1
|
Zhang Y, Bisaro DM, Wu J. Recent advances in viroid research. Virology 2025; 604:110424. [PMID: 39889478 DOI: 10.1016/j.virol.2025.110424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Viroids are circular, single-stranded non-coding RNAs that rely entirely on their sequences and structures for activity. Decades of research have uncovered molecular mechanisms of viroid infection, replication, and their interactions with host factors. Notably, viroid-derived small RNAs (vd-RNAs) activate host defenses, while essential host factors and RNA motifs linked to trafficking and quasispecies evolution have been well studied. In this review, we examine key aspects of viroid biology, including the structural motifs and host factors that influence the replication cycle, as well as the mechanisms behind intra- and intercellular movement. We explore the role of vd-RNAs in activating host defense responses. Additionally, we present current perspectives on viroid quasispecies evolution and address the emergence of viroid-like RNAs across various kingdoms. These insights are crucial for deepening our understanding of the viroid replication cycle and their complex interactions with host plants.
Collapse
Affiliation(s)
- Yuhong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - David M Bisaro
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, OH, 43210, USA.
| | - Jian Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
2
|
Wu J, Zhang Y, Nie Y, Yan F, Zirbel CL, Bisaro DM. RNA three-dimensional structure drives the sequence organization of potato spindle tuber viroid quasispecies. PLoS Pathog 2024; 20:e1012142. [PMID: 38574111 PMCID: PMC11020406 DOI: 10.1371/journal.ppat.1012142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/16/2024] [Accepted: 03/22/2024] [Indexed: 04/06/2024] Open
Abstract
RNA viruses and viroids exist and evolve as quasispecies due to error-prone replication. Quasispecies consist of a few dominant master sequences alongside numerous variants that contribute to genetic diversity. Upon environmental changes, certain variants within quasispecies have the potential to become the dominant sequences, leading to the emergence of novel infectious strains. However, the emergence of new infectious variants remains unpredictable. Using mutant pools prepared by saturation mutagenesis of selected stem and loop regions, our study of potato spindle tuber viroid (PSTVd) demonstrates that mutants forming local three-dimensional (3D) structures similar to the wild type (WT) are more likely to accumulate in PSTVd quasispecies. The selection mechanisms underlying this biased accumulation are likely associated with cell-to-cell movement and long-distance trafficking. Moreover, certain trafficking-defective PSTVd mutants can be spread by functional sister genomes in the quasispecies. Our study reveals that the RNA 3D structure of stems and loops constrains the evolution of viroid quasispecies. Mutants with a structure similar to WT have a higher likelihood of being maintained within the quasispecies and can potentially give rise to novel infectious variants. These findings emphasize the potential of targeting RNA 3D structure as a more robust approach to defend against viroid infections.
Collapse
Affiliation(s)
- Jian Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Yuhong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yuxin Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Craig L. Zirbel
- Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, Ohio, United States of America
| | - David M. Bisaro
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
3
|
Ma J, Dissanayaka Mudiyanselage SD, Hao J, Wang Y. Cellular roadmaps of viroid infection. Trends Microbiol 2023; 31:1179-1191. [PMID: 37349206 PMCID: PMC10592528 DOI: 10.1016/j.tim.2023.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/24/2023]
Abstract
Viroids are single-stranded circular noncoding RNAs that infect plants. According to the International Committee on Taxonomy of Viruses, there are 44 viroids known to date. Notably, more than 20 000 distinct viroid-like RNA sequences have recently been identified in existing sequencing datasets, suggesting an unprecedented complexity in biological roles of viroids and viroid-like RNAs. Interestingly, a human pathogen, hepatitis delta virus (HDV), also replicates via a rolling circle mechanism like viroids. Therefore, knowledge of viroid infection is informative for research on HDV and other viroid-like RNAs reported from various organisms. Here, we summarize recent advancements in understanding viroid shuttling among subcellular compartments for completing replication cycles, emphasizing regulatory roles of RNA motifs and structural dynamics in diverse biological processes. We also compare the knowledge of viroid intracellular trafficking with known pathways governing cellular RNA movement in cells. Future investigations on regulatory RNA structures and cognate factors in regulating viroid subcellular trafficking and replication will likely provide new insights into RNA structure-function relationships and facilitate the development of strategies controlling RNA localization and function in cells.
Collapse
Affiliation(s)
- Junfei Ma
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA; Current address: Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA
| | | | - Jie Hao
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA; Current address: Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA
| | - Ying Wang
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA; Current address: Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
4
|
Ortolá B, Daròs JA. Viroids: Non-Coding Circular RNAs Able to Autonomously Replicate and Infect Higher Plants. BIOLOGY 2023; 12:172. [PMID: 36829451 PMCID: PMC9952643 DOI: 10.3390/biology12020172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023]
Abstract
Viroids are a unique type of infectious agent, exclusively composed of a relatively small (246-430 nt), highly base-paired, circular, non-coding RNA. Despite the small size and non-coding nature, the more-than-thirty currently known viroid species infectious of higher plants are able to autonomously replicate and move systemically through the host, thereby inducing disease in some plants. After recalling viroid discovery back in the late 60s and early 70s of last century and discussing current hypotheses about their evolutionary origin, this article reviews our current knowledge about these peculiar infectious agents. We describe the highly base-paired viroid molecules that fold in rod-like or branched structures and viroid taxonomic classification in two families, Pospiviroidae and Avsunviroidae, likely gathering nuclear and chloroplastic viroids, respectively. We review current knowledge about viroid replication through RNA-to-RNA rolling-circle mechanisms in which host factors, notably RNA transporters, RNA polymerases, RNases, and RNA ligases, are involved. Systemic movement through the infected plant, plant-to-plant transmission and host range are also discussed. Finally, we focus on the mechanisms of viroid pathogenesis, in which RNA silencing has acquired remarkable importance, and also for the initiation of potential biotechnological applications of viroid molecules.
