1
|
Sun Y, Hao L, Liang J, Ye S, Su M. Salinity-induced virulence alteration of Aeromonas hydrophila isolated from Scatophagus argus: insights from transcriptomic profiling and phenotypic characterization. BMC Microbiol 2025; 25:266. [PMID: 40316893 PMCID: PMC12046933 DOI: 10.1186/s12866-025-03977-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/18/2025] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND The emerging foodborne pathogen, Aeromonas hydrophila, co-infects humans and animals, especially fish, threatening aquacultural production and public health. Previously, we found that Scatophagus argus, a widely cultivated fish species with high economic value, exhibited enhanced growth but increased susceptibility to A. hydrophila infection under freshwater conditions compared to seawater conditions. However, the exact mechanisms involved remain unclear. RESULTS Our study demonstrated that the enhanced virulence of A. hydrophila 201416, isolated from S. argus, in response to increasing salinity was associated with altered quorum sensing-related gene expression and regulated behaviors. Results from virulence assays incorporating phenotypic characterization indicated that elevated salinity levels (from 0 to 35‰) significantly hindered Ah201416 infection of S. argus. This trend correlated with increased biofilm mass and swimming motility, yet was inversely related to bacterial growth. RNA-sequencing and quantitative reverse transcriptional PCR analysis confirmed significant upregulation of genes related to flagellar assembly (flgB, flgH, flgC, flgI, flhA, and fliA), bacterial secretion (HlyD and Ahh1), and quorum sensing (AhyR, LuxO, and LuxE) of Ah201416 in response to elevated salinity. These findings suggested that increased salinity not only enhanced the virulence of Ah201416 but also bolstered the resistance of S. argus, thereby mitigating its susceptibility. CONCLUSIONS This study provides deeper insights into the microbial risks associated with A. hydrophila in aquacultural production, which is critical to developing effective prevention and control strategies and ensuring a safe seafood supply. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Yuan Sun
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lingyun Hao
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- Center for Plant Environmental Sensing, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Jianbing Liang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Shiyang Ye
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Maoliang Su
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
2
|
Xu T, Rasmussen-Ivey CR, Moen FS, Fernández-Bravo A, Lamy B, Beaz-Hidalgo R, Khan CD, Castro Escarpulli G, Yasin ISM, Figueras MJ, Azzam-Sayuti M, Karim MM, Alam KMM, Le TTT, Thao NHP, Addo S, Duodu S, Ali S, Latif T, Mey S, Somony T, Liles MR. A Global Survey of Hypervirulent Aeromonas hydrophila (vAh) Identified vAh Strains in the Lower Mekong River Basin and Diverse Opportunistic Pathogens from Farmed Fish and Other Environmental Sources. Microbiol Spectr 2023; 11:e0370522. [PMID: 36815836 PMCID: PMC10101000 DOI: 10.1128/spectrum.03705-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/05/2023] [Indexed: 02/24/2023] Open
Abstract
Hypervirulent Aeromonas hydrophila (vAh) has emerged as the etiologic agent of epidemic outbreaks of motile Aeromonas septicemia (MAS) in high-density aquaculture of farmed carp in China and catfish in the United States, which has caused millions of tons of lost fish. We conducted a global survey to better understand the evolution, geographical distribution, and phylogeny of vAh. Aeromonas isolates were isolated from fish that showed clinical symptoms of MAS, and pure cultures were screened for the ability to utilize myo-inositol as the sole carbon source. A total of 113 myo-inositol-utilizing bacterial strains were included in this study, including additional strains obtained from previously published culture collections. Based on a gyrB phylogeny, this collection included 66 A. hydrophila isolates, 48 of which were vAh. This collection also included five new vAh isolates from diseased Pangas catfish (Pangasius pangasius) and striped catfish (Pangasianodon hypophthalmus) obtained in Cambodia and Vietnam, respectively. Genome sequences were generated from representative vAh and non-vAh isolates to evaluate the potential for lateral genetic transfer of the myo-inositol catabolism pathway. Phylogenetic analyses of each of the nine genes required for myo-inositol utilization revealed the close affiliation of vAh strains regardless of geographic origin and suggested lateral genetic transfer of this catabolic pathway from an Enterobacter species. Prediction of virulence factors was conducted to determine differences between vAh and non-vAh strains in terms of virulence and secretion systems. Core genome phylogenetic analyses on vAh isolates and Aeromonas spp. disease isolates (55 in total) were conducted to evaluate the evolutionary relationships among vAh and other Aeromonas sp. isolates, which supported the clonal nature of vAh isolates. IMPORTANCE This global survey of vAh brought together scientists that study fish disease to evaluate the evolution, geographical distribution, phylogeny, and hosts of vAh and other Aeromonas sp. isolates. In addition to vAh isolates from China and the United States, four new vAh isolates were isolated from the lower Mekong River basin in Cambodia and Vietnam, indicating the significant threat of vAh to modern aquaculture and the need for improved biosecurity to prevent vAh spread.
