have an important responsibility in the emergence of antibiotic resistance, especially in the clinical background. In this announcement, we report the first complete genome sequence of the Salmonella enterica subsp. enterica serotype Heidelberg B182 mutator strain, isolated from bovine feces (France), which consists of a 4,750,465-bp circular chromosome (cB182_4750; GC, 52.2%) and one circular plasmid of 37,581 bp (pB182_37; GC, 42.8%).
Collapse
|
17
|
Jolivet-Gougeon A, Kovacs B, Le Gall-David S, Le Bars H, Bousarghin L, Bonnaure-Mallet M, Lobel B, Guillé F, Soussy CJ, Tenke P. Bacterial hypermutation: clinical implications. J Med Microbiol 2011; 60:563-573. [PMID: 21349992 DOI: 10.1099/jmm.0.024083-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Heritable hypermutation in bacteria is mainly due to alterations in the methyl-directed mismatch repair (MMR) system. MMR-deficient strains have been described from several bacterial species, and all of the strains exhibit increased mutation frequency and recombination, which are important mechanisms for acquired drug resistance in bacteria. Antibiotics select for drug-resistant strains and refine resistance determinants on plasmids, thus stimulating DNA recombination via the MMR system. Antibiotics can also act as indirect promoters of antibiotic resistance by inducing the SOS system and certain error-prone DNA polymerases. These alterations have clinical consequences in that efficacious treatment of bacterial infections requires high doses of antibiotics and/or a combination of different classes of antimicrobial agents. There are currently few new drugs with low endogenous resistance potential, and the development of such drugs merits further research.
Collapse
Affiliation(s)
- Anne Jolivet-Gougeon
- Equipe Microbiologie, UPRES-EA 1254, Pontchaillou Teaching Hospital and Faculté des Sciences Pharmaceutiques et Biologiques, Université de Rennes I, Université Européenne de Bretagne, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France
| | - Bela Kovacs
- Department of Urology, Jahn Ferenc Del-Pesti Hospital, Koves ut 2, 1204 Budapest, Hungary
| | - Sandrine Le Gall-David
- Equipe Microbiologie, UPRES-EA 1254, Pontchaillou Teaching Hospital and Faculté des Sciences Pharmaceutiques et Biologiques, Université de Rennes I, Université Européenne de Bretagne, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France
| | - Hervé Le Bars
- Equipe Microbiologie, UPRES-EA 1254, Pontchaillou Teaching Hospital and Faculté des Sciences Pharmaceutiques et Biologiques, Université de Rennes I, Université Européenne de Bretagne, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France
| | - Latifa Bousarghin
- Equipe Microbiologie, UPRES-EA 1254, Pontchaillou Teaching Hospital and Faculté des Sciences Pharmaceutiques et Biologiques, Université de Rennes I, Université Européenne de Bretagne, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France
| | - Martine Bonnaure-Mallet
- Equipe Microbiologie, UPRES-EA 1254, Pontchaillou Teaching Hospital and Faculté des Sciences Pharmaceutiques et Biologiques, Université de Rennes I, Université Européenne de Bretagne, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France
| | - Bernard Lobel
- Service d'Urologie, CHU Pontchaillou, 2 rue Henri Le Guilloux, 35033 Rennes cedex 9, France
| | - François Guillé
- Service d'Urologie, CHU Pontchaillou, 2 rue Henri Le Guilloux, 35033 Rennes cedex 9, France
| | - Claude-James Soussy
- Service de Bactériologie-Virologie-Hygiène, CHU Henri-Mondor, 51 avenue du Maréchal-de-Lattre-de-Tassigny, 94010 Créteil cedex, France
| | - Peter Tenke
- Department of Urology, Jahn Ferenc Del-Pesti Hospital, Koves ut 2, 1204 Budapest, Hungary
| |
Collapse
|
18
|
Wang S, Zhao W, Raza A, Friendship R, Johnson R, Kostrzynska M, Warriner K. Prevalence of Salmonella infecting bacteriophages associated with Ontario pig farms and the holding area of a high capacity pork processing facility. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2010; 90:2318-2325. [PMID: 20661898 DOI: 10.1002/jsfa.4090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
BACKGROUND There is interest in applying bacteriophages to control Salmonella in pig production and pork processing. The following reports on the prevalence of Salmonella infecting bacteriophages within Ontario pig farms and associated with the holding area of a pork slaughterhouse. RESULTS Salmonella infecting bacteriophages were present in 30 and 28 of the effluent manure samples collected from 36 farms using S. Typhimurium DT104 or S. Heidelberg as host cell respectively. Bacteriophages were recovered in 95-100% of the 48 samples taken from holding pens within a high capacity slaughterhouse over a 12 month period. Bacteriophages isolated from farms exhibited similar host ranges which differed to that of slaughterhouse isolates. Salmonella (n = 21) from the slaughterhouse were susceptible to the endogenous bacteriophages. Despite being susceptible to the resident phages, the Salmonella populations were found to be genetically stable with the same genotypes being recovered over successive visits. Salmonella isolated from the farms were frequently resistant to the endogenous phages. CONCLUSIONS Bacteriophages are prevalent in the pig slaughterhouse environment although they do not have a significant impact on the genetic structure of Salmonella populations. However, there was evidence that the Salmonella population structure on farms is influenced by the presence of infecting phages.
Collapse
Affiliation(s)
- Sunan Wang
- Department of Food Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | | | | | | | | | | | |
Collapse
|
19
|
In vitro synergism of ciprofloxacin and cefotaxime against nalidixic acid-resistant Salmonella enterica serotypes Paratyphi A and Paratyphi B. Antimicrob Agents Chemother 2010; 54:3696-701. [PMID: 20566759 DOI: 10.1128/aac.00988-09] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Paratyphoid fever is considered an emerging systemic intracellular infection caused by Salmonella enterica serotypes Paratyphi A, B, and C. We performed in vitro time-kill studies on three clinical isolates of nalidixic acid-resistant Salmonella serotype Paratyphi (NARSP) with different concentrations of ciprofloxacin and cefotaxime to identify combinations of antibiotics with synergistic activity against paratyphoid fever. Furthermore, we identify the frequency of mutations to ciprofloxacin, cefotaxime, and rifampin resistance and also sequenced the gyrA, gyrB, parC, and parE genes to identify the cause of resistance in NARSP. When the activity of ciprofloxacin at 0.75x MIC (0.012 to 0.38 microg/ml) with cefotaxime at the MIC (0.125 to 0.25 microg/ml) against all three NARSP isolates was investigated, synergy was observed at 24 h, and the bacterial counts were reduced by >3 log(10) CFU/ml. This synergy was elongated for up to 72 h in two out of three isolates. When ciprofloxacin at 0.75x MIC (0.012 to 0.38 microg/ml) was combined with cefotaxime at 2x MIC (0.25 to 0.50 microg/ml), synergy was prolonged for up to 72 h in all three isolates. Both Salmonella serotype Paratyphi A isolates carried single mutations in codon 83 of the gyrA gene and codon 84 of the parC gene that were responsible for their reduced susceptibility to ciprofloxacin, while no mutations were found in the gyrB or parE gene. The ciprofloxacin-plus-cefotaxime regimen was very effective in reducing the bacterial counts at 24 h for all three isolates, and this combination therapy may be helpful in reducing the chance of the emergence of fluoroquinolone-resistant mutants in patients with severe paratyphoid fever.
Collapse
|