1
|
Damian D. Navigating the Landscape of Tick Diversity: Integrating Molecular Approaches for Enhanced Control Measures. Vector Borne Zoonotic Dis 2025; 25:1-13. [PMID: 39140860 DOI: 10.1089/vbz.2024.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
The emergence and spread of infectious diseases, particularly zoonotic diseases originating from wildlife, pose significant threats to global health and economy. This review examines the pivotal role of ticks as vectors in transmitting pathogens to humans, livestock, and wildlife and the use of molecular techniques in their identification. Tick infestations result in economic losses through reduced animal productivity, anemia, and quality deterioration of hides. Furthermore, ticks serve as reservoirs for a wide range of pathogens including viruses, bacteria, fungi, protozoa, and nematodes, contributing to the transmission of diseases such as Crimean-Congo hemorrhagic fever, tick-borne encephalitis, and African swine fever among others. The interface between wildlife, livestock, and humans facilitates the transmission of zoonotic pathogens, exacerbated by nomadic and pastoralist lifestyles that promote interactions between wildlife and domestic animals. This movement of animals across landscapes enhances the dispersion of tick vectors, increasing the risk of pathogen exposure for diverse populations. Historically, tick identification in sub-Saharan Africa has relied on morphological characteristics despite limitations such as species overlap and variability. Molecular techniques offer a more precise means of species identification, providing critical data for effective tick and pathogen management strategies. Integrating molecular approaches into tick research enhances our understanding of tick diversity, distribution patterns, and pathogen dynamics. This knowledge is essential for developing targeted interventions to mitigate the impact of tick-borne diseases on public and veterinary health worldwide.
Collapse
Affiliation(s)
- Donath Damian
- Department of Biochemistry, University of Dar es Salaam-Mbeya College of Health and Allied Sciences, Tanzania, Mbeya, Tanzania
| |
Collapse
|
2
|
Nazim K, Godara R, Katoch R, Sofi OMUD, Yadav A, Singh NK. Status of ivermectin resistance in Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) populations from north-western Himalayas, India. Ticks Tick Borne Dis 2022; 13:101964. [DOI: 10.1016/j.ttbdis.2022.101964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/31/2022] [Accepted: 04/26/2022] [Indexed: 11/24/2022]
|
3
|
King'ori EM, Obanda V, Nyamota R, Remesar S, Chiyo PI, Soriguer R, Morrondo P. Population genetic structure of the elephant tick Amblyomma tholloni from different elephant populations in Kenya. Ticks Tick Borne Dis 2022; 13:101935. [DOI: 10.1016/j.ttbdis.2022.101935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 02/10/2022] [Accepted: 03/05/2022] [Indexed: 11/25/2022]
|
4
|
Huaman JL, Pacioni C, Forsyth DM, Pople A, Hampton JO, Helbig KJ, Carvalho TG. Evaluation of haemoparasite and Sarcocystis infections in Australian wild deer. Int J Parasitol Parasites Wildl 2021; 15:262-269. [PMID: 34277336 PMCID: PMC8261462 DOI: 10.1016/j.ijppaw.2021.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 11/18/2022]
Abstract
Wild animals are natural reservoir hosts for a variety of pathogens that can be transmitted to other wildlife, livestock, other domestic animals, and humans. Wild deer (family Cervidae) in Europe, Asia, and North and South America have been reported to be infected with gastrointestinal and vector-borne parasites. In Australia, wild deer populations have expanded considerably in recent years, yet there is little information regarding which pathogens are present and whether these pathogens pose biosecurity threats to humans, wildlife, livestock, or other domestic animals. To address this knowledge gap, PCR-based screening for five parasitic genera was conducted in blood samples (n = 243) sourced from chital deer (Axis axis), fallow deer (Dama dama), rusa deer (Rusa timorensis) and sambar deer (Rusa unicolor) sampled in eastern Australia. These blood samples were tested for the presence of DNA from Plasmodium spp., Trypanosoma spp., Babesia spp., Theileria spp. and Sarcocystis spp. Further, the presence of antibodies against Babesia bovis was investigated in serum samples (n = 105) by immunofluorescence. In this study, neither parasite DNA nor antibodies were detected for any of the five genera investigated. These results indicate that wild deer are not currently host reservoirs for Plasmodium, Trypanosoma, Babesia, Theileria or Sarcocystis parasites in eastern Australia. We conclude that in eastern Australia, wild deer do not currently play a significant role in the transmission of these parasites. This survey represents the first large-scale molecular study of its type in Australian wild deer and provides important baseline information about the parasitic infection status of these animals. The expanding populations of wild deer throughout Australia warrant similar surveys in other parts of the country and surveillance efforts to continually assess the level of threat wild deer could pose to humans, wildlife, livestock and other domestic animals.
