1
|
Zubair A, Al-Emam A, Ali M, Hussain SM, Elmagzoub RM. Targeting HIV-1 conserved regions: An immunoinformatic pathway to vaccine innovation for the Asia. PLoS One 2025; 20:e0317382. [PMID: 40117271 PMCID: PMC11927918 DOI: 10.1371/journal.pone.0317382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/26/2024] [Indexed: 03/23/2025] Open
Abstract
A combination of humoral and cell-mediated immune system stimulation is essential for developing an effective HIV vaccine. Traditional treatment options and the challenges posed by drug resistance necessitate the discovery of a viable vaccine candidate capable of eliciting a robust immunological response. This research aims to develop an HIV vaccine with a multi-epitope component using a unique immunoinformatics approach. A subunit vaccine comprising B-cell, helper T-cell, and cytotoxic T-cell epitopes, along with appropriate adjuvants and linkers, was employed to identify conserved regions in the Pol, Vpr, Gag, Tat, Env, Nef, and Vif proteins. The HIV subunit vaccine demonstrated the potential to activate both cell-mediated and humoral immune responses, indicating its immunogenicity. The application of homology modeling and refinement further enhanced the model's accuracy. Subsequently, the molecular docking procedure utilized the refined model structure to bind to the immunological receptor TLR-3 in lymphocyte cells. Following this, the potential interactions of the subunit vaccine with TLR-3 were investigated using molecular dynamics modeling. The vaccine's stability was improved through a meticulous disulfide engineering technique that involved inserting cysteine residues into highly flexible regions. Finally, in silico cloning was employed to validate the efficacy of translating and producing the vaccine in a microbiological setting. The vaccine shows promising results in terms of population coverage, reaching 82% of the global population, with extraordinary efficacy in Asia, covering up to 95% of the population. Our HIV vaccine candidate is highly stable and elicits a robust immune response against HIV-1.
Collapse
Affiliation(s)
- Akmal Zubair
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Pakistan
| | - Ahmed Al-Emam
- Department of Pathology, College of Medicine, King Khalid University, Asir , Saudi Arabia
| | - Muhammad Ali
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Pakistan
| | - Syeda Maryam Hussain
- Department of Livestock Production and Management, Faculty of Veterinary and Animal Sciences PIR Mehr Ali Shah-Arid Agriculture University Rawalpindi, Shamsabad, Murree Road, Pakistan
| | - Ranya Mohammed Elmagzoub
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
2
|
Namazi F, Davoodi S, Bolhassani A. Comparison of the efficacy of HIV-1 Nef-Tat-Gp160-p24 polyepitope vaccine candidate with Nef protein in different immunization strategies. Curr Drug Deliv 2021; 19:142-156. [PMID: 33655833 DOI: 10.2174/1567201818666210224101144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/23/2020] [Accepted: 01/25/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVES One of the promising strategies for effective HIV-1 vaccine design involves finding the polyepitope immunogens using T cell epitopes. METHODS Herein, an HIV-1 polyepitope construct (i.e., Nef-Tat-Gp160-P24) comprising of several epitopes from Nef, Tat, Gp160, and P24 proteins was designed. To improve its immunogenicity in BALB/c mice, cell-penetrating peptides (HR9 & MPG for DNA delivery, and LDP-NLS & CyLoP-1 for protein transfer), Montanide adjuvant, and heterologous DNA prime/polypeptide boost strategy were used. To compare the immunogenicity, Nef was utilized as a vaccine candidate. The levels of total IgG and its subclasses, cytokines, and Granzyme B were assessed using ELISA. RESULTS Immunological studies showed that heterologous prime-boost regimens for both antigens could considerably augment the levels of IgG2a, IgG2b, IFN-γ, and Granzyme B directed toward Th1 and CTL immune responses in comparison with homologous prime-boost strategies. The levels of IFN-γ, IL-10, total IgG, IgG1, and IgG2b were drastically higher in groups immunized with Nef-Tat-Gp160-P24 in heterologous prime-boost regimens than those in groups immunized with Nef. CONCLUSIONS The use of the Nef-Tat-Gp160-P24 polyepitope immunogen in heterologous prime-boost strategy could generate the mixture of Th1 and Th2 responses directed further toward Th1 response as a hopeful method for improvement of HIV-1 vaccine.