Collapse
Affiliation(s)
- Tingbi Xu
- Department of Biological Sciences, Auburn University, Alabama, USA
| | | | | | - Ana Fernández-Bravo
- Unit of Microbiology, Department of Basic Health Sciences, Faculty of Medicine and Health Sciences, IISPV, University Rovira i Virgili, Reus, Spain
| | - Brigitte Lamy
- INSERM U1065, Laboratoire de Bactériologie, CHU Nice, Faculté de Médecine, Université Côte d’Azur, Nice, France
- Centre for Molecular Bacteriology and Infection, Imperial College of London, London, United Kingdom
| | - Roxana Beaz-Hidalgo
- Unit of Microbiology, Department of Basic Health Sciences, Faculty of Medicine and Health Sciences, IISPV, University Rovira i Virgili, Reus, Spain
| | - Chan Dara Khan
- Aquatic Animal Health and Disease Management Office, Department of Aquaculture Development, Fisheries Administration, Ministry of Agriculture Forestry and Fisheries, Phnom Penh, Cambodia
| | - Graciela Castro Escarpulli
- Laboratorio de Investigación Clínica y Ambiental, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Ina Salwany M. Yasin
- Department of Aquaculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Maria J. Figueras
- Unit of Microbiology, Department of Basic Health Sciences, Faculty of Medicine and Health Sciences, IISPV, University Rovira i Virgili, Reus, Spain
| | | | | | | | - Thao Thu Thi Le
- Division of Aquacultural Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Ngo Huynh Phuong Thao
- Division of Aquacultural Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Samuel Addo
- Department of Marine and Fisheries Sciences, University of Ghana, Legon, Ghana
| | - Samuel Duodu
- Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Legon, Ghana
| | - Shahzad Ali
- Wildlife Epidemiology and Molecular Microbiology Laboratory, Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pattoki, Pakistan
| | - Tooba Latif
- Wildlife Epidemiology and Molecular Microbiology Laboratory, Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pattoki, Pakistan
| | - Sothea Mey
- Aquatic Animal Health and Disease Management Office, Department of Aquaculture Development, Fisheries Administration, Ministry of Agriculture Forestry and Fisheries, Phnom Penh, Cambodia
| | - Thay Somony
- Aquatic Animal Health and Disease Management Office, Department of Aquaculture Development, Fisheries Administration, Ministry of Agriculture Forestry and Fisheries, Phnom Penh, Cambodia
| | - Mark R. Liles
- Department of Biological Sciences, Auburn University, Alabama, USA
| |
Collapse
|
3
|
Kaur B, Naveen Kumar BT, Tyagi A, Admane Holeyappa S, Singh NK. Identification of novel vaccine candidates in the whole-cell Aeromonas hydrophila biofilm vaccine through reverse vaccinology approach. FISH & SHELLFISH IMMUNOLOGY 2021; 114:132-141. [PMID: 33932598 DOI: 10.1016/j.fsi.2021.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/03/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Biofilm vaccine has been recognised as one of the successful strategy to reduce the Aeromonas hydrophila infection in fish. But, the vaccine contains the protective and non-protective proteins, which may lead to show altered heterologous adaptive immunity response. Moreover, cross protection and effectiveness of previously developed biofilm vaccine was not tested against different geographical A. hydrophila isolates. Therefore, in the present study, whole-cell A. hydrophila biofilm vaccine was evaluated in rohu, vaccinated group showed increased antibody titer and protection against the different geographical A. hydrophila isolates namely KAH1 and AAH2 with 78.9% and 84.2% relative percentage survival, respectively. In addition, by using the immune sera of biofilm vaccinated group, a total of six protective proteins were detected using western blot assay. Further, the same proteins were identified by nano LC-MS/MS method, a total of fourteen candidate proteins showing the immunogenic property including highly expressed OMP's tolC, bamA, lamb, AH4AK4_2542, AHGSH82_029580 were identified as potential vaccine candidates. The STRING analysis revealed that, top candidate proteins identified may potentially interact with other intracellular proteins; involved in ribosomal and (tricarboxylic acid) TCA pathway. Importantly, all the selected vaccine candidate proteins contain the B-cell epitope region. Finally, the present study concludes that, whole-cell A. hydrophila biofilm vaccine able to protect the fish against the different geographical A. hydrophila isolates. Further, through reverse vaccinology approach, a total of fourteen proteins were identified as potential vaccine candidates against A. hydrophila pathogen.
Collapse
Affiliation(s)
- Basmeet Kaur
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - B T Naveen Kumar
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India.
| | - Anuj Tyagi
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | | | - Niraj Kumar Singh
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| |
Collapse
|
6
|
Du H, Pang M, Dong Y, Wu Y, Wang N, Liu J, Awan F, Lu C, Liu Y. Identification and Characterization of an Aeromonas hydrophila Oligopeptidase Gene pepF Negatively Related to Biofilm Formation. Front Microbiol 2016; 7:1497. [PMID: 27713736 PMCID: PMC5032638 DOI: 10.3389/fmicb.2016.01497] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/07/2016] [Indexed: 01/02/2023] Open
Abstract
Bacterial biofilms are involved in adaptation to complex environments and are responsible for persistent bacterial infections. Biofilm formation is a highly complex process during which multifarious genes work together regularly. In this study, we screened the EZ-Tn5 transposon mutant library to identify genes involved in biofilm formation of Aeromonas hydrophila. A total of 24 biofilm-associated genes were identified, the majority of which encoded proteins related to cell structure, transcription and translation, gene regulation, growth and metabolism. The mutant strain TM90, in which a gene encoding oligopeptidase F (pepF) was disturbed, showed significant upregulation of biofilm formation compared to the parental strain. The TM90 colony phenotype was smaller, more transparent, and splendent. The adhesive ability of TM90 to HEp-2 cells was significantly increased compared with the parental strain. Fifty percent lethal dose (LD50) determinations in zebrafish demonstrated that the enhanced-biofilm mutant TM90 was highly attenuated relative to the wild-type strain. In conclusion, the pepF gene is demonstrated for the first time to be a negative factor for biofilm formation and is involved in A. hydrophila pathogenicity.
Collapse
Affiliation(s)
- Hechao Du
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Maoda Pang
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Yuhao Dong
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Yafeng Wu
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Nannan Wang
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Jin Liu
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Furqan Awan
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Chengping Lu
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| | - Yongjie Liu
- College of Veterinary Medicine, Nanjing Agricultural University Nanjing, China
| |
Collapse
|