Collapse
Affiliation(s)
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), 46022 Valencia, Spain
| |
Collapse
|
5
|
Conserved Motifs and Domains in Members of Pospiviroidae. Cells 2022; 11:cells11020230. [PMID: 35053346 PMCID: PMC8774013 DOI: 10.3390/cells11020230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/28/2021] [Accepted: 01/07/2022] [Indexed: 12/18/2022] Open
Abstract
In 1985, Keese and Symons proposed a hypothesis on the sequence and secondary structure of viroids from the family Pospiviroidae: their secondary structure can be subdivided into five structural and functional domains and “viroids have evolved by rearrangement of domains between different viroids infecting the same cell and subsequent mutations within each domain”; this article is one of the most cited in the field of viroids. Employing the pairwise alignment method used by Keese and Symons and in addition to more recent methods, we tried to reproduce the original results and extent them to further members of Pospiviroidae which were unknown in 1985. Indeed, individual members of Pospiviroidae consist of a patchwork of sequence fragments from the family but the lengths of fragments do not point to consistent points of rearrangement, which is in conflict with the original hypothesis of fixed domain borders.
Collapse
|
6
|
Hepatitis delta virus genome RNA synthesis initiates at position 1646 with a non-templated guanosine. J Virol 2021; 96:e0201721. [PMID: 34878890 DOI: 10.1128/jvi.02017-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatitis delta virus (HDV) is a significant human pathogen that causes acute and chronic liver disease; there is no licensed therapy. HDV is a circular negative-sense ssRNA virus that produces three RNAs in infected cells: genome, antigenome and mRNA; the latter encodes hepatitis delta antigen, the viral protein. These RNAs are synthesized by host DNA-dependent RNA polymerase acting as an RNA-dependent RNA polymerase. Although HDV genome RNA accumulates to high levels in infected cells, the mechanism by which this process occurs remains poorly understood. For example, the nature of the 5' end of the genome, including the synthesis start site and its chemical composition, are not known. Analysis of this process has been challenging because the initiation site is part of an unstable precursor in the rolling circle mechanism by which HDV genome RNA is synthesized. In this study, circular HDV antigenome RNAs synthesized in vitro were used to directly initiate HDV genome RNA synthesis in transfected cells, thus enabling detection of the 5' end of the genome RNA. The 5' end of this RNA is capped, as expected for a Pol II product. Initiation begins at position 1646 on the genome, which is located near the loop end proximal to the start site for HDAg mRNA synthesis. Unexpectedly, synthesis begins with a guanosine that is not conventionally templated by the HDV RNA. IMPORTANCE Hepatitis delta virus (HDV) is a unique virus that causes severe liver disease. It uses host RNA Polymerase II to copy its circular RNA genome in a unique and poorly understood process. Although the virus RNA accumulates to high levels within infected cells, it is not known how synthesis of the viral RNA begins, nor even where on the genome synthesis starts. Here, we identify the start site for the initiation of HDV genome RNA synthesis as position 1646, which is at one end of the closed hairpin-like structure of the viral RNA. The 5' end of the RNA is capped, as expected for Pol II products. However, RNA synthesis begins with a guanosine that is not present in the genome. Thus, although HDV uses Pol II to synthesize the viral genome, some details of the initiation process are different. These differences could be important for successfully targeting virus replication.
Collapse
|
7
|
Hataya T, Naoi T. Precisely Monomeric Linear RNAs of Viroids Belonging to Pospiviroid and Hostuviroid Genera Are Infectious Regardless of Transcription Initiation Site and 5'-Terminal Structure. Cells 2021; 10:cells10112971. [PMID: 34831194 PMCID: PMC8616387 DOI: 10.3390/cells10112971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Infectious dimeric RNA transcripts are a powerful tool for reverse genetic analyses in viroid studies. However, the construction of dimeric cDNA clones is laborious and time consuming, especially in mutational analyses by in vitro mutagenesis. In this study, we developed a system to synthesize a precisely monomeric linear RNA that could be transcribed in vitro directly from the cDNA clones of four viroid species. The cDNA clones were constructed such that RNA transcription was initiated at the guanine nucleotide of a predicted processing and ligation site in the viroid replication process. Although the transcribed RNAs were considered to possess 5′-triphosphate and 3′-hydroxyl termini, the RNA transcripts were infectious even without in vitro modifications. Additionally, infectivity was detected in the monomeric RNA transcripts, in which transcription was initiated at guanine nucleotides distinct from the predicted processing/ligation site. Moreover, monomeric viroid RNAs bearing 5′-monophosphate, 5′-hydroxyl, or 5′-capped termini were found to be infectious. Northern blot analysis of the pooled total RNA of the plants inoculated with the 5′-terminal modified RNA of potato spindle tuber viroid (PSTVd) indicated that maximum PSTVd accumulation occurred in plants with 5′-monophosphate RNA inoculation, followed by the plants with 5′-triphosphate RNA inoculation. Our system for synthesizing an infectious monomeric linear viroid RNA from a cDNA clone will facilitate mutational analyses by in vitro mutagenesis in viroid research.