Collapse
Affiliation(s)
- Fatemeh Namazi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran. Iran
| | - Saba Davoodi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran. Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran. Iran
| |
Collapse
|
3
|
Shabani SH, Kardani K, Milani A, Bolhassani A. In Silico and in Vivo Analysis of HIV-1 Rev Regulatory Protein for Evaluation of a Multiepitope-based Vaccine Candidate. Immunol Invest 2021; 51:1-28. [PMID: 33416004 DOI: 10.1080/08820139.2020.1867163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In silico-designed multiepitope conserved regions of human immunodeficiency virus 1 (HIV-1) proteins would be a beneficial strategy for antigen design which induces effective anti-HIV-1 T-cell responses. The conserved multiple HLA-DR-binding epitopes of Rev protein were identified using IEDB MHC-I prediction tools and SYFPEITHI webserver to screen potential T-cell epitopes. We analyzed toxicity, allergenicity, immunogenicity, hemolytic activity, cross-reactivity, cell-penetrating peptide (CPP) potency, and molecular docking of the candidate epitopes using several immune-informatics tools. Afterward, we designed a novel multiepitope construct based on non-toxic and non-allergenic Rev, Nef, Gp160 and P24-derived cytotoxic T cell (CTL) and T-helper cell (HTL) epitopes. Next, the designed construct (Nef-Rev-Gp160-P24) was subjected to three B-cell epitope prediction webservers, ProtParam and Protein-Sol to obtain the physicochemical features. Then, the recombinant multiepitope DNA and polypeptide constructs were complexed with different CPPs for nanoparticle formation and pass them via the cell membranes. Finally, the immunogenicity of multiepitope constructs in a variety of modalities was evaluated in mice. The results demonstrated that groups immunized with heterologous DNA+ MPG or HR9 CPP prime/rNef-Rev-Gp160-P24 polypeptide + LDP-NLS CPP boost regimens could significantly produce higher levels of IFN-γ and Granzyme B, and lower amounts of IL-10 than other groups. Moreover, higher levels of IgG2a and IgG2b were observed in all heterologous prime-boost regimens than homologous DNA or polypeptide regimens. Altogether, the present findings indicated that the Nef-Rev-Gp160-P24 polypeptide meets the criteria to be potentially useful as a multiepitope-based vaccine candidate against HIV-1 infection.
Collapse
Affiliation(s)
- Samaneh H Shabani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Kimia Kardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Milani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
4
|
Namazi F, Bolhassani A, Sadat SM, Irani S. Delivery of HIV-1 Polyepitope Constructs Using Cationic and Amphipathic Cell Penetrating Peptides into Mammalian Cells. Curr HIV Res 2020; 17:408-428. [DOI: 10.2174/1570162x17666191121114522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/06/2019] [Accepted: 11/13/2019] [Indexed: 12/14/2022]
Abstract
Background:
An effective vaccine against human immunodeficiency virus 1 (HIV-1) is
an important global health priority. Despite many efforts in the development of the HIV-1 vaccine,
no effective vaccine has been approved yet. Recently, polyepitope vaccines including several immunogenic
and conserved epitopes of HIV-1 proteins have received special attention.
Methods:
In this study, HIV-1 Nef, Tat, Gp160 and P24 proteins were considered for selection of
immunodominant and conserved epitopes due to their critical roles in the viral life cycle and pathogenesis.
At first, the Nef60-84-Nef126-144-Tat29-49-Gp16030-53-Gp160308-323-P248-151 DNA construct was
designed using in silico studies. Then, the DNA construct was subcloned in pEGFP-N1 and pET-
24a (+) expression vectors and the rNef-Tat-Gp160-P24 polyepitope peptide was generated in E.coli
expression system for in vitro delivery using novel cell-penetrating peptides (CPPs), LDP-NLS and
CyLoP-1, in a non-covalent manner. Also, the HR9 and MPG CPPs were used to transfer the DNA
construct.
