1
|
Zhao J, Duan H, Chen X, Ren B, Zhu Q, Ji P, Chang Y, Sun Y, Zhao Q. A serologic marker attenuated live vaccine protects piglets against highly pathogenic porcine reproductive and respiratory syndrome virus infection. Vet Res 2025; 56:89. [PMID: 40275373 PMCID: PMC12023688 DOI: 10.1186/s13567-025-01526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Currently, there are no commercial serologic marker or differentiation of infected and vaccinated animal (DIVA) vaccines for the eradication of porcine reproductive and respiratory syndrome virus (PRRSV) infection from pig farms. In a previous study, a nanobody-based competitive ELISA (cELISA) was specifically developed to detect anti-genotype 2 PRRSV (PRRSV-2) antibodies. On the basis of the epitope recognized by the nanobody and the prevalence of PRRSV-2 infection in China, a DIVA vaccine candidate strain was designed and evaluated in the present study. First, an infectious cDNA clone based on the genomic sequence of the highly pathogenic PRRSV-2 (HP-PRRSV) isolate SX-HD was constructed and named rSX-HD. Using the infectious clone as the backbone, a chimeric infectious cDNA clone in which the gene encoding the nucleocapsid (N) protein was replaced with the gene encoding the genotype 1 PRRSV N protein was generated and named rSX-HD2M1. The chimeric PRRSV rSX-HD2M1 was subsequently rescued successfully in Marc-145 cells, which were then passaged for 120 generations for attenuation. A safety study indicated that rSX-HD2M1-F120 is not pathogenic to piglets. In vivo inoculation and challenge experiments suggested that rSX-HD2M1-F120 vaccination significantly reduced serum viral loads and lung tissue lesions and that vaccinated piglets did not show any clinical symptoms or histopathological changes. Furthermore, this recombinant marker virus, in conjunction with the previously developed nanobody-based cELISA, enables serological differentiation between marker virus-infected animals and those infected with wild-type PRRSV-2. These results suggest that rSX-HD2M1-F120 is a good candidate for providing a live attenuated DIVA vaccine against PRRSV-2 infection in piglets.
Collapse
Affiliation(s)
- Jiakai Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University; Yangling Observing and Experimental Station of National Data Center of Animal Health, Ministry of Agriculture, Yangling, 712100, China
| | - Hong Duan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Xu Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University; Yangling Observing and Experimental Station of National Data Center of Animal Health, Ministry of Agriculture, Yangling, 712100, China
| | - Binbin Ren
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University; Yangling Observing and Experimental Station of National Data Center of Animal Health, Ministry of Agriculture, Yangling, 712100, China
| | - Qianyi Zhu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University; Yangling Observing and Experimental Station of National Data Center of Animal Health, Ministry of Agriculture, Yangling, 712100, China
| | - Pinpin Ji
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University; Yangling Observing and Experimental Station of National Data Center of Animal Health, Ministry of Agriculture, Yangling, 712100, China
| | - Yueting Chang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University; Yangling Observing and Experimental Station of National Data Center of Animal Health, Ministry of Agriculture, Yangling, 712100, China
| | - Yani Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University; Yangling Observing and Experimental Station of National Data Center of Animal Health, Ministry of Agriculture, Yangling, 712100, China.
| | - Qin Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University; Yangling Observing and Experimental Station of National Data Center of Animal Health, Ministry of Agriculture, Yangling, 712100, China.
| |
Collapse
|
2
|
Chen X, Pan J, Huang L, Zhao M. Research progress on the E protein of porcine reproductive and respiratory syndrome virus. Front Microbiol 2023; 14:1139628. [PMID: 37256059 PMCID: PMC10226392 DOI: 10.3389/fmicb.2023.1139628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an economically important disease impacting the global pig industry, and it is characterized by reproductive disorder in sows and respiratory disorder in pigs of all ages. The PRRSV E protein is a nonglycosylated structural protein encoded by the ORF2b gene. The E protein is not necessary for the assembly of virus particles, but deletion of the E protein leads to transmissible virus particles not being produced. To better understand the structure and function of the E protein, we reviewed its genetic and evolutionary analysis, characteristics, subcellular localization and topology, ion channel activity, cellular immune response, additional biological functions, interactions with host proteins, interactions with PRRSV proteins, roles in infection, pathogenicity, and drugs. Therefore, this review can provide a theoretical basis for gaining an in-depth understanding of the E protein of PRRSV-2.