Collapse
Affiliation(s)
- Tatsuji Hataya
- Pathogen-Plant Interactions, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan
- Pathogen-Plant Interactions, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan;
- Correspondence:
| | - Takashi Naoi
- Pathogen-Plant Interactions, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan;
| |
Collapse
|
8
|
Abstract
Viroids are small, single-stranded, circular RNAs infecting plants. Composed of only a few hundred nucleotides and being unable to code for proteins, viroids represent the lowest level of complexity for an infectious agent, even below that of the smallest known viruses. Despite the relatively small size, viroids contain RNA structural elements embracing all the information needed to interact with host factors involved in their infectious cycle, thus providing models for studying structure-function relationships of RNA. Viroids are specifically targeted to nuclei (family Pospiviroidae) or chloroplasts (family Avsunviroidae), where replication based on rolling-circle mechanisms takes place. They move locally and systemically through plasmodesmata and phloem, respectively, and may elicit symptoms in the infected host, with pathogenic pathways linked to RNA silencing and other plant defense responses. In this review, recent advances in the dissection of the complex interplay between viroids and plants are presented, highlighting knowledge gaps and perspectives for future research. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Beatriz Navarro
- Institute for Sustainable Plant Protection, National Research Council of Italy; I-70126 Bari, Italy;
| | - Ricardo Flores
- Institute of Molecular and Cellular Biology of Plants (UPV-CSIC), Polytechnic University of Valencia, 46022 Valencia, Spain
| | - Francesco Di Serio
- Institute for Sustainable Plant Protection, National Research Council of Italy; I-70126 Bari, Italy;
| |
Collapse
|
9
|
Venkataraman S, Badar U, Shoeb E, Hashim G, AbouHaidar M, Hefferon K. An Inside Look into Biological Miniatures: Molecular Mechanisms of Viroids. Int J Mol Sci 2021; 22:2795. [PMID: 33801996 PMCID: PMC8001946 DOI: 10.3390/ijms22062795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 11/17/2022] Open
Abstract
Viroids are tiny single-stranded circular RNA pathogens that infect plants. Viroids do not encode any proteins, yet cause an assortment of symptoms. The following review describes viroid classification, molecular biology and spread. The review also discusses viroid pathogenesis, host interactions and detection. The review concludes with a description of future prospects in viroid research.
Collapse
Affiliation(s)
| | | | | | | | | | - Kathleen Hefferon
- Cell and System Biology, University of Toronto, Toronto, ON M5S 3B2, Canada; (S.V.); (U.B.); (E.S.); (G.H.); (M.A.)
| |
Collapse
|
10
|
Wang Y. Current view and perspectives in viroid replication. Curr Opin Virol 2021; 47:32-37. [PMID: 33460914 DOI: 10.1016/j.coviro.2020.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022]
Abstract
Viroids are single-stranded circular noncoding RNAs that infect plants. The noncoding nature indicates that viroids must harness their RNA genomes to redirect host machinery for infection. Therefore, the viroid model provides invaluable opportunities for delineating fundamental principles of RNA structure-function relationships and for dissecting the composition and mechanism of RNA-related cellular machinery. There are two viroid families, Pospiviroidae and Avsunviroidae. Members of both families replicate via the RNA-based rolling-circle mechanism with some variations. Viroid replication is generally divided into three steps: transcription, cleavage, and ligation. Decades of studies have uncovered numerous viroid RNA structures with a regulatory role in replication and multiple enzymes critical for the three replication steps. This review discusses these findings and highlights the latest discoveries. Future studies will continue to elucidate regulatory factors and mechanism of host machinery exploited by viroids and provide new insights into host-viroid interactions in the context of pathogenesis.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39759, USA.
| |
Collapse
|
11
|
SANO T. Progress in 50 years of viroid research-Molecular structure, pathogenicity, and host adaptation. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2021; 97:371-401. [PMID: 34380915 PMCID: PMC8403530 DOI: 10.2183/pjab.97.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/30/2021] [Indexed: 05/27/2023]
Abstract
Viroids are non-encapsidated, single-stranded, circular RNAs consisting of 246-434 nucleotides. Despite their non-protein-encoding RNA nature, viroids replicate autonomously in host cells. To date, more than 25 diseases in more than 15 crops, including vegetables, fruit trees, and flowers, have been reported. Some are pathogenic but others replicate without eliciting disease. Viroids were shown to have one of the fundamental attributes of life to adapt to environments according to Darwinian selection, and they are likely to be living fossils that have survived from the pre-cellular RNA world. In 50 years of research since their discovery, it was revealed that viroids invade host cells, replicate in nuclei or chloroplasts, and undergo nucleotide mutation in the process of adapting to new host environments. It was also demonstrated that structural motifs in viroid RNAs exert different levels of pathogenicity by interacting with various host factors. Despite their small size, the molecular mechanism of viroid pathogenicity turned out to be more complex than first thought.
Collapse
Affiliation(s)
- Teruo SANO
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, Japan
| |
Collapse
|
12
|
Evidence Supporting That RNA Polymerase II Catalyzes De Novo Transcription Using Potato Spindle Tuber Viroid Circular RNA Templates. Viruses 2020; 12:v12040371. [PMID: 32230827 PMCID: PMC7232335 DOI: 10.3390/v12040371] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 12/11/2022] Open
Abstract
Transcription is a fundamental process that mediates the interplay between genetic information and phenotype. Emerging evidence indicates that RNA polymerase II (Pol II) can catalyze transcription using both DNA and RNA templates. It is well established that Pol II initiates de novo transcription on DNA templates. However, it is unclear whether Pol II performs de novo transcription or relies on primers for initiation (primed transcription) on RNA templates. Using potato spindle tuber viroid (PSTVd) as a model, we presented evidence showing that circular PSTVd templates are critical for the synthesis of longer-than-unit-length (-)-strand products, which supports the de novo transcription based on the asymmetric rolling circle model of PSTVd replication. We further showed that the crucial factor for primed transcription, transcription factor IIS (TFIIS), is dispensable for PSTVd replication in cells. Together, our data support the de novo transcription on PSTVd RNA templates catalyzed by Pol II. This result has significant implications in understanding the mechanism and machinery underlying Pol II-catalyzed transcription using other RNA templates.