Results:
Our results showed that the recombinant polyepitope peptide generated in Rosetta strain
migrated as a clear band of ~31 kDa in SDS-PAGE. The SEM data confirmed the formation of stable
nanoparticles with a size below 250 nm. MTT assay revealed that the complexes did not represent
any considerable cytotoxic effect compared to untreated cells. The results of fluorescence microscopy,
flow cytometry and western blotting indicated that these CPPs successfully delivered polyepitope
constructs into HEK-293T cell line.
Conclusion:
These data suggested that these CPPs can be used as a promising approach for the development
of the HIV-1 vaccine.
Collapse
Affiliation(s)
- Fatemeh Namazi
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Mehdi Sadat
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Shiva Irani
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Delivery of HIV-1 Nef Protein in Mammalian Cells Using Cell Penetrating Peptides as a Candidate Therapeutic Vaccine. Int J Pept Res Ther 2016. [DOI: 10.1007/s10989-016-9547-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Garrod TJ, Gargett T, Yu W, Major L, Burrell CJ, Wesselingh S, Suhrbier A, Grubor-Bauk B, Gowans EJ. Loss of long term protection with the inclusion of HIV pol to a DNA vaccine encoding gag. Virus Res 2014; 192:25-33. [PMID: 25152448 DOI: 10.1016/j.virusres.2014.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/11/2014] [Accepted: 08/14/2014] [Indexed: 11/29/2022]
Abstract
Traditional vaccine strategies that induce antibody responses have failed to protect against HIV infection in clinical trials, and thus cell-mediated immunity is now an additional criterion. Recent clinical trials that aimed to induce strong T cell responses failed to do so. Therefore, to enhance induction of protective T cell responses, it is crucial that the optimum antigen combination is chosen. Limited research has been performed into the number of antigens selected for an HIV vaccine. This study aimed to compare DNA vaccines encoding either a single HIV antigen or a combination of two antigens, using intradermal vaccination of C57BL/6 mice. Immune assays were performed on splenocytes, and in vivo protection was examined by challenge with a chimeric virus, EcoHIV, able to infect mouse but not human leukocytes, at 10 days (short term) and 60 days (long term) post final vaccination. At 60 days there was significantly lower frequency of induced antigen-specific CD8(+) T cells in the spleens of pCMVgag-pol-vaccinated mice compared with mice which received pCMVgag only. Most importantly, short term viral control of EcoHIV was similar for pCMVgag and pCMVgag-pol-vaccinated mice at day 10, but only the pCMVgag-vaccinated significantly controlled EcoHIV at day 60 compared with pCMV-vaccinated mice, showing that control was reduced with the inclusion of the HIV pol gene.
Collapse
Affiliation(s)
- Tamsin J Garrod
- Virology Laboratory, Basil Hetzel Institute, Department of Surgery, University of Adelaide, Adelaide, Australia.
