1
|
Strous EEC, Bisschop PIH, van Schaik G, Mars MH, Waldeck HWF, Scherpenzeel CGM, de Roo B, Wever P, Santman-Berends IMGA. Dutch bovine viral diarrhea virus control program: Evaluation 2018-2023. J Dairy Sci 2025; 108:2780-2794. [PMID: 39701533 DOI: 10.3168/jds.2024-25798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024]
Abstract
Since 2018, Dutch dairy farmers have been obliged to opt for 1 of 4 routes to achieve bovine viral diarrhea virus (BVDV) freedom in the national BVDV eradication program. This observational study evaluated efficacy of the total BVDV program using indicators such as the number of persistently infected (PI) cattle, the percentage of dairy herds with a BVDV-free status, and the percentage of BVDV-free dairy herds with evidence of introduction of BVDV, as well as a cost calculation per route. The Dutch BVDV program appeared to be successful, as the percentage of BVDV-free dairy herds increased from 59% at the start of the program to 89% by the end of 2023. The number of PI detected each quarter declined from 500 PI in the third quarter of 2019 to 83 PI in the last quarter of 2023. The percentage BVDV-free dairy herds with evidence of (re)introduction of BVDV decreased from 1.29% per quarter in the first year of the mandatory program to 0.25% per quarter by the end of 2023. In Europe, BVDV control program designs are often tailored to the country's specific situation, such as the prevalence at the start of eradication, risk profile of a country or herd, desired speed of eradication, and available funds. These results show that the Dutch approach, in which multiple routes can be followed toward BVDV freedom, is successful.
Collapse
Affiliation(s)
| | | | - G van Schaik
- Royal GD, 7418 EZ Deventer, the Netherlands; Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - M H Mars
- Royal GD, 7418 EZ Deventer, the Netherlands
| | | | | | - B de Roo
- Royal GD, 7418 EZ Deventer, the Netherlands
| | - P Wever
- Royal GD, 7418 EZ Deventer, the Netherlands
| | | |
Collapse
|
2
|
Yu Z, Chen L, Cui Q, Yan H, Li J, Luo X, Li Y, Ju X, Yong Y, Zhao N, Zhao Z. Development and application of reverse transcriptase droplet digital PCR technology for sensitive detection of BVDV-1 and BTV in bovine semen. BMC Vet Res 2025; 21:44. [PMID: 39885446 PMCID: PMC11783913 DOI: 10.1186/s12917-025-04506-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Bovine viral diarrhoea virus genotype 1 (BVDV-1) and bluetongue virus (BTV) are potent viral pathogens that may be transmitted through semen, resulting in the spread of diseases via artificial insemination. Thus, establishing an early detection method for BVDV-1 and BTV infection is important for the trading of semen. In this study, we developed two RT‒ddPCR methods to detect BVDV-1 and BTV, and each method was evaluated for repeatability, limit of detection and specificity. The sensitivity of these methods was compared with that of RT‒qPCR (WOAH) by analysing clinical samples. RESULTS The RT‒ddPCR results revealed that both methods exhibited good repeatability at low concentrations, with detection limits of 1.05 copies/µL and 0.662 copies/µL per reaction for BVDV-1 and BTV, respectively; additionally, both methods exhibited high specificity and did not exhibit cross-reaction with other important semen-transmitted pathogens. Eighty bovine semen samples and twenty mixed semen samples were tested. The results revealed that the positivity rates of BVDV-1 and BTV RT‒ddPCR (25% and 23%, respectively) were greater than those of RT‒qPCR (19% and 18%, respectively). CONCLUSIONS RT‒ddPCR was highly sensitive for detecting low concentrations of BVDV-1 and BTV in clinical samples and could be a good supplement for qPCR testing.
Collapse
Affiliation(s)
- Zhichao Yu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
- Technology Center, Hohhot Customs District, Hohhot, 010020, Inner Mongolia, China
| | - Linjun Chen
- Technology Center, Hohhot Customs District, Hohhot, 010020, Inner Mongolia, China
| | - Qiang Cui
- Technology Center, Hohhot Customs District, Hohhot, 010020, Inner Mongolia, China
| | - Han Yan
- Technology Center, Hohhot Customs District, Hohhot, 010020, Inner Mongolia, China
| | - Junyan Li
- Key Laboratory of Grass-Feeding Livestock Healthy Breeding and Livestock Product Quality Control, Veterinary Research Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, Inner Mongolia, China
| | - Xiaoping Luo
- Key Laboratory of Grass-Feeding Livestock Healthy Breeding and Livestock Product Quality Control, Veterinary Research Institute, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, 010031, Inner Mongolia, China
| | - Yingying Li
- Animal and Plant Quarantine and Animal Disease Prevention and Control Center, Baotou, 014016, Inner Mongolia, China
| | - Xianghong Ju
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
| | - Yanhong Yong
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
| | - Namula Zhao
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, Guangdong, China
| | - Zhiguo Zhao
- Technology Center, Hohhot Customs District, Hohhot, 010020, Inner Mongolia, China.
| |
Collapse
|
3
|
Taberner E, Gibert M, Montbrau C, Muñoz Ruiz I, Mallorquí J, Santo Tomás H, Prenafeta A, March R. Efficacy of Vaccination with the DIVENCE ® Vaccine Against Bovine Viral Diarrhea Virus Types 1 and 2 in Terms of Fetal Protection. VETERINARY MEDICINE (AUCKLAND, N.Z.) 2024; 15:221-238. [PMID: 39679301 PMCID: PMC11645965 DOI: 10.2147/vmrr.s474655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024]
Abstract
Purpose To demonstrate the efficacy of DIVENCE®, a vaccine against BVDV types 1 and 2 (BVDV-1 and BVDV-2) transplacental infection, following a booster regimen in heifers. Materials and Methods Calves of two-to-three months of age were given two intramuscular doses three weeks apart and a booster vaccine six months later. Efficacy was evaluated by means of a challenge with virulent BVDV-1 or BVDV-2 administered via the intranasal route at 85 days of gestation. Clinical signs, serology, viral shedding, WBC count and viremia were monitored after the challenge. Sixty-six days post-challenge, the fetuses were assessed for BVDV to detect transplacental infection. Results Vaccinated animals showed a significant (p < 0.05) reduction in hyperthermia after both challenges. The WBC counts in vaccinated animals were significantly (p < 0.05) higher than in control animals on Days 5 and 6 after both challenges. Vaccinated animals exhibited no shedding after BVDV-1 challenge and the percentage of shedding animals was significantly (p < 0.05) higher among control animals compared to vaccinated animals after BVDV-2 challenge. Viremia were detected in pregnant heifers from all control animals, while only 3/14 and 3/17 pregnant vaccinated heifers showed viremia after BVDV-1 and BVDV-2 challenges, respectively. All the fetuses (n=8) from the control animals were positive for BVDV-1 via virus titration after BVDV-1 challenge. Only one out of fourteen fetuses from the vaccinated animals was positive for BVDV-1. After BVDV-2 challenge, all the control animals had BVDV-2 in all fetal tissues assessed and only one of the seventeen vaccinated animals had BVDV-2 in its fetal samples. Conclusion DIVENCE® administered prior to breeding protected 94% of the fetuses against BVDV transplacental infection overall across both challenge trials (BVDV-1 and BVDV-2). A reduction in the hyperthermia, leukopenia, viral shedding, and viremia in vaccinated animals post-challenge with BVDV-1 and BVDV-2 was achieved. The efficacy of DIVENCE® against BVDV-1 and BVDV-2 transplacental infection has been demonstrated in this study.