Collapse
|
13
|
Adkar-Purushothama CR, Perreault JP. Current overview on viroid-host interactions. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1570. [PMID: 31642206 DOI: 10.1002/wrna.1570] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 01/03/2023]
Abstract
Viroids are one of the most enigmatic highly structured, circular, single-stranded RNA phytopathogens. Although they are not known to code for any peptide, viroids induce visible symptoms in susceptible host plants that resemble those associated with many plant viruses. It is known that viroids induce disease symptoms by direct interaction with host factors; however, the precise mechanism by which this occurs remains poorly understood. Studies on the host's responses to viroid infection, host susceptibility and nonhost resistance have been underway for several years, but much remains to be done in order to fully understand the complex nature of viroid-host interactions. Recent progress using molecular biology techniques combined with computational algorithms, in particular evidence of the role of viroid-derived small RNAs in the RNA silencing pathways of a disease network, has widened the knowledge of viroid pathogenicity. The complexity of viroid-host interactions has been revealed in the past decades to include, but not be limited to, the involvement of host factors, viroid structural complexity, and viroid-induced ribosomal stress, which is further boosted by the discovery of long noncoding RNAs (lncRNAs). In this review, the current understanding of the viroid-host interaction has been summarized with the goal of simplifying the complexity of viroid biology for future research. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Charith Raj Adkar-Purushothama
- MYM Nutraceuticals Inc, Vancouver, British Columbia, Canada.,RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine des sciences de la santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Québec, Canada
| | - Jean-Pierre Perreault
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de médecine des sciences de la santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Québec, Canada
| |
Collapse
|
14
|
Potato Spindle Tuber Viroid RNA-Templated Transcription: Factors and Regulation. Viruses 2018; 10:v10090503. [PMID: 30227597 PMCID: PMC6164485 DOI: 10.3390/v10090503] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/10/2018] [Accepted: 09/15/2018] [Indexed: 12/14/2022] Open
Abstract
Viroids are circular noncoding RNAs that infect plants. Without encoding any protein, these noncoding RNAs contain the necessary genetic information for propagation in hosts. Nuclear-replicating viroids employ DNA-dependent RNA polymerase II (Pol II) for replication, a process that makes a DNA-dependent enzyme recognize RNA templates. Recently, a splicing variant of transcription factor IIIA (TFIIIA-7ZF) was identified as essential for Pol II to replicate potato spindle tuber viroid (PSTVd). The expression of TFIIIA-7ZF, particularly the splicing event, is regulated by a ribosomal protein (RPL5). PSTVd modulates its expression through a direct interaction with RPL5 resulting in optimized expression of TFIIIA-7ZF. This review summarizes the recent discoveries of host factors and regulatory mechanisms underlying PSTVd-templated transcription processes and raises new questions that may help future exploration in this direction. In addition, it briefly compares the machinery and the regulatory mechanism for PSTVd with the replication/transcription system of human hepatitis delta virus.
Collapse
|
15
|
Processing of Potato Spindle Tuber Viroid RNAs in Yeast, a Nonconventional Host. J Virol 2017; 91:JVI.01078-17. [PMID: 28978701 DOI: 10.1128/jvi.01078-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/23/2017] [Indexed: 11/20/2022] Open
Abstract
Potato spindle tuber viroid (PSTVd) is a circular, single-stranded, noncoding RNA plant pathogen that is a useful model for studying the processing of noncoding RNA in eukaryotes. Infective PSTVd circles are replicated via an asymmetric rolling circle mechanism to form linear multimeric RNAs. An endonuclease cleaves these into monomers, and a ligase seals these into mature circles. All eukaryotes may have such enzymes for processing noncoding RNA. As a test, we investigated the processing of three PSTVd RNA constructs in the yeast Saccharomyces cerevisiae Of these, only one form, a construct that adopts a previously described tetraloop-containing conformation (TL), produces circles. TL has 16 nucleotides of the 3' end duplicated at the 5' end and a 3' end produced by self-cleavage of a delta ribozyme. The other two constructs, an exact monomer flanked by ribozymes and a trihelix-forming RNA with requisite 5' and 3' duplications, do not produce circles. The TL circles contain nonnative nucleotides resulting from the 3' end created by the ribozyme and the 5' end created from an endolytic cleavage by yeast at a site distinct from where potato enzymes cut these RNAs. RNAs from all three transcripts are cleaved in places not on path for circle formation, likely representing RNA decay. We propose that these constructs fold into distinct RNA structures that interact differently with host cell RNA metabolism enzymes, resulting in various susceptibilities to degradation versus processing. We conclude that PSTVd RNA is opportunistic and may use different processing pathways in different hosts.IMPORTANCE In higher eukaryotes, the majority of transcribed RNAs do not encode proteins. These noncoding RNAs are responsible for mRNA regulation, control of the expression of regulatory microRNAs, sensing of changes in the environment by use of riboswitches (RNAs that change shape in response to environmental signals), catalysis, and more roles that are still being uncovered. Some of these functions may be remnants from the RNA world and, as such, would be part of the evolutionary past of all forms of modern life. Viroids are noncoding RNAs that can cause disease in plants. Since they encode no proteins, they depend on their own RNA and on host proteins for replication and pathogenicity. It is likely that viroids hijack critical host RNA pathways for processing the host's own noncoding RNA. These pathways are still unknown. Elucidating these pathways should reveal new biological functions of noncoding RNA.
Collapse
|
16
|
Viability and genetic stability of potato spindle tuber viroid mutants with indels in specific loops of the rod-like secondary structure. Virus Res 2017; 240:94-100. [PMID: 28778395 DOI: 10.1016/j.virusres.2017.07.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 01/17/2023]
Abstract
Maintenance of the rod-like structure of potato spindle tuber viroid (PSTVd), which contains over 20 loops and bulges between double-stranded helices, is important for viroid biology. To study tolerance to modifications of the stem-loop structures and PSTVd capacity for mutation repair, we have created 6 mutants carrying 3-4 nucleotides deletions or insertions at three unique restriction sites, EagI, StyI and AvaII. Differences in the infectivity of these in vitro generated PSTVd mutants can result from where the mutations map, as well as from the extent to which the secondary structure of the molecule is affected. Deletion or insertion of 4 nucleotides at the EagI and StyI sites led to loss of infectivity. However, mutants with deletion (PSTVd-Ava-del) or insertion (PSTVd-Ava-in) of 3 nucleotides (221GAC223), at the AvaII site (loop 20) were viable but not genetically stable. In all analyzed plants, reversion to the wild type PSTVd-S23 sequence was observed for the PSTVd-Ava-in mutant a few weeks after agroinfiltration. Analysis of PSTVd-Ava-del progeny allowed the identification of 10 new sequence variants carrying various modifications, some of them having retained the original three nucleotide deletion at the AvaII site. Interestingly, other variants gained three nucleotides in the deletion site but did not revert to the original wild type sequence. The genetic stability of the progeny PSTVd-Ava-del sequence variants was evaluated in tomato leaves (early infection) and in both leaves and roots (late infection), respectively.