Collapse
Affiliation(s)
- Jose L. Huaman
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Carlo Pacioni
- Arthur Rylah Institute for Environmental Research, Department of Environment, Land, Water and Planning, Heidelberg, Victoria, 3084, Australia
- Environmental and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150, Australia
| | - David M. Forsyth
- Vertebrate Pest Research Unit, NSW Department of Primary Industries, Orange, New South Wales, 2800, Australia
| | - Anthony Pople
- Invasive Plants & Animals Research, Biosecurity Queensland, Department of Agriculture and Fisheries, Ecosciences Precinct, Brisbane, Queensland, 4102, Australia
| | - Jordan O. Hampton
- Environmental and Conservation Sciences, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150, Australia
- Ecotone Wildlife, PO Box 76, Inverloch, Victoria, 3996, Australia
| | - Karla J. Helbig
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria, 3086, Australia
| | - Teresa G. Carvalho
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria, 3086, Australia
| |
Collapse
|
5
|
Damian D, Damas M, Wensman JJ, Berg M. Genetic Relationship Between Hard Ticks ( Ixodidae) Infesting Cattle from Select Areas of a Wildlife-Livestock Interface Ecosystem at Mikumi National Park, Tanzania. Vector Borne Zoonotic Dis 2021; 21:191-199. [PMID: 33450167 DOI: 10.1089/vbz.2020.2706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: There has recently been a substantial increase in the number of tick species and tick-borne infectious agents in Tanzania. Owing to their impact on human, livestock, and wild animal health, increased knowledge of ticks is needed. So far, no published data on the genetic relationship between hard tick (Ixodidae) sequences collected from cattle are available in Tanzania. Methods: Ticks from cattle in the wards, which lie at the border of Mikumi National Park, were collected in the dry season, November to December 2019. Morphological identification of ticks was initially performed at the genus level. To identify ticks at the species level, molecular analysis based on the 16S rRNA gene was performed. Evolutionary relationships and genetic distances between ticks were determined using MaximumLikelihood and Kimura 2-parameter methods, respectively. Results: Based on morphology, two genera (Rhipicephalus and Hyalomma) were identified in the 630 adult ticks collected from a total of 252 cattle. Six species (Rhipicephalus microplus, Rhipicephalus evertsi, Hyalomma marginatum, Hyalomma rufipes, Hyalomma truncatum, and Hyalomma turanicum) were confirmed by BLASTn and phylogenetic analyses. Considerable mean and pairwise genetic distances were observed for Rhipicephalus and Hyalomma genera. Conclusion: The presence of different phylogenetic clusters and considerable mean and pairwise genetic distances observed reflect possible biological diversity of hard ticks present in the study area. Considering the value of the cattle in the livelihoods and economies of people and the country, the outcomes of this study will be useful in planning integrated control strategies for ticks and tick-borne diseases in Tanzania.