Collapse
Affiliation(s)
| | - Marta Gibert
- Hipra Scientific S.L.U., R&D Department, Amer, Spain
| | | | | | | | | | | | - Ricard March
- Hipra Scientific S.L.U., R&D Department, Amer, Spain
| |
Collapse
|
4
|
Fabiani M, Castro EF, Battini L, Rosas RA, Gärtner B, Bollini M, Cavallaro LV. Two thiosemicarbazones derived from 1-indanone as potent non-nucleoside inhibitors of bovine viral diarrhea virus of different genotypes and biotypes. Virology 2024; 598:110189. [PMID: 39089051 DOI: 10.1016/j.virol.2024.110189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/10/2024] [Accepted: 07/21/2024] [Indexed: 08/03/2024]
Abstract
Bovine viral diarrhea virus (BVDV) is a widespread pathogen of cattle and other mammals that causes major economic losses in the livestock industry. N4-TSC and 6NO2-TSC are two thiosemicarbazones derived from 1-indanone that exhibit anti-BVDV activity in vitro. These compounds selectively inhibit BVDV and are effective against both cytopathic and non-cytopathic BVDV-1 and BVDV-2 strains. We confirmed that N4-TSC acts at the onset of viral RNA synthesis, as previously reported for 6NO2-TSC. Moreover, resistance selection and characterization showed that N4-TSCR mutants were highly resistant to N4-TSC but remained susceptible to 6NO2-TSC. In contrast, 6NO2-TSCR mutants were resistant to both compounds. Additionally, mutations N264D and A392E were found in the viral RNA-dependent RNA polymerase (RdRp) of N4-TSCR mutants, whereas I261 M was found in 6NO2-TSCR mutants. These mutations lay in a hydrophobic pocket within the fingertips region of BVDV RdRp that has been described as a "hot spot" for BVDV non-nucleoside inhibitors.
Collapse
Affiliation(s)
- Matías Fabiani
- Cátedra de Virología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Eliana F Castro
- Cátedra de Virología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Leandro Battini
- Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Rocío A Rosas
- Cátedra de Virología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Benjamin Gärtner
- Cátedra de Virología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Mariela Bollini
- Laboratorio de Química Medicinal, Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Lucía V Cavallaro
- Cátedra de Virología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina; Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
5
|
Dunowska M, Lal R, Dissanayake SD, Bond SD, Burrows E, Moffat J, Howe L. Bovine viral diarrhoea viruses from New Zealand belong predominantly to the BVDV-1a genotype. N Z Vet J 2024; 72:66-78. [PMID: 38212951 DOI: 10.1080/00480169.2023.2291039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024]
Abstract
AIM To determine which genotypes of bovine viral diarrhoea virus (BVDV) circulate among cattle in New Zealand. METHODS Samples comprised BVDV-1-positive sera sourced from submissions to veterinary diagnostic laboratories in 2019 (n = 25), 2020 (n = 59) and 2022 (n = 74) from both beef and dairy herds, as well as archival BVDV-1 isolates (n = 5). Fragments of the 5' untranslated region (5' UTR) and glycoprotein E2 coding sequence of the BVDV genome were amplified and sequenced. The sequences were aligned to each other and to international BVDV-1 sequences to determine their similarities and phylogenetic relationships. The 5' UTR sequences were also used to create genetic haplotype networks to determine if they were correlated with selected traits (location, type of farm, and year of collection). RESULTS The 5' UTR sequences from New Zealand BVDV were closely related to each other, with pairwise identities between 89% and 100%. All clustered together and were designated as BVDV-1a (n = 144) or BVDV-1c (n = 5). There was no evidence of a correlation between the 5' UTR sequence and the geographical origin within the country, year of collection or the type of farm. Partial E2 sequences from New Zealand BVDV (n = 76) showed 74-100% identity to each other and clustered in two main groups. The subtype assignment based on the E2 sequence was the same as based on the 5' UTR analysis. This is the first comprehensive analysis of genomic variability of contemporary New Zealand BVDV based on the analysis of the non-coding (5' UTR) and coding (E2) sequences. CONCLUSIONS AND CLINICAL RELEVANCE Knowledge of the diversity of the viruses circulating in the country is a prerequisite for the development of effective control strategies, including a selection of suitable vaccines. The data presented suggest that New Zealand BVDV are relatively homogeneous, which should facilitate eradication efforts including selection or development of the most suitable vaccines.
Collapse
Affiliation(s)
- M Dunowska
- Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - R Lal
- College of Health, Massey University, Palmerston North, New Zealand
| | - S D Dissanayake
- Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - S D Bond
- Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - E Burrows
- Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - J Moffat
- Scipharma Ltd., Upper Moutere, New Zealand
| | - L Howe
- Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
6
|
Wernike K, Beer M. Comparison of bovine viral diarrhea virus detection methods: Results of an international proficiency trial. Vet Microbiol 2024; 290:109985. [PMID: 38219410 DOI: 10.1016/j.vetmic.2024.109985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/06/2024] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Bovine viral diarrhea virus (BVDV), one of the most important infectious cattle diseases globally, is being combated in multiple countries. The main source for virus transmission within herds and especially to unaffected cattle farms are life-long persistently infected (PI), immunotolerant animals. Therefore, the early identification of PI calves is a major pillar of disease control programs. In addition, rapid and reliable virus identification is necessary to confirm the causative agent in acute clinical cases. Here, we initiated an international interlaboratory proficiency trial in order to evaluate BVDV detection methods. Four ear notch samples and four sera were provided to the participating veterinary diagnostic laboratories (n = 40). Two of the ear notches and two sera contained BVDV and two ear notches and one serum were negative for pestiviruses. The remaining serum was positive for the ovine border disease virus (BDV). The sample panel was analyzed by an ERNS-based ELISA for antigen detection, diverse real-time RT-PCR (RT-qPCR) assays and/or virus isolation. Occasionally, additional typing of the virus strains was performed by sequencing or specific antibody staining of the obtained cell culture isolates. While the antigen ELISA allowed reliable BVDV diagnostics, infectious virus could be isolated only in just under half of the attempts (43.33%). RT-qPCR enabled the sensitive detection of pestiviruses, though an impact of the extraction method on the resulting quantification cycle values was observed. In general, subsequent typing of the detected virus strains is required to differentiate BVDV from BDV infections. In conclusion, for BVDV identification in clinical cases or in the context of disease control, RT-qPCR methods or ERNS antigen ELISAs should be preferentially used.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald - Insel Riems, Germany.