Collapse
|
17
|
Wang Y, Qu J, Ji S, Wallace AJ, Wu J, Li Y, Gopalan V, Ding B. A Land Plant-Specific Transcription Factor Directly Enhances Transcription of a Pathogenic Noncoding RNA Template by DNA-Dependent RNA Polymerase II. THE PLANT CELL 2016; 28:1094-107. [PMID: 27113774 PMCID: PMC4904678 DOI: 10.1105/tpc.16.00100] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/11/2016] [Accepted: 04/22/2016] [Indexed: 05/05/2023]
Abstract
Some DNA-dependent RNA polymerases (DdRPs) possess RNA-dependent RNA polymerase activity, as was first discovered in the replication of Potato spindle tuber viroid (PSTVd) RNA genome in tomato (Solanum lycopersicum). Recent studies revealed that this activity in bacteria and mammals is important for transcriptional and posttranscriptional regulatory mechanisms. Here, we used PSTVd as a model to uncover auxiliary factors essential for RNA-templated transcription by DdRP PSTVd replication in the nucleoplasm generates (-)-PSTVd intermediates and (+)-PSTVd copies. We found that the Nicotiana benthamiana canonical 9-zinc finger (ZF) Transcription Factor IIIA (TFIIIA-9ZF) as well as its variant TFIIIA-7ZF interacted with (+)-PSTVd, but only TFIIIA-7ZF interacted with (-)-PSTVd. Suppression of TFIIIA-7ZF reduced PSTVd replication, and overexpression of TFIIIA-7ZF enhanced PSTVd replication in planta. Consistent with the locale of PSTVd replication, TFIIIA-7ZF was found in the nucleoplasm and nucleolus, in contrast to the strictly nucleolar localization of TFIIIA-9ZF. Footprinting assays revealed that only TFIIIA-7ZF bound to a region of PSTVd critical for initiating transcription. Furthermore, TFIIIA-7ZF strongly enhanced the in vitro transcription of circular (+)-PSTVd by partially purified Pol II. Together, our results identify TFIIIA-7ZF as a dedicated cellular transcription factor that acts in DdRP-catalyzed RNA-templated transcription, highlighting both the extraordinary evolutionary adaptation of viroids and the potential of DdRPs for a broader role in cellular processes.
Collapse
Affiliation(s)
- Ying Wang
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210 The Center for RNA Biology, Ohio State University, Columbus, Ohio 43210 Center for Applied Plant Sciences, Ohio State University, Columbus, Ohio 43210
| | - Jie Qu
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210 Center for Applied Plant Sciences, Ohio State University, Columbus, Ohio 43210
| | - Shaoyi Ji
- College of Life Sciences, Peking University, Beijing, China
| | - Andrew J Wallace
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210
| | - Jian Wu
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210 Molecular, Cellular, and Developmental Biology Program, Ohio State University, Columbus, Ohio 43210
| | - Yi Li
- College of Life Sciences, Peking University, Beijing, China
| | - Venkat Gopalan
- The Center for RNA Biology, Ohio State University, Columbus, Ohio 43210 Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210 Molecular, Cellular, and Developmental Biology Program, Ohio State University, Columbus, Ohio 43210
| | - Biao Ding
- Department of Molecular Genetics, Ohio State University, Columbus, Ohio 43210 The Center for RNA Biology, Ohio State University, Columbus, Ohio 43210 Center for Applied Plant Sciences, Ohio State University, Columbus, Ohio 43210 Molecular, Cellular, and Developmental Biology Program, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
18
|
Abstract
Mature viroids consist of a noncoding, covalently closed circular RNA that is able to autonomously infect respective host plants. Thus, they must utilize proteins of the host for most biological functions such as replication, processing, transport, and pathogenesis. Therefore, viroids can be regarded as minimal parasites of the host machinery. They have to present to the host machinery the appropriate signals based on either their sequence or their structure. Here, we summarize such sequence and structural features critical for the biological functions of viroids.
Collapse
Affiliation(s)
- Gerhard Steger
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
| | - Jean-Pierre Perreault
- Département de biochimie, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliqueé sur le cancer, Université de Sherbrooke, Québec, Canada.
| |
Collapse
|
19
|
Rao ALN, Kalantidis K. Virus-associated small satellite RNAs and viroids display similarities in their replication strategies. Virology 2015; 479-480:627-36. [PMID: 25731957 DOI: 10.1016/j.virol.2015.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/01/2015] [Accepted: 02/10/2015] [Indexed: 12/15/2022]
Abstract
Since the discovery of non-coding, small, highly structured, satellite RNAs (satRNAs) and viroids as subviral pathogens of plants , have been of great interest to molecular biologists as possible living fossils of pre-cellular evolution in an RNA world. Despite extensive studies performed in the last four decades, there is still mystery surrounding the origin and evolutionary relationship between these subviral pathogens. Recent technical advances revealed some commonly shared replication features between these two subviral pathogens. In this review, we discuss our current perception of replication and evolutionary origin of these petite RNA pathogens.
Collapse
Affiliation(s)
- A L N Rao
- Department of Plant Pathology & Microbiology, University of California, Riverside, CA 92521-0122, United States.
| | - Kriton Kalantidis
- IMBB-FORTH, Vasilika Vouton, Heraklion, Crete, Greece and Dept. of Biology, University of Crete, Heraklion, Greece
| |
Collapse
|
20
|
Abstract
Because RNA can be a carrier of genetic information and a biocatalyst, there is a consensus that it emerged before DNA and proteins, which eventually assumed these roles and relegated RNA to intermediate functions. If such a scenario--the so-called RNA world--existed, we might hope to find its relics in our present world. The properties of viroids that make them candidates for being survivors of the RNA world include those expected for primitive RNA replicons: (a) small size imposed by error-prone replication, (b) high G + C content to increase replication fidelity, (c) circular structure for assuring complete replication without genomic tags, (d) structural periodicity for modular assembly into enlarged genomes, (e) lack of protein-coding ability consistent with a ribosome-free habitat, and (f) replication mediated in some by ribozymes, the fingerprint of the RNA world. With the advent of DNA and proteins, those protoviroids lost some abilities and became the plant parasites we now know.