Collapse
Affiliation(s)
- Donath Damian
- Department of Molecular Biology and Biotechnology, University of Dar es Salaam, Dar es Salaam, United Republic of Tanzania
| | - Modester Damas
- Department of Molecular Biology and Biotechnology, University of Dar es Salaam, Dar es Salaam, United Republic of Tanzania
| | - Jonas Johansson Wensman
- Section of Ruminant Medicine, Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mikael Berg
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
6
|
A countrywide molecular survey leads to a seminal identification of the invasive cattle tick Rhipicephalus (Boophilus) microplus in Cameroon, a decade after it was reported in Cote d'Ivoire. Ticks Tick Borne Dis 2019; 10:585-593. [PMID: 30765191 PMCID: PMC6446184 DOI: 10.1016/j.ttbdis.2019.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 12/17/2018] [Accepted: 02/04/2019] [Indexed: 12/02/2022]
Abstract
The cattle tick Rhipicephalus microplus is the most important arthropod vector of livestock diseases globally. Since its introduction in West Africa a decade ago, it has been reported in Ivory Coast, Benin, Togo, Mali, Burkina Faso and Nigeria with potentially far-reaching adverse impacts on the livestock sector in the region. Cameroon is located on a major route for transboundary cattle trade between Central and West Africa and it is therefore at risk from R. microplus invasion. This study investigated the occurrence of R. microplus in Cameroon, the genetic polymorphism of the tick and population structure of isolates from different regions of the country to provide data that underpin the design of future vector control programs. A cross-sectional survey was conducted in which ticks were collected from cattle at 54 sites across the five Agroecological zones (AEZs) within Cameroon. Tick identity (sex and species) was assigned using taxonomic keys. Species identity was confirmed through amplification and sequencing of the mitochondrial COI and 16S rRNA genes. A total of 7091 ticks were collected out of which 1112 (15.6%) were morphologically identified as R. microplus. The presence of R. microplus was confirmed in 4 out of 5 agroecological zones. Only two haplotypes were identified by both COI and 16S rRNA genes, indicating a very low divergence in the genetic structure of the R. microplus population in Cameroon. 16S rRNA sequence analysis revealed a new haplotype specific to Cameroon. Phylogenetic trees revealed that all isolates of R. microplus from Cameroon were grouped into the previously described Africa/Americas clade. Application of a niche modelling algorithm to R. microplus distribution in Cameroon predicted that suitable habitat for the tick extended into southern Nigeria. This study demonstrated for the first time the presence of R. microplus in Cameroon. Genetic diversity tests indicate that the tick has not evolved significantly since the initial introduction to West Africa. We suggest further longitudinal studies to better define the spatial and temporal expansion of the range of the tick and the drivers of this spread.
Collapse
|
7
|
The genetic relationship between R. microplus and R. decoloratus ticks in South Africa and their population structure. Mol Phylogenet Evol 2018; 129:60-69. [PMID: 30102976 DOI: 10.1016/j.ympev.2018.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 07/10/2018] [Accepted: 08/03/2018] [Indexed: 11/22/2022]
Abstract
Rhipicephalus microplus and R. decoloratus are one-host ticks that preferentially feed on cattle. They are capable of transmitting various tick-borne pathogens which may be detrimental to the agricultural and livestock industry in South Africa. Previous studies have shown that R. microplus forms five lineages in the R. microplus complex, segregating into different geographical areas based on mitochondrial markers. This study examined the phylogenetic relationship within and between R. microplus and R. decoloratus using the nuclear internal transcribed spacer 2 (ITS2) and mitochondrial cytochrome oxidase subunit I (COI) genes. The results showed that the nuclear ITS2 marker is informative for interspecific variation but lacks the resolution for intraspecific variation. Analysis of the mitochondrial COI gene revealed that R. microplus ticks from South Africa grouped into a clade comprised of ticks from Asia and South America. The population structure of these two tick species was also investigated using novel microsatellite markers. Population structure analyses revealed that both the R. microplus and R. decoloratus populations presented with two genetic clusters. Rhipicephalus microplus ticks from the Kwa-Zulu Natal (KZN) province belonged to cluster 1, and those from the Eastern Cape (EC) province predominantly grouped into cluster 2. No observable population structure was noted for R. decoloratus. The overlap of genetic clusters in both species could be attributed to inbreeding between the regions by unrestricted movement of cattle across provinces. Such movement promotes tick mobility, gene flow and the homogenisation of tick populations.