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| |
Collapse
|
7
|
Wernike K, Pfaff F, Beer M. "Fading out" - genomic epidemiology of the last persistently infected BVDV cattle in Germany. Front Vet Sci 2024; 10:1339248. [PMID: 38239751 PMCID: PMC10794585 DOI: 10.3389/fvets.2023.1339248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/14/2023] [Indexed: 01/22/2024] Open
Abstract
Bovine viral diarrhea virus (BVDV) is one of the most important cattle pathogens worldwide, causing major economic losses and animal welfare issues. Disease eradication programs have been implemented in several countries, including Germany where an obligatory nationwide control program is in force since 2011. As molecular epidemiology has become an essential tool to understand the transmission dynamics and evolution of BVDV, 5' untranslated region (UTR) sequences are generated from viruses present in persistently infected animals since the beginning of the BVDV control program. Here, we report the results of the sequence-based subtyping of BVDV strains found from 2018 through 2022 in calves born in Germany. In 2018, 2019 and 2020, BVDV-1d and-1b were the dominant subtypes and cases were spread throughout the area that was not yet officially declared BVDV-free at that time. In addition, BVDV-1a, -1e, -1f and -1h could rarely be detected. From 2021 onwards, subtype 1d clearly took over the dominance, while the other subtypes could be gradually nearly eliminated from the cattle population. The eradication success not only results in a drastic reduction of cases, but also in a marked reduction of strain diversity. Interestingly, before vaccination has been banned in regions and farms with a disease-free status, two live-vaccine virus strains were repeatedly detected in ear tissue samples of newborn calves (n = 14) whose mothers were immunized during gestation. The field-virus sequences are an important basis for molecular tracing and identification of potential relationships between the last outbreaks in the final phase of the German BVDV eradication program, thereby supporting classic epidemiological investigations. Furthermore, the monitoring of the composition of virus subtypes in the cattle population helps to maintain effective diagnostic methods and control measures and is an early warning system for the introduction of new pestiviruses in the naïve cattle population.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
| | | | | |
Collapse
|
8
|
Spetter MJ, Louge Uriarte EL, Verna AE, Odeón AC, González Altamiranda EA. Genomic evolution of bovine viral diarrhea virus based on complete genome and individual gene analyses. Braz J Microbiol 2023; 54:2461-2469. [PMID: 37217730 PMCID: PMC10485219 DOI: 10.1007/s42770-023-00986-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023] Open
Abstract
Bovine viral diarrhea virus (BVDV) genome consists of a single-stranded, positive-sense RNA with high genetic diversity. In the last years, significant progress has been achieved in BVDV knowledge evolution through phylodynamic analysis based on the partial 5'UTR sequences, whereas a few studies have used other genes or the complete coding sequence (CDS). However, no research has evaluated and compared BVDV evolutionary history based on the complete genome (CG), CDS, and individual genes. In this study, phylodynamic analyses were carried out with BVDV-1 (Pestivirus A) and BVDV-2 (Pestivirus B) CG sequences available on the GenBank database and each genomic region: CDS, UTRs, and individual genes. In comparison to the CG, the estimations for both BVDV species varied according to the dataset used, pointing out the importance of considering the analyzed genomic region when concluding. This study may provide new insight into BVDV evolution history while highlighting the need to increase the available BVDV CG sequences to perform more comprehensive phylodynamic studies in the future.
Collapse
Affiliation(s)
- Maximiliano J Spetter
- Centro de Investigación Veterinaria de Tandil (CIVETAN) CONICET-CICPBA-UNCPBA, Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires, Paraje Arroyo Seco S/N, Campus Universitario, 7000, Tandil, CP, Argentina
| | - Enrique L Louge Uriarte
- Laboratorio de Virología Veterinaria, Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS, INTA-CONICET), Ruta 226 km 73.5, 7620, Balcarce Buenos Aires, CP, Argentina
| | - Andrea E Verna
- Laboratorio de Virología Veterinaria, Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS, INTA-CONICET), Ruta 226 km 73.5, 7620, Balcarce Buenos Aires, CP, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1033AAJ, Buenos Aires, Argentina
| | - Anselmo C Odeón
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Ruta 226 km 73.5, 7620, Buenos Aires, CP, Argentina
| | - Erika A González Altamiranda
- Laboratorio de Virología Veterinaria, Instituto de Innovación para la Producción Agropecuaria y el Desarrollo Sostenible (IPADS, INTA-CONICET), Ruta 226 km 73.5, 7620, Balcarce Buenos Aires, CP, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1033AAJ, Buenos Aires, Argentina.
| |
Collapse
|
9
|
HoBi-like Pestivirus Is Highly Prevalent in Cattle Herds in the Amazon Region (Northern Brazil). Viruses 2023; 15:v15020453. [PMID: 36851667 PMCID: PMC9965828 DOI: 10.3390/v15020453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Pestiviruses are globally distributed and cause substantial economic losses to the cattle industry. In Brazil, the country with the world's largest cattle population, pestivirus infections are well described in some regions, such as in the south, where a high frequency of BVDV-2 is described and contrasts with the high prevalence of HoBi-like pestivirus (HoBiPeV) in the northeast. However, there is a lack of information about pestiviruses in the Amazon Region, in northern Brazil, with a cattle population estimated at 55.7 million head, which has a significant impact on the international livestock market. Therefore, this study investigated the seroprevalence and genetic variability of ruminant pestiviruses in 944 bovine serum samples from four states in northern Brazil: Pará (PA), Amapá (AP), Roraima (RR), and Amazonas (AM). Our results showed that 45.4% of the samples were seropositive (19.8% for BVDV-1, 14.1% for BVDV-2, and 20.9% for HoBiPeV). All samples were tested by RT-qPCR, and three were positive and classified as HoBiPeV in a phylogenetic analysis. These serological and molecular results contrast with those from other regions of the world, suggesting that the northern Brazilian states have a high prevalence of all bovine pestiviruses including HoBiPeV.
Collapse
|
10
|
Kiss I, Szigeti K, Bányai K, Dobos A. A snapshot on Pestivirus A strains occurring in Central Europe. Res Vet Sci 2022; 152:442-445. [PMID: 36126511 DOI: 10.1016/j.rvsc.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/24/2022] [Accepted: 09/02/2022] [Indexed: 11/30/2022]
Abstract
Seven dairy farms and a beef herd were sampled to reveal the presence of bovine viral diarrhoea viruses (BVDV) in the cattle population and provide information on the occurrence of the different genotypes of the virus in Hungary and Slovakia. Serum and organ samples, lung, and lymph nodes were collected and submitted to serological testing, RT-qPCR, nucleotide sequencing, and virus isolation. The detected viruses belonged to 1b, 1d, and 1f subtypes. No Pestivirus B was found. Serum samples of cows immunized with a live vaccine containing a subtype 1a virus (Oregon C24V) showed cross-neutralizing activity against the selected representative field strains of each subtype. An RT-qPCR, specific for the vaccine strain was developed to differentiate between vaccine and field viruses and was used to evaluate vaccine virus viraemia and shedding. The obtained data provide baseline information on the currently occurring BVDV genotypes in the region and contribute to elaborating efficient control strategies.