Collapse
Affiliation(s)
- Xiuqiao Chen
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - JingHua Pan
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Liangzong Huang
- School of Life Science and Engineering, Foshan University, Foshan, China
- Veterinary Teaching Hospital, Foshan University, Foshan, China
| | - Mengmeng Zhao
- School of Life Science and Engineering, Foshan University, Foshan, China
- Veterinary Teaching Hospital, Foshan University, Foshan, China
| |
Collapse
|
3
|
Chung CJ, Cha SH, Grimm AL, Ajithdoss D, Rzepka J, Chung G, Yu J, Davis WC, Ho CS. Pigs that recover from porcine reproduction and respiratory syndrome virus infection develop cytotoxic CD4+CD8+ and CD4+CD8- T-cells that kill virus infected cells. PLoS One 2018; 13:e0203482. [PMID: 30188946 PMCID: PMC6126854 DOI: 10.1371/journal.pone.0203482] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/21/2018] [Indexed: 11/24/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) infection is difficult to control because the virus undergoes antigenic variation during infection and also modulates the protective host immune response. Although current vaccines do not provide full protection, they have provided insight into the mechanisms of protection. Live PRRSV vaccines induce partial protection before the appearance of neutralizing antibody, suggesting cell-mediated immunity or other mechanisms may be involved. Herein, we demonstrate recovery from infection is associated with development of cytotoxic T-lymphocytes (CTL) that can kill PRRSV-infected target cells. Initial experiments showed survival of PRRSV-infected monocyte derived macrophage (MDM) targets is reduced when overlaid with peripheral blood mononuclear cells (PBMC) from gilts that had recovered from PRRSV infection. Further studies with PBMC depleted of either CD4+ or CD8+ T-cells and positively selected subpopulations of CD4+ and CD8+ T-cells showed that both CD4+ and CD8+ T-cells were involved in killing. Examination of killing at different time points revealed killing was biphasic and mediated by CTL of different phenotypes. CD4+CD8+high were associated with killing target cells infected for 3–6 hours. CD4+CD8- CTL were associated with killing at 16–24 hours. Thus, all the anti-PRRSV CTL activity in pigs was attributed to two phenotypes of CD4+ cells which is different from the anti-viral CD4-CD8+ CTL phenotype found in most other animals. These findings will be useful for evaluating CTL responses induced by current and future vaccines, guiding to a novel direction for future vaccine development.
Collapse
Affiliation(s)
- Chungwon J. Chung
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
- VMRD Inc., Pullman, Washington, United States of America
- * E-mail: (CJC); (SHC)
| | - Sang-Ho Cha
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
- * E-mail: (CJC); (SHC)
| | | | - Dharani Ajithdoss
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Joanna Rzepka
- VMRD Inc., Pullman, Washington, United States of America
| | - Grace Chung
- VMRD Inc., Pullman, Washington, United States of America
| | - Jieun Yu
- Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - William C. Davis
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Chak-Sum Ho
- Gift of life Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
4
|
Xia W, Wu Z, Guo C, Zhu S, Zhang X, Xia X, Sun H. Recombinant adenovirus-delivered soluble CD163 and sialoadhesin receptors protected pigs from porcine reproductive and respiratory syndrome virus infection. Vet Microbiol 2018; 219:1-7. [PMID: 29778179 DOI: 10.1016/j.vetmic.2018.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 11/26/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most important swine diseases affecting pig industry worldwide. Sialoadehesin (Sn) and CD163 are the two specific receptors for PRRSV infection of porcine alveolar macrophages. Our previous study showed that the soluble Sn receptor Sn4D-Fc and soluble CD163 receptor SRCR59-Fc expressed by the two recombinant adenoviral (rAd) vectors have an additive anti-PRRSV effect in vitro. In the present study, rAd-Sn4D-Fc and rAd-SRCR59-Fc were inoculated into pigs, and the efficient expression of Sn4D-Fc and SRCR59-Fc proteins was detected by ELISA. Then, PRRSV-naïve pigs were inoculated with rAd-Sn4D-Fc and/or rAd-SRCR59-Fc before contagious infection with different PRRSV strains. Among the three rAd inoculation groups, simultaneous inoculation with the two rAd vectors provided the best protection against highly pathogenic JXA1 strain PRRSV, followed by rAd-SRCR59-Fc inoculation and rAd-Sn4D-Fc inoculation. Clinical observation and quantitative RT-PCR analyses showed that all of the double rAd-inoculated pigs (n = 9) survived from the contagious infection with highly pathogenic JXA1, JS07 or SH1705 strain PRRSV with significantly alleviated clinical scores, viremia, fecal viral emission and tissue virus loads. These data suggest that rAd-Sn4D-Fc and rAd-SRCR59-Fc can be developed further as the universal therapeutic vaccine to facilitate PRRSV eradication.