Collapse
|
8
|
Sungirai M, Baron S, Van der Merwe NA, Moyo DZ, De Clercq P, Maritz-Olivier C, Madder M. Population structure and genetic diversity of Rhipicephalus microplus in Zimbabwe. Acta Trop 2018; 180:42-46. [PMID: 29325969 DOI: 10.1016/j.actatropica.2018.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/21/2017] [Accepted: 01/07/2018] [Indexed: 10/18/2022]
Abstract
Recently there was an expansion in the geographic range of Rhipicephalus microplus in Zimbabwe. In order to understand gene flow patterns and population structure in this highly invasive and adaptable cattle tick, a population genetics study was carried out. Eighty-seven R. microplus tick samples drawn from 5 distinct populations were genotyped using eight polymorphic microsatellite loci. Genetic diversity (He) was high (0.755-0.802) in all the populations, suggesting high levels of gene flow with 97% of genetic variation found within populations and 3% amongst populations. No isolation by distance was observed with low but significant genetic differentiation amongst the populations (0-0.076). Most of the sampled individuals had admixed genetic backgrounds, except for those from Matabeleland North whose genetic makeup appeared different from the rest. Rhipicephalus microplus was recently recorded in this area and the environmental conditions do not support survival of the tick there. These results confirm recent range expansion of the tick and the lowest genetic diversity recorded in the Matabeleland North population is suggestive of a founder effect, which may lead to genetic drift. Generally, the very low levels of genetic differentiation amongst the populations could be a result of the frequent movement of livestock from one area to another, which will have implications for disease control. This study offers further opportunities to study evolutionary adaptation of R. microplus in Zimbabwe and southern Africa.
Collapse
|
9
|
Survey of cattle tick, Riphicephalus (Boophilus) microplus, resistance to amitraz and deltamethrin in New Caledonia. Vet Parasitol 2016; 217:64-70. [DOI: 10.1016/j.vetpar.2015.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 12/01/2015] [Accepted: 12/12/2015] [Indexed: 11/19/2022]
|
10
|
Davis NE, Bennett A, Forsyth DM, Bowman DMJS, Lefroy EC, Wood SW, Woolnough AP, West P, Hampton JO, Johnson CN. A systematic review of the impacts and management of introduced deer (family Cervidae) in Australia. WILDLIFE RESEARCH 2016. [DOI: 10.1071/wr16148] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Deer are among the world’s most successful invasive mammals and can have substantial deleterious impacts on natural and agricultural ecosystems. Six species have established wild populations in Australia, and the distributions and abundances of some species are increasing. Approaches to managing wild deer in Australia are diverse and complex, with some populations managed as ‘game’ and others as ‘pests’. Implementation of cost-effective management strategies that account for this complexity is hindered by a lack of knowledge of the nature, extent and severity of deer impacts. To clarify the knowledge base and identify research needs, we conducted a systematic review of the impacts and management of wild deer in Australia. Most wild deer are in south-eastern Australia, but bioclimatic analysis suggested that four species are well suited to the tropical and subtropical climates of northern Australia. Deer could potentially occupy most of the continent, including parts of the arid interior. The most significant impacts are likely to occur through direct effects of herbivory, with potentially cascading indirect effects on fauna and ecosystem processes. However, evidence of impacts in Australia is largely observational, and few studies have experimentally partitioned the impacts of deer from those of sympatric native and other introduced herbivores. Furthermore, there has been little rigorous testing of the efficacy of deer management in Australia, and our understanding of the deer ecology required to guide deer management is limited. We identified the following six priority research areas: (i) identifying long-term changes in plant communities caused by deer; (ii) understanding interactions with other fauna; (iii) measuring impacts on water quality; (iv) assessing economic impacts on agriculture (including as disease vectors); (v) evaluating efficacy of management for mitigating deer impacts; and (vi) quantifying changes in distribution and abundance. Addressing these knowledge gaps will assist the development and prioritisation of cost-effective management strategies and help increase stakeholder support for managing the impacts of deer on Australian ecosystems.