Collapse
Affiliation(s)
- István Kiss
- Ceva Phylaxia Co. Ltd., Szállás u. 5, Budapest, Hungary.
| | | | - Krisztián Bányai
- Veterinary Medical Research Institute, Hungária krt. 21, 1143 Budapest, Hungary; University of Veterinary Medicine, István u. 2, 1078, Budapest, Hungary
| | - Attila Dobos
- Ceva Phylaxia Co. Ltd., Szállás u. 5, Budapest, Hungary
| |
Collapse
|
11
|
Koethe S, König P, Wernike K, Schulz J, Reimann I, Beer M. Bungowannah Pestivirus Chimeras as Novel Double Marker Vaccine Strategy against Bovine Viral Diarrhea Virus. Vaccines (Basel) 2022; 10:vaccines10010088. [PMID: 35062749 PMCID: PMC8778585 DOI: 10.3390/vaccines10010088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 12/23/2022] Open
Abstract
Marker or DIVA (differentiation of infected from vaccinated animals) vaccines are beneficial tools for the eradication of animal diseases in regions with a high prevalence of the designated disease. Bovine viral diarrhea virus (BVDV)-1 (syn. Pestivirus A) is a flavivirus that infects predominantly cattle resulting in major economic losses. An increasing number of countries have implemented BVDV eradication programs that focus on the detection and removal of persistently infected cattle. No efficient marker or DIVA vaccine is yet commercially available to drive the eradication success, to prevent fetal infection and to allow serological monitoring of the BVDV status in vaccinated farms. Bungowannah virus (BuPV, species Pestivirus F), a related member of the genus Pestivirus with a restricted prevalence to a single pig farm complex in Australia, was chosen as the genetic backbone for a marker vaccine candidate. The glycoproteins E1 and E2 of BuPV were substituted by the heterologous E1 and E2, which are major immunogens, of the BVDV-1 strain CP7. In addition, the candidate vaccine was further attenuated by the introduction of a deletion within the Npro protein coding sequence, a major type I interferon inhibitor. Immunization of cattle with the chimeric vaccine virus BuPV_ΔNpro_E1E2 CP7 (modified live or inactivated) followed by a subsequent experimental challenge infection confirmed the safety of the prototype strain and provided a high level of clinical protection against BVDV-1. The serological discrimination of vaccinated cattle could be enabled by the combined detection of BVDV-1 E2- in the absence of both BVDV NS3- and BVDV Erns-specific antibodies. The study demonstrates for the first time the generation and application of an efficient BVDV-1 modified double marker vaccine candidate that is based on the genetic background of BuPV accompanied by commercially available serological marker ELISA systems.
Collapse
Affiliation(s)
- Susanne Koethe
- Institute of Diagnostic Virology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Patricia König
- Institute of Diagnostic Virology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Jana Schulz
- Institute of Epidemiology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Ilona Reimann
- Institute of Diagnostic Virology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
12
|
Schweizer M, Stalder H, Haslebacher A, Grisiger M, Schwermer H, Di Labio E. Eradication of Bovine Viral Diarrhoea (BVD) in Cattle in Switzerland: Lessons Taught by the Complex Biology of the Virus. Front Vet Sci 2021; 8:702730. [PMID: 34557540 PMCID: PMC8452978 DOI: 10.3389/fvets.2021.702730] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/10/2021] [Indexed: 01/28/2023] Open
Abstract
Bovine viral diarrhoea virus (BVDV) and related ruminant pestiviruses occur worldwide and cause considerable economic losses in livestock and severely impair animal welfare. Switzerland started a national mandatory control programme in 2008 aiming to eradicate BVD from the Swiss cattle population. The peculiar biology of pestiviruses with the birth of persistently infected (PI) animals upon in utero infection in addition to transient infection of naïve animals requires vertical and horizontal transmission to be taken into account. Initially, every animal was tested for PI within the first year, followed by testing for the presence of virus in all newborn calves for the next four years. Prevalence of calves being born PI thus diminished substantially from around 1.4% to <0.02%, which enabled broad testing for the virus to be abandoned and switching to economically more favourable serological surveillance with vaccination being prohibited. By the end of 2020, more than 99.5% of all cattle farms in Switzerland were free of BVDV but eliminating the last remaining PI animals turned out to be a tougher nut to crack. In this review, we describe the Swiss BVD eradication scheme and the hurdles that were encountered and still remain during the implementation of the programme. The main challenge is to rapidly identify the source of infection in case of a positive result during antibody surveillance, and to efficiently protect the cattle population from re-infection, particularly in light of the endemic presence of the related pestivirus border disease virus (BDV) in sheep. As a consequence of these measures, complete eradication will (hopefully) soon be achieved, and the final step will then be the continuous documentation of freedom of disease.
Collapse
Affiliation(s)
- Matthias Schweizer
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Hanspeter Stalder
- Institute of Virology and Immunology, Bern, Switzerland.,Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | | | | | - Elena Di Labio
- Federal Food Safety and Veterinary Office (FSVO), Bern, Switzerland
| |
Collapse
|
13
|
Jokar M, Rahmanian V, Farhoodi M, Abdous A, Shams F, Karami N. Seroprevalence of bovine viral diarrhea virus (BVDV) infection in cattle population in Iran: a systematic review and meta-analysis. Trop Anim Health Prod 2021; 53:449. [PMID: 34533637 DOI: 10.1007/s11250-021-02918-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 09/10/2021] [Indexed: 11/26/2022]
Abstract
Bovine viral diarrhea virus (BVDV) is an important pathogen correlated with reproductive, respiratory, and gastrointestinal disorders in cattle. Furthermore, it causes endemic infections and significant economic losses in cattle herds worldwide. This review was performed to determine the pooled seroprevalence of BVDV infection and related risk factors among cattle in Iran. Data were systematically gathered without time limitation until 1 December 2020 in the Islamic Republic of Iran from the following electronic databases: PubMed, Google Scholar, Science Direct, Scopus, Web of Science, Elmnet, Magiran, Irandoc, Scientific Information Database (SID), and Civilica. According to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) and inclusion criteria, 28 eligible studies were obtained from various Iran areas. In total, the pooled seroprevalence of BVDV infection, using random-effect model, was estimated 52% (95% CI, 40.1-63.9) in cattle. According to serological detection methods, pooled seroprevalence was as follows: based on ELISA 53.9% and SVN 25.1%. The highest pooled seroprevalence of BVDV infection was in the southeast provinces of Iran (78.4%) and lowest pooled seroprevalence was in Southwest provinces of the country (28.5%). The pooled seroprevalence of BVDV infection in cattle ≤ 2 years was significantly lower than cattle > 2 years (OR = 0.606; 95% CI, 0.397-0.925), whereas the pooled seroprevalence had no significant difference according to other factors such as gender, herd size, and herd types. In conclusion, the pooled seroprevalence of BVDV infection among cattle in Iran is relatively high. The seroprevalence was different among geographical regions of the country. These results are desirable for managing the control programs of this infection in Iran.
Collapse
Affiliation(s)
- Mohammad Jokar
- Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Vahid Rahmanian
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran.
| | - Mehran Farhoodi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Arman Abdous
- Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Farzane Shams
- Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Nima Karami
- Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| |
Collapse
|
14
|
King J, Pohlmann A, Dziadek K, Beer M, Wernike K. Cattle connection: molecular epidemiology of BVDV outbreaks via rapid nanopore whole-genome sequencing of clinical samples. BMC Vet Res 2021; 17:242. [PMID: 34247601 PMCID: PMC8272987 DOI: 10.1186/s12917-021-02945-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND As a global ruminant pathogen, bovine viral diarrhea virus (BVDV) is responsible for the disease Bovine Viral Diarrhea with a variety of clinical presentations and severe economic losses worldwide. Classified within the Pestivirus genus, the species Pestivirus A and B (syn. BVDV-1, BVDV-2) are genetically differentiated into 21 BVDV-1 and four BVDV-2 subtypes. Commonly, the 5' untranslated region and the Npro protein are utilized for subtyping. However, the genetic variability of BVDV leads to limitations in former studies analyzing genome fragments in comparison to a full-genome evaluation. RESULTS To enable rapid and accessible whole-genome sequencing of both BVDV-1 and BVDV-2 strains, nanopore sequencing of twelve representative BVDV samples was performed on amplicons derived through a tiling PCR procedure. Covering a multitude of subtypes (1b, 1d, 1f, 2a, 2c), sample matrices (plasma, EDTA blood and ear notch), viral loads (Cq-values 19-32) and species (cattle and sheep), ten of the twelve samples produced whole genomes, with two low titre samples presenting 96 % genome coverage. CONCLUSIONS Further phylogenetic analysis of the novel sequences emphasizes the necessity of whole-genome sequencing to identify novel strains and supplement lacking sequence information in public repositories. The proposed amplicon-based sequencing protocol allows rapid, inexpensive and accessible obtainment of complete BVDV genomes.