Collapse
Affiliation(s)
- Wenlong Xia
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Zhi Wu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Changming Guo
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Shanyuan Zhu
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Xinyu Zhang
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xiaoli Xia
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Huaichang Sun
- College of Veterinary Medicine, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
5
|
Chung CJ, Cha SH, Grimm AL, Chung G, Gibson KA, Yoon KJ, Parish SM, Ho CS, Lee SS. Recognition of Highly Diverse Type-1 and -2 Porcine Reproductive and Respiratory Syndrome Viruses (PRRSVs) by T-Lymphocytes Induced in Pigs after Experimental Infection with a Type-2 PRRSV Strain. PLoS One 2016; 11:e0165450. [PMID: 27798650 PMCID: PMC5087905 DOI: 10.1371/journal.pone.0165450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/12/2016] [Indexed: 11/18/2022] Open
Abstract
Background/Aim Live attenuated vaccines confer partial protection in pigs before the appearance of neutralizing antibodies, suggesting the contribution of cell-mediated immunity (CMI). However, PRRSV-specific T-lymphocyte responses and protective mechanisms need to be further defined. To this end, the hypothesis was tested that PRRSV-specific T-lymphocytes induced by exposure to type-2 PRRSV can recognize diverse isolates. Methods An IFN-gamma ELISpot assay was used to enumerate PRRSV-specific T-lymphocytes from PRRSVSD23983-infected gilts and piglets born after in utero infection against 12 serologically and genetically distinct type-1 and -2 PRRSV isolates. The IFN-gamma ELISpot assay using synthetic peptides spanning all open reading frames of PRRSVSD23983 was utilized to localize epitopes recognized by T-lymphocytes. Virus neutralization tests were carried out using the challenge strain (type-2 PRRSVSD23983) and another strain (type-2 PRRSVVR2332) with high genetic similarity to evaluate cross-reactivity of neutralizing antibodies in gilts after PRRSVSD23983 infection. Results At 72 days post infection, T-lymphocytes from one of three PRRSVSD23983-infected gilts recognized all 12 diverse PRRSV isolates, while T-lymphocytes from the other two gilts recognized all but one isolate. Furthermore, five of nine 14-day-old piglets infected in utero with PRRSVSD23983 had broadly reactive T-lymphocytes, including one piglet that recognized all 12 isolates. Overlapping peptides encompassing all open reading frames of PRRSVSD23983 were used to identify ≥28 peptides with T-lymphocyte epitopes from 10 viral proteins. This included one peptide from the M protein that was recognized by T-lymphocytes from all three gilts representing two completely mismatched MHC haplotypes. In contrast to the broadly reactive T-lymphocytes, neutralizing antibody responses were specific to the infecting PRRSVSD23983 isolate. Conclusion These results demonstrated that T-lymphocytes recognizing antigenically and genetically diverse isolates were induced by infection with a type 2 PRRSV strain (SD23983). If these reponses have cytotoxic or other protective functions, they may help overcome the suboptimal heterologous protection conferred by conventional vaccines.