Collapse
|
11
|
Thirty years of tick population genetics: A comprehensive review. INFECTION GENETICS AND EVOLUTION 2015; 29:164-79. [DOI: 10.1016/j.meegid.2014.11.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 11/06/2014] [Accepted: 11/10/2014] [Indexed: 11/22/2022]
|
12
|
Busch JD, Stone NE, Nottingham R, Araya-Anchetta A, Lewis J, Hochhalter C, Giles JR, Gruendike J, Freeman J, Buckmeier G, Bodine D, Duhaime R, Miller RJ, Davey RB, Olafson PU, Scoles GA, Wagner DM. Widespread movement of invasive cattle fever ticks (Rhipicephalus microplus) in southern Texas leads to shared local infestations on cattle and deer. Parasit Vectors 2014; 7:188. [PMID: 24742041 PMCID: PMC4022356 DOI: 10.1186/1756-3305-7-188] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 04/12/2014] [Indexed: 09/21/2024] Open
Abstract
Background Rhipicephalus (Boophilus) microplus is a highly-invasive tick that transmits the cattle parasites (Babesia bovis and B. bigemina) that cause cattle fever. R. microplus and Babesia are endemic in Mexico and ticks persist in the United States inside a narrow tick eradication quarantine area (TEQA) along the Rio Grande. This containment area is threatened by unregulated movements of illegal cattle and wildlife like white-tailed deer (WTD; Odocoileus virginianus). Methods Using 11 microsatellite loci we genotyped 1,247 R. microplus from 63 Texas collections, including outbreak infestations from outside the TEQA. We used population genetic analyses to test hypotheses about ecological persistence, tick movement, and impacts of the eradication program in southern Texas. We tested acaricide resistance with larval packet tests (LPTs) on 47 collections. Results LPTs revealed acaricide resistance in 15/47 collections (32%); 11 were outside the TEQA and three were resistant to multiple acaricides. Some collections highly resistant to permethrin were found on cattle and WTD. Analysis of genetic differentiation over time at seven properties revealed local gene pools with very low levels of differentiation (FST 0.00-0.05), indicating persistence over timespans of up to 29 months. However, in one neighborhood differentiation varied greatly over a 12-month period (FST 0.03-0.13), suggesting recurring immigration from distinct sources as another persistence mechanism. Ticks collected from cattle and WTD at the same location are not differentiated (FST = 0), implicating ticks from WTD as a source of ticks on cattle (and vice versa) and emphasizing the importance of WTD to tick control strategies. We identified four major genetic groups (K = 4) using Bayesian population assignment, suggesting multiple introductions to Texas. Conclusions Two dispersal mechanisms give rise to new tick infestations: 1) frequent short-distance dispersal from the TEQA; and 2) rare long-distance, human-mediated dispersal from populations outside our study area, probably Mexico. The threat of cattle fever tick transport into Texas is increased by acaricide resistance and the ability of R. microplus to utilize WTD as an alternate host. Population genetic analyses may provide a powerful tool for tracking invasions in other parts of the world where these ticks are established.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - David M Wagner
- Center for Microbial Genetics and Genomics, Northern Arizona University, 1298 S Knoles Drive, PO Box 4073, Flagstaff, AZ 86011, USA.
| |
Collapse
|
13
|
Mutation in the RmβAOR gene is associated with amitraz resistance in the cattle tick Rhipicephalus microplus. Proc Natl Acad Sci U S A 2013; 110:16772-7. [PMID: 24082133 DOI: 10.1073/pnas.1309072110] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We aimed to describe the evolution of resistance to amitraz in Rhipicephalus microplus in the field and to test the association between amitraz resistance and the frequency of a mutation in the β-adrenergic octopamine receptor gene (RmβAOR). We established six populations of Rhipicephalus microplus ticks in similar paddocks by the admixture of ticks from strains known to be susceptible and resistant to amitraz and synthetic pyrethroids. Each population was managed using one of three acaricide treatment regimes: always amitraz, always spinosad, or rotation between amitraz and spinosad. We used microsatellites to elucidate population structure over time, an SNP in the para-sodium channel gene previously demonstrated to confer resistance to synthetic pyrethroids to quantify changes in resistance to synthetic pyrethroids over time, and a nonsynonymous SNP in the RmβAOR, a gene that we proposed to confer resistance to amitraz, to determine whether selection with amitraz increased the frequency of this mutation. The study showed panmixia of the two strains and that selection of ticks with amitraz increased the frequency of the RmβAOR mutation while increasing the prevalence of amitraz-resistance. We conclude that polymorphisms in the RmβAOR gene are likely to confer resistance to amitraz.