Collapse
Affiliation(s)
- Jacqueline King
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Kamila Dziadek
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany.
| |
Collapse
|
15
|
Mungthong K, Khaing ST, Otsubo T, Hatanaka C, Yoneyama S, Hisamatsu S, Murakami H, Tsukamoto K. Broad detection and quick differentiation of bovine viral diarrhea viruses 1 and 2 by a reverse transcription loop-mediated isothermal amplification test. J Vet Med Sci 2021; 83:1321-1329. [PMID: 34162783 PMCID: PMC8437728 DOI: 10.1292/jvms.20-0742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
For broad detection of pestivirus A (bovine viral diarrhea virus 1: BVDV1) and pestivirus B (BVDV2) by a reverse transcription loop-mediated isothermal amplification (RT-LAMP) test, the P25 primer set was designed using nucleotide sequences of 5'-UTR region of 1454 BVDVs. The base coverage of each primer against diverse BVDVs were more than 99% in each base position. The one step LAMP test with the P25 primer set could detect both BVDV1 (TK) and BVDV2 (KZ), but did not amplify 5 other bovine viruses. Detection limit of the LAMP test was 103 copies of synthesized DNAs, and 10-3 and 10-4 dilutions of viral RNAs of TK and KZ strains, respectively, whereas that with current Aebischer's primer set was 10-2 dilution and negative of these RNAs, respectively. All of the 63 viral RNA samples of persistently infected (PI) cattle, consisting of the 1a (12), 1b (31), 1c (11), and 2a (9) subgenotypes, were broadly detected with the P25, while only 65% of them were positive with Aebischer's primer set. The validation study showed that the RT-LAMP test with the P25 had 100% sensitivity and 100% specificity against that with updated Vilcek's PCR primers. Also, by using the P26 primer set which contained 3 species-specific primers, all 63 RNA samples were clearly distinguished from BVDV1 or BVDV2 by the typing RT-LAMP test. These results indicate that the one step RT-LAMP test using P25 or P26 primer sets would be useful for broad detection and rapid differentiation of BVDV1 and BVDV2.
Collapse
Affiliation(s)
- Kanumporn Mungthong
- Laboratory of Animal Health II, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan.,Present address: Kasetsart University, Veterinary Teaching-Hospital Nongpho, Thailand
| | - Soe Thiri Khaing
- Laboratory of Animal Health II, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan.,Present address: Livestock Breeding and Veterinary Department, Yangon, Myanmar
| | - Takehiko Otsubo
- Livestock Hygiene Service Center of Chiba Prefecture, Sakura, Chiba 285-0072, Japan
| | - Chihiro Hatanaka
- Livestock Hygiene Service Center of Chiba Prefecture, Sakura, Chiba 285-0072, Japan
| | - Shuji Yoneyama
- Animal Hygiene Service Centers of Tochigi Prefecture, Hirade, Tochigi 321-0905, Japan
| | - Shin Hisamatsu
- Department of Environmental Science, School of Life and Environmental Science, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Hironobu Murakami
- Laboratory of Animal Health II, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| | - Kenji Tsukamoto
- Laboratory of Animal Health II, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa 252-5201, Japan
| |
Collapse
|
16
|
Luzzago C, Decaro N. Epidemiology of Bovine Pestiviruses Circulating in Italy. Front Vet Sci 2021; 8:669942. [PMID: 34150891 PMCID: PMC8206264 DOI: 10.3389/fvets.2021.669942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/22/2021] [Indexed: 11/13/2022] Open
Abstract
Pestiviruses are widespread and economically important pathogens of cattle and other animals. Pestivirus A (formerly known as Bovine viral diarrhea virus 1, BVDV-1), Pestivirus B (Bovine viral diarrhea virus 2, BVDV-2), and Pestivirus H (HoBi-like pestivirus, HoBiPeV) species are infecting primarily cattle. Like other RNA viruses, pestiviruses are characterized by a high degree of genetic variability. This high rate of variability is revealed by the existence of a number of viral subgenotypes within each species. In cattle, the highest number of pestivirus subgenotypes has been documented in European countries, particularly in Italy. The aim of this review is to report an up-to-date overview about the genetic diversity of pestiviruses in Italian cattle herds. All three bovine pestiviruses species have been identified in cattle population with variable frequency and geographical distribution. The genetic diversity of Italian pestiviral strains may have diagnostic and immunological implications, affecting the performance of diagnostic tools and the full cross-protection elicited by commercially available vaccines. Implementation and strengthening of coordinated approaches for bovine pestivirus control in Italy are recommended. Therefore, it would be extremely important to increase control and restriction measures to the trade of cattle and biological products of bovine origin, including those containing fetal bovine serum.
Collapse
Affiliation(s)
- Camilla Luzzago
- Department of Veterinary Medicine, Coordinated Research Center "EpiSoMI", University of Milano, Milano, Italy
| | - Nicola Decaro
- Department of Veterinary Medicine, University of Bari Aldo Moro, Valenzano, Italy
| |
Collapse
|
17
|
Re-Introduction of Bovine Viral Diarrhea Virus in a Disease-Free Region: Impact on the Affected Cattle Herd and Diagnostic Implications. Pathogens 2021; 10:pathogens10030360. [PMID: 33803542 PMCID: PMC8002923 DOI: 10.3390/pathogens10030360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/08/2021] [Accepted: 03/16/2021] [Indexed: 11/17/2022] Open
Abstract
Bovine viral diarrhea (BVD) is one of the most important infectious cattle diseases worldwide. The major source of virus transmission is immunotolerant, persistently infected (PI) calves, which makes them the key target of control programs. In the German federal state of Saxony-Anhalt, a very low prevalence was achieved, with more than 99.8% of the cattle herds being free from PI animals since the year 2013. In 2017, BVD virus was detected in a previously disease-free holding (herd size of ~380 cows, their offspring, and fattening bulls). The purchase of two so-called Trojan cows, i.e., dams pregnant with a PI calf, was identified as the source of infection. The births of the PI animals resulted in transient infections of in-contact dams, accompanied by vertical virus transmission to their fetuses within the critical timeframe for the induction of PI calves. Forty-eight days after the birth of the first PI calf, all animals in close contact with the Trojan cows during their parturition period were blood-sampled and serologically examined by a neutralization test and several commercial ELISAs. The resulting seroprevalence strongly depended on the applied test system. The outbreak could be stopped by the immediate elimination of every newborn PI calf and vaccination, and since 2018, no BVD cases have occurred.