Collapse
Affiliation(s)
- Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), 46022 València, Spain;
| | | | | | | | | |
Collapse
|
21
|
Flores R, Serra P, Minoia S, Di Serio F, Navarro B. Viroids: from genotype to phenotype just relying on RNA sequence and structural motifs. Front Microbiol 2012; 3:217. [PMID: 22719735 PMCID: PMC3376415 DOI: 10.3389/fmicb.2012.00217] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 05/28/2012] [Indexed: 11/13/2022] Open
Abstract
As a consequence of two unique physical properties, small size and circularity, viroid RNAs do not code for proteins and thus depend on RNA sequence/structural motifs for interacting with host proteins that mediate their invasion, replication, spread, and circumvention of defensive barriers. Viroid genomes fold up on themselves adopting collapsed secondary structures wherein stretches of nucleotides stabilized by Watson–Crick pairs are flanked by apparently unstructured loops. However, compelling data show that they are instead stabilized by alternative non-canonical pairs and that specific loops in the rod-like secondary structure, characteristic of Potato spindle tuber viroid and most other members of the family Pospiviroidae, are critical for replication and systemic trafficking. In contrast, rather than folding into a rod-like secondary structure, most members of the family Avsunviroidae adopt multibranched conformations occasionally stabilized by kissing-loop interactions critical for viroid viability in vivo. Besides these most stable secondary structures, viroid RNAs alternatively adopt during replication transient metastable conformations containing elements of local higher-order structure, prominent among which are the hammerhead ribozymes catalyzing a key replicative step in the family Avsunviroidae, and certain conserved hairpins that also mediate replication steps in the family Pospiviroidae. Therefore, different RNA structures – either global or local – determine different functions, thus highlighting the need for in-depth structural studies on viroid RNAs.
Collapse
Affiliation(s)
- Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC) Valencia, Spain
| | | | | | | | | |
Collapse
|
22
|
Abstract
Viroids are the smallest autonomous infectious nucleic acids known today. They are non-coding, unencapsidated, circular RNAs with sizes ranging from 250 to 400 nucleotides and infect certain plants. These RNAs are transcribed by rolling-circle mechanisms in the plant host's nuclei (Pospiviroidae) or chloroplasts (Avsunviroidae). Since viroids lack any open reading frame, their pathogenicity has for a long time been a conundrum. Recent findings, however, show that viroid infection is associated with the appearance of viroid-specific small RNA (vsRNA). These have sizes similar to endogenous small interfering RNA and microRNA and thus might alter the normal gene expression in the host plant. In this review we will summarize the current knowledge on vsRNA and discuss the current hypotheses how they connect to the induced symptoms, which vary dramatically, depending on both the plant cultivar and the viroid strain.
Collapse
Affiliation(s)
- Christian Hammann
- Heisenberg Research Group Ribogenetics, Technical University of Darmstadt, Darmstadt, Germany.
| | | |
Collapse
|
23
|
Bojić T, Beeharry Y, Zhang DJ, Pelchat M. Tomato RNA polymerase II interacts with the rod-like conformation of the left terminal domain of the potato spindle tuber viroid positive RNA genome. J Gen Virol 2012; 93:1591-1600. [PMID: 22422064 DOI: 10.1099/vir.0.041574-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Potato spindle tuber viroid (PSTVd) is a small, single-stranded, circular, non-coding RNA pathogen. Host DNA-dependent RNA polymerase II (RNAP II) was proposed to be critical for its replication, but no interaction site for RNAP II on the PSTVd RNA genome was identified. Using a co-immunoprecipitation strategy involving a mAb specific for the conserved heptapeptide (i.e. YSPTSPS) located at the carboxy-terminal domain of the largest subunit of RNAP II, we established the interaction of tomato RNAP II with PSTVd RNA and showed that RNAP II associates with the left terminal domain of PSTVd (+) RNA. RNAP II did not interact with any of several PSTVd (-) RNAs tested. Deletion and site-directed mutagenesis of a shortened model PSTVd (+) RNA fragment were used to identify the role of specific nucleotides and structural motifs in this interaction. Our results provide evidence for the interaction of a RNAP II complex from a natural host with the rod-like conformation of the left terminal domain of PSTVd (+) RNA.
Collapse
Affiliation(s)
- Teodora Bojić
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Yasnee Beeharry
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Da Jiang Zhang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | - Martin Pelchat
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| |
Collapse
|
24
|
Ding B. Viroids: self-replicating, mobile, and fast-evolving noncoding regulatory RNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 1:362-75. [PMID: 21956936 DOI: 10.1002/wrna.22] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Viroids are small, circular, and noncoding RNAs that infect plants. They replicate in the nucleus or chloroplast and then traffic from cell to cell and from organ to organ to establish systemic infection. Viroids achieve nearly all of the biological functions by directly interacting with host cellular factors. Viroid replication, together with replication of human hepatitis delta virus, demonstrates the biological novelty and significance of RNA-dependent RNA polymerase activities of DNA-dependent RNA polymerases. Viroid systemic infection uncovers a new biological principle--the role of three-dimensional RNA structural motifs mediating RNA trafficking between specific cells. Viroid diseases are virtually the consequences of host gene regulation by noncoding RNAs. A viroid RNA has the highest in vivo mutation rate among all known nucleic acid replicons. The host range of many viroids is expanding, essentially as a result of continuing and fast evolution of noncoding sequences/structures to gain new biological functions. Here, I discuss recent progress in these areas, emphasizing the broad significance of viroid research to the discovery of fundamental biological principles.