Collapse
|
14
|
Léger E, Vourc'h G, Vial L, Chevillon C, McCoy KD. Changing distributions of ticks: causes and consequences. EXPERIMENTAL & APPLIED ACAROLOGY 2013; 59:219-244. [PMID: 23015121 DOI: 10.1007/s10493-012-9615-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 09/15/2012] [Indexed: 05/28/2023]
Abstract
Today, we are witnessing changes in the spatial distribution and abundance of many species, including ticks and their associated pathogens. Evidence that these changes are primarily due to climate change, habitat modifications, and the globalisation of human activities are accumulating. Changes in the distribution of ticks and their invasion into new regions can have numerous consequences including modifications in their ecological characteristics and those of endemic species, impacts on the dynamics of local host populations and the emergence of human and livestock disease. Here, we review the principal causes for distributional shifts in tick populations and their consequences in terms of the ecological attributes of the species in question (i.e. phenotypic and genetic responses), pathogen transmission and disease epidemiology. We also describe different methodological approaches currently used to assess and predict such changes and their consequences. We finish with a discussion of new research avenues to develop in order to improve our understanding of these host-vector-pathogen interactions in the context of a changing world.
Collapse
Affiliation(s)
- Elsa Léger
- MIVEGEC (UMR UM2-UM1-CNRS 5290, UR IRD 224), Centre IRD, BP 64501, 911 avenue Agropolis, 34394 Montpellier Cedex 5, France.
| | | | | | | | | |
Collapse
|
15
|
Kanduma EG, Mwacharo JM, Sunter JD, Nzuki I, Mwaura S, Kinyanjui PW, Kibe M, Heyne H, Hanotte O, Skilton RA, Bishop RP. Micro- and minisatellite-expressed sequence tag (EST) markers discriminate between populations of Rhipicephalus appendiculatus. Ticks Tick Borne Dis 2012; 3:128-36. [DOI: 10.1016/j.ttbdis.2012.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 05/09/2012] [Accepted: 05/11/2012] [Indexed: 11/28/2022]
|
16
|
Lovis L, Perret JL, Bouvier J, Fellay JM, Kaminsky R, Betschart B, Sager H. A new in vitro test to evaluate the resistance level against acaricides of the cattle tick, Rhipicephalus (Boophilus) microplus. Vet Parasitol 2011; 182:269-80. [DOI: 10.1016/j.vetpar.2011.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 05/25/2011] [Accepted: 06/06/2011] [Indexed: 11/29/2022]
|
17
|
Rodriguez-Valle M, Lew-Tabor A, Gondro C, Moolhuijzen P, Vance M, Guerrero FD, Bellgard M, Jorgensen W. Comparative microarray analysis of Rhipicephalus (Boophilus) microplus expression profiles of larvae pre-attachment and feeding adult female stages on Bos indicus and Bos taurus cattle. BMC Genomics 2010; 11:437. [PMID: 20637126 PMCID: PMC3224725 DOI: 10.1186/1471-2164-11-437] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Accepted: 07/19/2010] [Indexed: 11/23/2022] Open
Abstract
Background Rhipicephalus (Boophilus) microplus is an obligate blood feeder which is host specific to cattle. Existing knowledge pertaining to the host or host breed effects on tick transcript expression profiles during the tick - host interaction is poor. Results Global analysis of gene expression changes in whole R. microplus ticks during larval, pre-attachment and early adult stages feeding on Bos indicus and Bos taurus cattle were compared using gene expression microarray analysis. Among the 13,601 R. microplus transcripts from BmiGI Version 2 we identified 297 high and 17 low expressed transcripts that were significantly differentially expressed between R. microplus feeding on tick resistant cattle [Bos indicus (Brahman)] compared to R. microplus feeding on tick susceptible cattle [Bos taurus (Holstein-Friesian)] (p ≤ 0.001). These include genes encoding enzymes involved in primary metabolism, and genes related to stress, defence, cell wall modification, cellular signaling, receptor, and cuticle formation. Microarrays were validated by qRT-PCR analysis of selected transcripts using three housekeeping genes as normalization controls. Conclusion The analysis of all tick stages under survey suggested a coordinated regulation of defence proteins, proteases and protease inhibitors to achieve successful attachment and survival of R. microplus on different host breeds, particularly Bos indicus cattle. R. microplus ticks demonstrate different transcript expression patterns when they encounter tick resistant and susceptible breeds of cattle. In this study we provide the first transcriptome evidence demonstrating the influence of tick resistant and susceptible cattle breeds on transcript expression patterns and the molecular physiology of ticks during host attachment and feeding. The microarray data used in this analysis have been submitted to NCBI GEO database under accession number GSE20605 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20605.