Collapse
Affiliation(s)
- Chungwon J. Chung
- VMRD Inc., Pullman, WA 99163, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99163, United States of America
- * E-mail:
| | - Sang-Ho Cha
- Department of Virology, Animal and Plant Quarantine Agency, Anyang, Republic of Korea
| | | | - Grace Chung
- VMRD Inc., Pullman, WA 99163, United States of America
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99163, United States of America
| | - Kathleen A. Gibson
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States of America
| | - Kyoung-Jin Yoon
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, United States of America
| | - Steven M. Parish
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99163, United States of America
| | - Chak-Sum Ho
- Gift of Life Michigan, Ann Arbor, MI 48108, United States of America
| | - Stephen S. Lee
- Department of Statistics, University of Idaho, Moscow, ID 83844, United States of America
| |
Collapse
|
6
|
Chen Y, He S, Sun L, Luo Y, Sun Y, Xie J, Zhou P, Su S, Zhang G. Genetic variation, pathogenicity, and immunogenicity of highly pathogenic porcine reproductive and respiratory syndrome virus strain XH-GD at different passage levels. Arch Virol 2015; 161:77-86. [PMID: 26483282 DOI: 10.1007/s00705-015-2597-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/02/2015] [Indexed: 02/01/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically important infectious diseases of swine worldwide. Immunization with an attenuated vaccine is considered an effective method for reducing the economic losses resulting from porcine reproductive and respiratory syndrome virus (PRRSV) infection. Several studies have shown that PRRSV can be attenuated by passage in Marc-145 cells, but it is still not clear whether this attenuation influences the immunogenicity of PRRSV and what the mechanism of attenuation is. In order to study the mechanism of attenuation and immunogenicity of highly pathogenic (HP) PRRSV, the HP-PRRSV strain XH-GD was serially 122 times passaged in Marc-145 cells. Genomic sequence comparisons were made at selected passages. To explore the differences in pathogenicity and immunogenicity at different passages, three passages (P5, P62 and P122) were selected for an animal challenge experiment, which showed that passage in Marc-145 cells resulted in attenuation of the virus. After 122 passages, 35 amino acid changes were observed in the structural proteins and non-structural proteins. The animal challenge experiment showed that pathogenicity decreased with increasing passage number. The N antibody level and specific neutralizing (SN) antibody titers also decreased with increasing passage number in the late stage of the animal experiment. This study indicated that the virulence of XH-GD was decreased by passage in Marc-145 cells and that overattenuation might influence the immunogenicity of virus. These results might contribute to our understanding of the mechanism of attenuation.
Collapse
Affiliation(s)
- Yao Chen
- MOA Key Laboratory of Animal Vaccine Development, Ministry of China, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
| | - Shuyi He
- MOA Key Laboratory of Animal Vaccine Development, Ministry of China, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
| | - Long Sun
- MOA Key Laboratory of Animal Vaccine Development, Ministry of China, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
| | - Yongfeng Luo
- MOA Key Laboratory of Animal Vaccine Development, Ministry of China, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
| | - Yankuo Sun
- MOA Key Laboratory of Animal Vaccine Development, Ministry of China, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
| | - Jiexiong Xie
- MOA Key Laboratory of Animal Vaccine Development, Ministry of China, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
| | - Pei Zhou
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
| | - Shuo Su
- Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
| | - Guihong Zhang
- MOA Key Laboratory of Animal Vaccine Development, Ministry of China, College of Veterinary Medicine, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China.
| |
Collapse
|
7
|
Liu C, Zhang W, Gong W, Zhang D, She R, Xu B, Ning Y. Comparative Respiratory Pathogenicity and Dynamic Tissue Distribution of Chinese Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus and its Attenuated Strain in Piglets. J Comp Pathol 2015; 153:38-49. [DOI: 10.1016/j.jcpa.2015.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/12/2015] [Accepted: 04/01/2015] [Indexed: 10/23/2022]
|
8
|
Attenuation and immunogenicity of a live high pathogenic PRRSV vaccine candidate with a 32-amino acid deletion in the nsp2 protein. J Immunol Res 2014; 2014:810523. [PMID: 25009824 PMCID: PMC4070328 DOI: 10.1155/2014/810523] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 05/04/2014] [Accepted: 05/07/2014] [Indexed: 01/01/2023] Open
Abstract
A porcine reproductive and respiratory syndrome virus (PRRSV) QY1 was serially passed on Marc-145 cells. Virulence of different intermediate derivatives of QY1 (P5, P60, P80, and P100) were determined. The study found that QY1 had been gradually attenuated during the in vitro process. Pathogenicity study showed that pigs inoculated with QY1 P100 and P80 did not develop any significant PRRS clinic symptoms. However, mild-to-moderate clinical signs and acute HP-PRRSV symptoms of infection were observed in pigs inoculated with QY1 P60 and P5, respectively. Furthermore, we determined the whole genome sequences of these four intermediate viruses. The results showed that after 100 passages, compared to QY1 P5, a total of 32 amino acid mutations were found. Moreover, there were one nucleotide deletion and a unique 34-amino acid deletion found at 5′UTR and in nsp2 gene during the attenuation process, respectively. Such deletions were genetically stable in vivo. Following PRRSV experimental challenge, pigs inoculated with a single dose of QY1 P100 developed no significant clinic symptoms and well tolerated lethal challenge, while QY1 P80 group still developed mild fever in the clinic trial after challenge. Thus, we concluded that QY1 P100 was a promising and highly attenuated PRRSV vaccine candidate.
Collapse
|