Collapse
|
18
|
BoHV-1-Vectored BVDV-2 Subunit Vaccine Induces BVDV Cross-Reactive Cellular Immune Responses and Protects against BVDV-2 Challenge. Vaccines (Basel) 2021; 9:vaccines9010046. [PMID: 33451136 PMCID: PMC7828602 DOI: 10.3390/vaccines9010046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 02/07/2023] Open
Abstract
The bovine respiratory disease complex (BRDC) remains a major problem for both beef and dairy cattle industries worldwide. BRDC frequently involves an initial viral respiratory infection resulting in immunosuppression, which creates a favorable condition for fatal secondary bacterial infection. Current polyvalent modified live vaccines against bovine herpesvirus type 1(BoHV-1) and bovine viral diarrhea virus (BVDV) have limitations concerning their safety and efficacy. To address these shortcomings and safety issues, we have constructed a quadruple gene mutated BoHV-1 vaccine vector (BoHV-1 QMV), which expresses BVDV type 2, chimeric E2 and Flag-tagged Erns-fused with bovine granulocyte monocyte colony-stimulating factor (GM-CSF) designated here as QMV-BVD2*. Here we compared the safety, immunogenicity, and protective efficacy of QMV-BVD2* vaccination in calves against BVDV-2 with Zoetis Bovi-shield Gold 3 trivalent (BoHV-1, BVDV types 1 and 2) vaccine. The QMV-BVD2* prototype subunit vaccine induced the BoHV-1 and BVDV-2 neutralizing antibody responses along with BVDV-1 and -2 cross-reactive cellular immune responses. Moreover, after a virulent BVDV-2 challenge, the QMV-BVD2* prototype subunit vaccine conferred a more rapid recall BVDV-2-specific neutralizing antibody response and considerably better recall BVDV types 1 and 2-cross protective cellular immune responses than that of the Zoetis Bovi-shield Gold 3.
Collapse
|
19
|
Koethe S, König P, Wernike K, Pfaff F, Schulz J, Reimann I, Makoschey B, Beer M. A Synthetic Modified Live Chimeric Marker Vaccine against BVDV-1 and BVDV-2. Vaccines (Basel) 2020; 8:vaccines8040577. [PMID: 33023099 PMCID: PMC7712951 DOI: 10.3390/vaccines8040577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
Bovine viral diarrhea virus (BVDV), a pestivirus which exists in the two distinct species BVDV-1 (syn. Pestivirus A) and BVDV-2 (syn. Pestivirus B), is the causative agent of one of the most widespread and economically important virus infections in cattle. For economic as well as for animal health reasons, an increasing number of national BVDV control programs were recently implemented. The main focus lies on the detection and removal of persistently infected cattle. The application of efficient marker or DIVA (differentiation of infected from vaccinated animals) vaccines would be beneficial for the eradication success in regions with a high BVDV prevalence to prevent fetal infection and it would allow serological monitoring of the BVDV status also in vaccinated farms. Therefore, a marker vaccine based on the cytopathic (cp) BVDV-1b strain CP7 was constructed as a synthetic backbone (BVDV-1b_synCP7). For serological discrimination of vaccinated from infected animals, the viral protein Erns was substituted by the heterologous Erns of Bungowannah virus (BuPV, species Pestivirus F). In addition, the vaccines were attenuated by a deletion within the type I interferon inhibitor Npro protein encoding sequence. The BVDV-2 vaccine candidate is based on the genetic sequence of the glycoproteins E1 and E2 of BVDV-2 strain CS8644 (CS), which were introduced into the backbone of BVDV-1b_synCP7_ΔNpro_Erns Bungo in substitution of the homologous glycoproteins. Vaccine virus recovery resulted in infectious cytopathic virus chimera that grew to titers of up to 106 TCID50/mL. Both synthetic chimera BVDV-1b_synCP7_ΔNpro_Erns Bungo and BVDV-1b_synCP7_ΔNpro_Erns Bungo_E1E2 BVDV-2 CS were avirulent in cattle, provided a high level of protection in immunization and challenge experiments against both BVDV species and allowed differentiation of infected from vaccinated cattle. Our study presents the first report on an efficient BVDV-1 and -2 modified live marker vaccine candidate and the accompanying commercially available serological marker ELISA system.
Collapse
Affiliation(s)
- Susanne Koethe
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (S.K.); (P.K.); (K.W.); (F.P.); (I.R.)
| | - Patricia König
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (S.K.); (P.K.); (K.W.); (F.P.); (I.R.)
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (S.K.); (P.K.); (K.W.); (F.P.); (I.R.)
| | - Florian Pfaff
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (S.K.); (P.K.); (K.W.); (F.P.); (I.R.)
| | - Jana Schulz
- Institute of Epidemiology Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany;
| | - Ilona Reimann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (S.K.); (P.K.); (K.W.); (F.P.); (I.R.)
| | - Birgit Makoschey
- Intervet International B.V., MSD Animal Health, 5831 AN Boxmeer, The Netherlands;
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany; (S.K.); (P.K.); (K.W.); (F.P.); (I.R.)
- Correspondence: ; Tel.: +49-38351-71200
| |
Collapse
|
20
|
Hou P, Xu Y, Wang H, He H. Detection of bovine viral diarrhea virus genotype 1 in aerosol by a real time RT-PCR assay. BMC Vet Res 2020; 16:114. [PMID: 32295612 PMCID: PMC7159024 DOI: 10.1186/s12917-020-02330-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 03/30/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND As a pestivirus of the Flaviviridae family, bovine viral diarrhea virus (BVDV), has imposed a large burden on animal husbandry worldwide, and such virus can be transmitted mainly through direct contact with other infected animals and probably via aerosols. In the present study, we aimed to develop a real-time RT-PCR method for detection of BVDV-1 in aerosol samples. METHODS A pair of primers specific for highly conserved regions of the BVDV-1 5'-UTR was designed. The standard curve and sensitivity of the developed assay were assessed based on 10-fold serial dilutions of RNA molecular standard. The specificity of the assay was evaluated with other pestiviruses and infectious bovine viruses. The clinical performance was examined by testing 169 aerosol samples. RESULTS The results showed that a good linear relationship existed between the standard curve and the concentration of template. The lowest detection limit was 5.2 RNA molecules per reaction. This assay was specific for detection of BVDV-1, and no amplification was found for other pestiviruses such as classical swine fever virus (CSFV), border disease virus (BDV), and common infectious bovine viruses, including BVDV-2, infectious bovine rhinotracheitis virus (IBRV), bovine parainfluenza virus type 3 (BPIV-3), bovine respiratory syncytial virus (BRSV), bovine ephemeral fever virus (BEFV) and bovine coronavirus (BcoV). The assay was highly reproducible with low variation coefficient values (CVs) for intra-assay and inter-assay. A total of 169 aerosol samples collected from six dairy herds were tested using this method. The results showed that the positive detection rate of BVDV-1 was 17.2% (29/169), which was significantly higher compared with the conventional RT-PCR. Additionally, the positive samples (n = 29) detected by real-time RT-PCR were verified by BVDV RPA-LFD, and a concordance rate of 100% was obtained between them. CONCLUSIONS Taken together, we developed a real-time RT-PCR assay for quantitative analysis of BVDV-1 in aerosol samples, and our finding provided valuable insights into the risk on aerosol transmission of BVDV-1.