Collapse
|
18
|
Cutullé C, Jonsson NN, Seddon JM. Multiple paternity in Rhipicephalus (Boophilus) microplus confirmed by microsatellite analysis. EXPERIMENTAL & APPLIED ACAROLOGY 2010; 50:51-58. [PMID: 19693678 DOI: 10.1007/s10493-009-9298-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 07/31/2009] [Indexed: 05/28/2023]
Abstract
The aim of this study was to determine if individual ticks among the progeny of a single female Rhipicephalus (Boophilus) microplus tick removed from cattle under natural conditions are the result of mating with one or several males. To this end, simulations were run using an existing dataset of genotypes from 8 microsatellite loci to predict the number of samples required and the best locus. Subsequently, 14-22 progeny from each of 15 engorged female ticks removed from three cows, and the engorged females themselves, were genotyped for the BmM1 locus and the minimum number of potential male parents was determined for each progeny group. Of the 15 progeny groups, 10 must have been sired by more than one male, as indicated by the presence of five unique alleles among the progeny or three unique alleles that could not have been contributed by the female. This finding demonstrates multiple paternity in R. microplus.
Collapse
Affiliation(s)
- C Cutullé
- School of Veterinary Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | | | | |
Collapse
|
19
|
Estrada-Peña A, Naranjo V, Acevedo-Whitehouse K, Mangold AJ, Kocan KM, de la Fuente J. Phylogeographic analysis reveals association of tick-borne pathogen, Anaplasma marginale, MSP1a sequences with ecological traits affecting tick vector performance. BMC Biol 2009; 7:57. [PMID: 19723295 PMCID: PMC2741432 DOI: 10.1186/1741-7007-7-57] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 09/01/2009] [Indexed: 11/24/2022] Open
Abstract
Background The tick-borne pathogen Anaplasma marginale, which is endemic worldwide, is the type species of the genus Anaplasma (Rickettsiales: Anaplasmataceae). Rhipicephalus (Boophilus) microplus is the most important tick vector of A. marginale in tropical and subtropical regions of the world. Despite extensive characterization of the genetic diversity in A. marginale geographic strains using major surface protein sequences, little is known about the biogeography and evolution of A. marginale and other Anaplasma species. For A. marginale, MSP1a was shown to be involved in vector-pathogen and host-pathogen interactions and to have evolved under positive selection pressure. The MSP1a of A. marginale strains differs in molecular weight because of a variable number of tandem 23-31 amino acid repeats and has proven to be a stable marker of strain identity. While phylogenetic studies of MSP1a repeat sequences have shown evidence of A. marginale-tick co-evolution, these studies have not provided phylogeographic information on a global scale because of the high level of MSP1a genetic diversity among geographic strains. Results In this study we showed that the phylogeography of A. marginale MSP1a sequences is associated with world ecological regions (ecoregions) resulting in different evolutionary pressures and thence MSP1a sequences. The results demonstrated that the MSP1a first (R1) and last (RL) repeats and microsatellite sequences were associated with world ecoregion clusters with specific and different environmental envelopes. The evolution of R1 repeat sequences was found to be under positive selection. It is hypothesized that the driving environmental factors regulating tick populations could act on the selection of different A. marginale MSP1a sequence lineages, associated to each ecoregion. Conclusion The results reported herein provided the first evidence that the evolution of A. marginale was linked to ecological traits affecting tick vector performance. These results suggested that some A. marginale strains have evolved under conditions that support pathogen biological transmission by R. microplus, under different ecological traits which affect performance of R. microplus populations. The evolution of other A. marginale strains may be linked to transmission by other tick species or to mechanical transmission in regions where R. microplus is currently eradicated. The information derived from this study is fundamental toward understanding the evolution of other vector-borne pathogens.
Collapse
|