Collapse
Affiliation(s)
- Biao Ding
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, The Center for RNA Biology, and Molecular, Cellular and Developmental Biology Program, The Ohio State University, 207 Rightmire Hall, 1060 Carmack Road, Columbus, OH 43210, USA.
| |
Collapse
|
25
|
Hajeri S, Ramadugu C, Manjunath K, Ng J, Lee R, Vidalakis G. In vivo generated Citrus exocortis viroid progeny variants display a range of phenotypes with altered levels of replication, systemic accumulation and pathogenicity. Virology 2011; 417:400-9. [DOI: 10.1016/j.virol.2011.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 06/11/2011] [Accepted: 06/13/2011] [Indexed: 02/06/2023]
|
26
|
Eiras M. VIROIDES, PEQUENOS RNAS PATOGÊNICOS CAPAZES DE REPLICAÇÃO AUTÔNOMA: MODELOS MOLECULARES PARA O ESTUDO DE INTERAÇÕES PATÓGENO-HOSPEDEIRO E EVOLUÇÃO. ARQUIVOS DO INSTITUTO BIOLÓGICO 2010. [DOI: 10.1590/1808-1657v77p7512010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RESUMO Os viroides, apesar de serem constituídos por um pequeno RNA de fita simples, fortemente estruturado, circular, que não codifica proteínas, são capazes de se replicar de maneira autônoma em plantas superiores e causar doença interagindo diretamente com fatores do hospedeiro. Nesta revisão, serão apresentados e discutidos alguns dos mais recentes trabalhos envolvendo a interação de viroides com fatores do hospedeiro, incluindo aspectos relacionados à replicação, movimento e patogênese, além de suas características evolutivas. Nos últimos anos, alguns grupos de pesquisa têm se aventurado na busca por fatores do hospedeiro e mecanismos moleculares relacionados ao ciclo infeccioso dos viroides, tentando desvendar como esses pequenos RNAs interagem com o hospedeiro induzindo sintomas. Os viroides não codificam proteínas supressoras de silenciamento e, portanto, devem garantir sua existência utilizando estratégias baseadas em sua estrutura secundária, na compartimentalização em organelas, associação com fatores do hospedeiro e eficiência na replicação. A complexidade do ciclo infeccioso desses minúsculos RNAs indica que muitas interações desses patógenos com fatores do hospedeiro ainda devem ser identificadas.
Collapse
Affiliation(s)
- M. Eiras
- Instituto Biológico, Centro de Pesquisa e Desenvolvimento de Sanidade Vegetal, Brasil
| |
Collapse
|
27
|
Wiesyk A, Candresse T, Zagorski W, Gora-Sochacka A. Use of randomly mutagenized genomic cDNA banks of potato spindle tuber viroid to screen for viable versions of the viroid genome. J Gen Virol 2010; 92:457-66. [DOI: 10.1099/vir.0.026286-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
28
|
Teune JH, Steger G. NOVOMIR: De Novo Prediction of MicroRNA-Coding Regions in a Single Plant-Genome. J Nucleic Acids 2010; 2010. [PMID: 20871826 PMCID: PMC2943127 DOI: 10.4061/2010/495904] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 06/10/2010] [Accepted: 06/29/2010] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNA) are small regulatory, noncoding RNA molecules that are transcribed
as primary miRNAs (pri-miRNA) from eukaryotic genomes. At least in plants, their
regulatory activity is mediated through base-pairing with protein-coding messenger RNAs
(mRNA) followed by mRNA degradation or translation repression.
We describe NOVOMIR, a program for the identification of miRNA genes in plant
genomes. It uses a series of filter steps and a statistical model to discriminate a pre-miRNA
from other RNAs and does rely neither on prior knowledge of a miRNA target nor on
comparative genomics. The sensitivity and specificity of NOVOMIR for detection of premiRNAs
from Arabidopsis thaliana is ~0.83 and ~0.99, respectively. Plant pre-miRNAs
are more heterogeneous with respect to size and structure than animal pre-miRNAs. Despite
these difficulties, NOVOMIR is well suited to perform searches for pre-miRNAs on a
genomic scale. NOVOMIR is written in Perl and relies on two additional, free programs for prediction
of RNA secondary structure (RNALFOLD, RNASHAPES).
Collapse
Affiliation(s)
- Jan-Hendrik Teune
- Institut für Physikalische Biologie, Universitätsstr. 1, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | | |
Collapse
|
29
|
Viroid replication: rolling-circles, enzymes and ribozymes. Viruses 2009; 1:317-34. [PMID: 21994552 PMCID: PMC3185496 DOI: 10.3390/v1020317] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 09/09/2009] [Accepted: 09/09/2009] [Indexed: 12/05/2022] Open
Abstract
Viroids, due to their small size and lack of protein-coding capacity, must rely essentially on their hosts for replication. Intriguingly, viroids have evolved the ability to replicate in two cellular organella, the nucleus (family Pospiviroidae) and the chloroplast (family Avsunviroidae). Viroid replication proceeds through an RNA-based rolling-circle mechanism with three steps that, with some variations, operate in both polarity strands: i) synthesis of longer-than-unit strands catalyzed by either the nuclear RNA polymerase II or a nuclear-encoded chloroplastic RNA polymerase, in both instances redirected to transcribe RNA templates, ii) cleavage to unit-length, which in the family Avsunviroidae is mediated by hammerhead ribozymes embedded in both polarity strands, while in the family Pospiviroidae the oligomeric RNAs provide the proper conformation but not the catalytic activity, and iii) circularization. The host RNA polymerases, most likely assisted by additional host proteins, start transcription from specific sites, thus implying the existence of viroid promoters. Cleavage and ligation in the family Pospiviroidae is probably catalyzed by an RNase III-like enzyme and an RNA ligase able to circularize the resulting 5′ and 3′ termini. Whether a chloroplastic RNA ligase mediates circularization in the family Avsunviroidae, or this reaction is autocatalytic, remains an open issue.