Collapse
Affiliation(s)
- Peili Hou
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan City, Shandong Province China
| | - Yaru Xu
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan City, Shandong Province China
| | - Hongmei Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan City, Shandong Province China
| | - Hongbin He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, No.88 East Wenhua Road, Jinan City, Shandong Province China
| |
Collapse
|
21
|
Wernike K, Beer M. Diagnostics in the context of an eradication program: Results of the German bovine viral diarrhea proficiency trial. Vet Microbiol 2019; 239:108452. [PMID: 31767099 DOI: 10.1016/j.vetmic.2019.108452] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 10/04/2019] [Accepted: 10/06/2019] [Indexed: 11/18/2022]
Abstract
Bovine viral diarrhea (BVD), one of the most important infectious diseases in cattle, causes major economic losses and significant impact on animal welfare worldwide. The major source for virus spread is persistently infected, immunotolerant calves and, therefore, their early identification is of utmost importance for disease prevention. Here, a ring trial was initiated to control the performance of diagnostic tests used in German regional laboratories in charge of the diagnostics within the country's BVD control program. A panel of five ear notch and five serum samples was provided for virological analysis. By an antigen ELISA, which was applied 26 times, the status of every sample was correctly identified in any case. In addition, a total of 54 real-time RT-PCR result sets was generated and also in most cases correctly classified. In addition to the virological test panel, a set of six sera and four milk samples was sent to the participating laboratories to be analyzed by serological methods. With serum neutralization tests, an excellent diagnostic sensitivity was achieved. However, one serum and both milk samples - positive for BVDV antibodies - repeatedly tested false negative by some of the used ELISA kits. All negative serum and milk samples were correctly identified by every commercial antibody ELISA. In conclusion, the BVDV proficiency test demonstrated that the used antigen/genome test systems allowed predominantly reliable diagnostics, while for four of the applied nine antibody ELISA kits adjustments are recommended.
Collapse
Affiliation(s)
- Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald - Insel Riems, Germany.
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald - Insel Riems, Germany
| |
Collapse
|
22
|
Braun U, Hilbe M, Peterhans E, Schweizer M. Border disease in cattle. Vet J 2019; 246:12-20. [PMID: 30902184 DOI: 10.1016/j.tvjl.2019.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 10/27/2022]
Abstract
Within the family Flaviviridae, viruses within the genus Pestivirus, such as Border disease virus (BDV) of sheep, can cause great economic losses in farm animals. Originally, the taxonomic classification of pestiviruses was based on the host species they were isolated from, but today, it is known that many pestiviruses exhibit a broad species tropism. This review provides an overview of BDV infection in cattle. The clinical, hematological and pathological-anatomical findings in bovines that were transiently or persistently infected with BDV largely resemble those in cattle infected with the closely related pestivirus bovine viral diarrhoea virus (BVDV). Accordingly, the diagnosis of BDV infection can be challenging, as it must be differentiated from various pestiviruses in cattle. The latter is very relevant in countries with control programs to eradicate BVDV in Bovidae, as in most circumstances, pestivirus infections in sheep, which act as reservoir for BDV, are not included in the eradication scheme. Interspecies transmission of BDV between sheep and cattle occurs regularly, but BDV in cattle appears to be of minor general importance. Nevertheless, BDV outbreaks at farm or local level can be very costly.
Collapse
Affiliation(s)
- Ueli Braun
- Department of Farm Animals, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland.
| | - Monika Hilbe
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Ernst Peterhans
- Institute for Virology and Immunology, Länggass-Strasse 122, 3001 Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3001 Bern, Switzerland
| | - Matthias Schweizer
- Institute for Virology and Immunology, Länggass-Strasse 122, 3001 Bern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggass-Strasse 122, 3001 Bern, Switzerland
| |
Collapse
|
23
|
Dalmann A, Wernike K, Reimann I, Finlaison DS, Kirkland PD, Beer M. Bungowannah virus in the affected pig population: a retrospective genetic analysis. Virus Genes 2019; 55:298-303. [PMID: 30706196 DOI: 10.1007/s11262-019-01642-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/22/2019] [Indexed: 12/15/2022]
Abstract
Bungowannah virus, which belongs to the genus Pestivirus within the family Flaviviridae, has been associated with myocarditis and a high incidence of stillbirths in pigs. In 2003, the virus was initially detected in a large pig farming complex on two separate sites in New South Wales, Australia. Until now, it has not been detected at other locations. Despite a program of depopulation and disinfection, the virus could be only eradicated from one of the affected farm complexes, the Bungowannah unit, but became endemic on the second complex, the Corowa unit. In the present study, the genetic variability of virus isolates collected between 2003 and 2014 in the endemically infected population has been retrospectively investigated. Phylogenetic analysis carried out based on sequences of the E2 and NS5B coding regions and the full-length open-reading frame revealed that the isolates from the different farm sites are closely related, but that samples collected between 2010 and 2014 at the Corowa farm site clustered in a different branch of the phylogenetic tree. Since 2010, a high-genetic stability of this RNA virus within the Corowa farm complex, probably due to an effective adaptation of the virus to the affected pig population, could be observed.
Collapse
Affiliation(s)
- Anja Dalmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Ilona Reimann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany
| | - Deborah S Finlaison
- Virology Laboratory, Elizabeth Macarthur Agriculture Institute, Woodbridge Rd, Menangle, NSW, 2568, Australia
| | - Peter D Kirkland
- Virology Laboratory, Elizabeth Macarthur Agriculture Institute, Woodbridge Rd, Menangle, NSW, 2568, Australia
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald - Insel Riems, Germany.
| |
Collapse
|
24
|
Stalder H, Bachofen C, Schweizer M, Zanoni R, Sauerländer D, Peterhans E. Traces of history conserved over 600 years in the geographic distribution of genetic variants of an RNA virus: Bovine viral diarrhea virus in Switzerland. PLoS One 2018; 13:e0207604. [PMID: 30517140 PMCID: PMC6281212 DOI: 10.1371/journal.pone.0207604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/02/2018] [Indexed: 11/18/2022] Open
Abstract
The first records of smallpox and rabies date back thousands of years and foot-and-mouth disease in cattle was described in the 16th century. These diseases stood out by their distinct signs, dramatic way of transmission from rabid dogs to humans, and sudden appearance in cattle herds. By contrast, infectious diseases that show variable signs and affect few individuals were identified only much later. Bovine viral diarrhea (BVD), endemic in cattle worldwide, was first described in 1946, together with the eponymous RNA virus as its cause. There is general agreement that BVD was not newly emerging at that time, but its history remains unknown. A search for associations between the nucleotide sequences of over 7,000 BVD viral strains obtained during a national campaign to eradicate BVD and features common to the hosts of these strains enabled us to trace back in time the presence of BVD in the Swiss cattle population. We found that animals of the two major traditional cattle breeds, Fleckvieh and Swiss Brown, were infected with strains of only four different subgenotypes of BVDV-1. The history of these cattle breeds and the events that determined the current distribution of the two populations are well documented. Specifically, Fleckvieh originates from the Bernese and Swiss Brown from the central Alps. The spread to their current geographic distribution was determined by historic events during a major expansion of the Swiss Confederation during the 15th and 16th centuries. The association of the two cattle populations with different BVD viral subgenotypes may have been preserved by a lack of cattle imports, trade barriers within the country, and unique virus-host interactions. The congruent traces of history in the distribution of the two cattle breeds and distinct viral subgenotypes suggests that BVD may have been endemic in Switzerland for at least 600 years.