| | - Tessa Gargett
- Virology Laboratory, Basil Hetzel Institute, Department of Surgery, University of Adelaide, Adelaide, Australia
| | - Wenbo Yu
- Virology Laboratory, Basil Hetzel Institute, Department of Surgery, University of Adelaide, Adelaide, Australia
| | - Lee Major
- Inflammation Biology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Steven Wesselingh
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andreas Suhrbier
- Inflammation Biology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Branka Grubor-Bauk
- Virology Laboratory, Basil Hetzel Institute, Department of Surgery, University of Adelaide, Adelaide, Australia
| | - Eric J Gowans
- Virology Laboratory, Basil Hetzel Institute, Department of Surgery, University of Adelaide, Adelaide, Australia
| |
Collapse
|
7
|
Zhang B, Liu D, Bao Z, Chen B, Li C, Jiang H, Wang X, Mi Z, An X, Lu J, Tong Y. High level soluble expression, one-step purification and characterization of HIV-1 p24 protein. Virol J 2011; 8:316. [PMID: 21693071 PMCID: PMC3132166 DOI: 10.1186/1743-422x-8-316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 06/22/2011] [Indexed: 11/17/2022] Open
Abstract
Background P24 protein is the major core protein of HIV virus particle and has been suggested as a specific target for antiviral strategies. Recombinant p24 protein with natural antigenic activity would be useful for various studies, such as diagnostic reagents and multi-component HIV vaccine development. The aim of this study was to express and purify the p24 protein in soluble form in E.coli. Results According to the sequence of the p24 gene, a pair of primers was designed, and the target sequence of 700 bp was amplified using PCR. The PCR product was cloned into pQE30 vector, generating the recombinant plasmid pQE30-p24. SDS-PAGE analysis showed that the His-tagged recombinant p24 protein was highly expressed in soluble form after induction in E. coli strain BL21. The recombinant protein was purified by nickel affinity chromatography and used to react with HIV infected sera. The results showed that the recombinant p24 protein could specifically react with the HIV infected sera. To study the immunogenicity of this soluble recombinant p24 protein, it was used to immunize mice for the preparation of polyclonal antibody. Subsequent ELISA and Western-Blot analysis demonstrated that the p24 protein had proper immunogenicity in inducing mice to produce HIV p24 specific antibodies. Conclusion In this work, we report the high level soluble expression of HIV-1 p24 protein in E. coli. This soluble recombinant p24 protein specifically react with HIV infected sera and elicit HIV p24 specific antibodies in mice, indicating this soluble recombinant p24 protein could be a promising reagent for HIV diagnosis.
Collapse
Affiliation(s)
- Baozhong Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
HIV-1 resistance to currently employed antiretroviral drugs and drug-associated adverse reactions and toxicity point to a need for additional measures to control HIV-1 replication in HIV-infected patients. The immune system of HIV-infected individuals mount an immune response against the regions harboring drug-resistance mutations, sometimes stronger than that against the parental wild-type sequences. A potent cross-reactive immune response against drug-resistant pol proteins can suppress the replication of drug-escaping HIV. This suggests the possibility for a vaccination against existing and anticipated drug-resistant HIV variants. If successful, therapeutic vaccines against drug resistance would ease the therapeutic modalities and limit the spread of drug-resistant HIV. A better understanding of the complex interactions between patterns of drug-resistance mutations, immune responses against these mutations and their antigen presentation by particular human lymphocyte antigen alleles could help to tailor these vaccines after new drugs/new mutations. In this review, we describe the developments in the field of immunization against mutations conferring drug resistance and evaluate their prospects for human vaccination.
Collapse
Affiliation(s)
- Andreas Boberg
- Swedish Institute for Infectious Disease Control, 171 82 Solna, Sweden.
| | | |
Collapse
|
9
|
Anraku I, Mokhonov VV, Rattanasena P, Mokhonova EI, Leung J, Pijlman G, Cara A, Schroder WA, Khromykh AA, Suhrbier A. Kunjin replicon-based simian immunodeficiency virus gag vaccines. Vaccine 2008; 26:3268-76. [PMID: 18462846 PMCID: PMC7115363 DOI: 10.1016/j.vaccine.2008.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 03/18/2008] [Accepted: 04/03/2008] [Indexed: 12/15/2022]
Abstract
An RNA-based, non-cytopathic replicon vector system, based on the flavivirus Kunjin, has shown considerable promise as a new vaccine delivery system. Here we describe the testing in mice of four different SIVmac239 gag vaccines delivered by Kunjin replicon virus-like-particles. The four vaccines encoded the wild type gag gene, an RNA-optimised gag gene, a codon-optimised gag gene and a modified gag-pol gene construct. The vaccines behaved quite differently for induction of effector memory and central memory responses, for mediation of protection, and with respect to insert stability, with the SIV gag-pol vaccine providing the optimal performance. These results illustrate that for an RNA-based vector the RNA sequence of the antigen can have profound and unforeseen consequences on vaccine behaviour.
Collapse
Affiliation(s)
- Itaru Anraku
- Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Brisbane, Queensland, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|