Collapse
Affiliation(s)
- Hanspeter Stalder
- Institute of Virology and Immunology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Claudia Bachofen
- Institute of Virology and Immunology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Matthias Schweizer
- Institute of Virology and Immunology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Reto Zanoni
- Institute of Virology and Immunology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Dominik Sauerländer
- University of Applied Sciences and Arts Northwestern Switzerland, Campus Brugg-Windisch, Windisch, Switzerland, Switzerland
| | - Ernst Peterhans
- Institute of Virology and Immunology, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
25
|
Scharnböck B, Roch FF, Richter V, Funke C, Firth CL, Obritzhauser W, Baumgartner W, Käsbohrer A, Pinior B. A meta-analysis of bovine viral diarrhoea virus (BVDV) prevalences in the global cattle population. Sci Rep 2018; 8:14420. [PMID: 30258185 PMCID: PMC6158279 DOI: 10.1038/s41598-018-32831-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023] Open
Abstract
A random effect meta-analysis was performed to estimate the worldwide pooled bovine viral diarrhoea virus (BVDV) prevalences of persistently infected (PI), viraemic (VI) and antibody-positive (AB) animals and herds. The meta-analysis covered 325 studies in 73 countries that determined the presence or absence of BVDV infections in cattle from 1961 to 2016. In total, 6.5 million animals and 310,548 herds were tested for BVDV infections in the global cattle population. The worldwide pooled PI prevalences at animal level ranged from low (≤0.8% Europe, North America, Australia), medium (>0.8% to 1.6% East Asia) to high (>1.6% West Asia). The PI and AB prevalences in Europe decreased over time, while BVDV prevalence increased in North America. The highest mean pooled PI prevalences at animal level were identified in countries that had failed to implement any BVDV control and/or eradication programmes (including vaccination). Our analysis emphasizes the need for more standardised epidemiological studies to support decision-makers implementing animal health policies for non-globally-regulated animal diseases.
Collapse
Affiliation(s)
- Bettina Scharnböck
- Institute for Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Franz-Ferdinand Roch
- Institute for Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Veronika Richter
- Institute for Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Carsten Funke
- Institute for Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
- Institute of Veterinary Pathology, Justus-Liebig-University, Frankfurter Straße 96, 35392, Giessen, Germany
| | - Clair L Firth
- Institute for Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Walter Obritzhauser
- Institute for Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Walter Baumgartner
- University Clinic for Ruminants, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Annemarie Käsbohrer
- Institute for Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria
- Department of Biological Safety, Federal Institute for Risk Assessment (BfR), Diedersdorfer Weg 1, 12277, Berlin, Germany
| | - Beate Pinior
- Institute for Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
26
|
|
27
|
The Occurrence of a Commercial N pro and E rns Double Mutant BVDV-1 Live-Vaccine Strain in Newborn Calves. Viruses 2018; 10:v10050274. [PMID: 29783722 PMCID: PMC5977267 DOI: 10.3390/v10050274] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 02/02/2023] Open
Abstract
The major source for the spread of bovine viral diarrhea virus (BVDV) are in-utero infected, immunotolerant, persistently infected (PI) animals since they shed enormous amounts of viruses throughout their lives. During the sequence-based virus typing of diagnostic ear notch samples performed in the context of the obligatory German BVDV eradication program, the commercial Npro and Erns double mutant BVDV-1 live-vaccine strain KE-9 was detected in seven newborn calves; their mothers were immunized in the first trimester of gestation. Six calves either succumbed or were culled immediately, but the one remaining animal was closely monitored for six months. The viral RNA was detected in the skin sample taken in its first and fifth week of life, but the virus could not be isolated. Further skin biopsies that were taken at monthly intervals as well as every serum and urine sample, nasal, oral, and rectal swabs taken weekly tested BVDV negative. However, neutralizing titers against BVDV-1 remained at a consistently high level. To further control for virus shedding, a BVDV antibody and antigen negative calf was co-housed which remained negative throughout the study. The missing viremia, a lack of excretion of infectious virus and negative follow-up skin samples combined with consistently high antibody titers speak against the induction of the classical persistent infection by vaccination with recombinant KE-9 during gestation. We, therefore, suggest that the epidemiological impact of the RNA/antigen positivity for an extended period in the skin is very low. The detection of live-vaccine viruses in skin biopsies mainly represents a diagnostic issue in countries that implemented ear notch-based control programs; and KE9-specific RT-PCRs or sequence analysis can be used to identify these animals and avoid culling measures.
Collapse
|
28
|
Abstract
Bovine viral diarrhea (BVD) is one of the most important infectious diseases of cattle with respect to animal health and economic impact. Its stealthy nature, prolonged transient infections, and the presence of persistently infected (PI) animals as efficient reservoirs were responsible for its ubiquitous presence in cattle populations worldwide. Whereas it was initially thought that the infection was impossible to control, effective systematic control strategies have emerged over the last 25 years. The common denominators of all successful control programs were systematic control, removal of PI animals, movement controls for infected herds, strict biosecurity, and surveillance. Scandinavian countries, Austria, and Switzerland successfully implemented these control programs without using vaccination. Vaccination as an optional and additional control tool was used by e.g., Germany, Belgium, Ireland, and Scotland. The economic benefits of BVD control programs had been assessed in different studies.
Collapse
Affiliation(s)
- Volker Moennig
- Institute of Virology, University of Veterinary Medicine, Bünteweg 17, D-30559 Hannover, Germany.
| | - Paul Becher
- Institute of Virology, University of Veterinary Medicine, Bünteweg 17, D-30559 Hannover, Germany.
| |
Collapse
|
29
|
Ambrose RK, Gravel JL, Commins MA, Fowler EV, Mahony TJ. In Vivo Characterisation of Five Strains of Bovine Viral Diarrhoea Virus 1 (Subgenotype 1c). Pathogens 2018; 7:pathogens7010012. [PMID: 29351201 PMCID: PMC5874738 DOI: 10.3390/pathogens7010012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 02/05/2023] Open
Abstract
Bovine viral diarrhoea virus 1 (BVDV-1) is strongly associated with several important diseases of cattle, such as bovine respiratory disease, diarrhoea and haemoragic lesions. To date many subgenotypes have been reported for BVDV-1, currently ranging from subgenotype 1a to subgenotype 1u. While BVDV-1 has a world-wide distribution, the subgenotypes have a more restricted geographical distribution. As an example, BVDV-1 subgenotypes 1a and 1b are frequently detected in North America and Europe, while the subgenotype 1c is rarely detected. In contrast, BVDV-1 subgenotype 1c is by far the most commonly reported in Australia. Despite this, uneven distribution of the biological importance of the subgenotypes remains unclear. The aim of this study was to characterise the in vivo properties of five strains of BVDV-1 subgenotype 1c in cattle infection studies. No overt respiratory signs were reported in any of the infected cattle regardless of strain. Consistent with other subgenotypes, transient pyrexia and leukopenia were commonly identified, while thrombocytopenia was not. The quantity of virus detected in the nasal secretions of transiently infected animals suggested the likelihood of horizontal transmission was very low. Further studies are required to fully understand the variability and importance of the BVDV-1 subgenotype 1c.
Collapse
Affiliation(s)
- Rebecca K Ambrose
- Department of Agriculture and Fisheries, Animal Science, Dutton Park 4102, Australia.
| | - Jennifer L Gravel
- Department of Agriculture and Fisheries, Animal Science, Dutton Park 4102, Australia.
| | - Margaret A Commins
- Department of Agriculture and Fisheries, Animal Science, Dutton Park 4102, Australia.
| | - Elizabeth V Fowler
- Department of Agriculture and Fisheries, Animal Science, Dutton Park 4102, Australia.
| | - Timothy J Mahony
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia 4072, Australia.
| |
Collapse
|