Collapse
|
30
|
Owens RA, Hammond RW. Viroid pathogenicity: one process, many faces. Viruses 2009; 1:298-316. [PMID: 21994551 PMCID: PMC3185495 DOI: 10.3390/v1020298] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 08/31/2009] [Accepted: 09/01/2009] [Indexed: 12/28/2022] Open
Abstract
Despite the non-coding nature of their small RNA genomes, the visible symptoms of viroid infection resemble those associated with many plant virus diseases. Recent evidence indicates that viroid-derived small RNAs acting through host RNA silencing pathways play a key role in viroid pathogenicity. Host responses to viroid infection are complex, involving signaling cascades containing host-encoded protein kinases and crosstalk between hormonal and defense-signaling pathways. Studies of viroid-host interaction in the context of entire biochemical or developmental pathways are just beginning, and many working hypotheses have yet to be critically tested.
Collapse
Affiliation(s)
- Robert A. Owens
- Molecular Plant Pathology Laboratory, USDA/ARS, Beltsville, MD 20705, USA; E-mail:
| | - Rosemarie W. Hammond
- Molecular Plant Pathology Laboratory, USDA/ARS, Beltsville, MD 20705, USA; E-mail:
| |
Collapse
|
31
|
Abstract
Viroids are single-stranded, circular, and noncoding RNAs that infect plants. They replicate in the nucleus or chloroplast and then traffic cell-to-cell through plasmodesmata and long distance through the phloem to establish systemic infection. They also cause diseases in certain hosts. All functions are mediated directly by the viroid RNA genome or genome-derived RNAs. I summarize recent advances in the understanding of viroid structures and cellular factors enabling these functions, emphasizing conceptual developments, major knowledge gaps, and future directions. Newly emerging experimental systems and research tools are discussed that are expected to enable significant progress in a number of key areas. I highlight examples of groundbreaking contributions of viroid research to the development of new biological principles and offer perspectives on using viroid models to continue advancing some frontiers of life science.
Collapse
Affiliation(s)
- Biao Ding
- Department of Plant Cellular and Molecular Biology and Plant Biotechnology Center, The Ohio State University, Columbus, Ohio 43210, USA.
| |
Collapse
|
32
|
Abstract
Viroids are small, circular RNA pathogens, which infect several crop plants and can cause diseases of economic importance. They do not code for proteins but they contain a number of RNA structural elements, which interact with factors of the host. The resulting set of sophisticated and specific interactions enables them to use the host machinery for their replication and transport, circumvent its defence reactions and alter its gene expression. Although found in plants, viroids have a distant relative in the animal world: hepatitis delta virus (HDV), a satellite virus of hepatitis B virus, which has a similar rod-like structure and replicates in the nucleus of infected cells. Viroids have also a cellular relative: the retroviroids, found in some plants as independent (non-infectious) RNA replicons with a DNA copy. In this review, we summarize recent progress in understanding viroid biology. We discuss the possible role of recently identified viroid-binding host proteins as well as the recent data on the interaction of viroids with one part of the host's defence machinery, the RNA-mediated gene silencing and how this might be connected to viroid replication and pathogenicity.
Collapse
Affiliation(s)
- Efthimia Mina Tsagris
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, PO Box 1385, 71110 Heraklion, Greece.
| | | | | | | |
Collapse
|
33
|
Abrahem A, Pelchat M. Formation of an RNA polymerase II preinitiation complex on an RNA promoter derived from the hepatitis delta virus RNA genome. Nucleic Acids Res 2008; 36:5201-11. [PMID: 18682525 PMCID: PMC2532721 DOI: 10.1093/nar/gkn501] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Although RNA polymerases (RNAPs) are able to use RNA as template, it is unknown how they recognize RNA promoters. In this study, we used an RNA fragment derived from the hepatitis delta virus (HDV) genome as a model to investigate the recognition of RNA promoters by RNAP II. Inhibition of the transcription reaction using an antibody specific to the largest subunit of RNAP II and the direct binding of purified RNAP II to the RNA promoter confirmed the involvement of RNAP II in the reaction. RNA affinity chromatography established that an active RNAP II preinitiation complex forms on the RNA promoter and indicated that this complex contains the core RNAP II subunit and the general transcription factors TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH and TFIIS. Binding assays demonstrated the direct binding of the TATA-binding protein and suggested that this protein is required to nucleate the RNAP II complex on the RNA promoter. Our findings provide a better understanding of the events leading to RNA promoter recognition by RNAP II.
Collapse
Affiliation(s)
- Abrahem Abrahem
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | | |
Collapse
|
34
|
Motard J, Bolduc F, Thompson D, Perreault JP. The peach latent mosaic viroid replication initiation site is located at a universal position that appears to be defined by a conserved sequence. Virology 2008; 373:362-75. [PMID: 18190946 DOI: 10.1016/j.virol.2007.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 11/18/2007] [Accepted: 12/10/2007] [Indexed: 10/22/2022]
Abstract
Viroids replicate through a rolling circle mechanism that is exclusively RNA dependent. In this study, we initially revisited the determination of the replication initiation sites of peach latent mosaic viroid (PLMVd). A universal initiation site for each of the PLMVd polarities (position A50/C51 and U284 for the plus and minus strands, respectively) that is shared by a relatively wide repertoire of viroid variants was identified, in agreement with a previous report based on a different methodology. Subsequently, an in vitro selection procedure based on a model rolling circle replication assay was developed. This latter experiment led to the identification of a highly conserved CAGACG box which is reminiscent of the sequence found in the vicinity of the PLMVd initiation sites. The conserved sequence contributes to delineating the initiation site and provides an explanation for the presence of a specific universal initiation site on the PLMVd molecule.
Collapse
Affiliation(s)
- Julie Motard
- RNA group/Groupe ARN, Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, Quebec, Canada J1H 5N4.
| | | | | | | |
Collapse
|
35
|
Zhong X, Archual AJ, Amin AA, Ding B. A genomic map of viroid RNA motifs critical for replication and systemic trafficking. THE PLANT CELL 2008; 20:35-47. [PMID: 18178767 PMCID: PMC2254921 DOI: 10.1105/tpc.107.056606] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 12/12/2007] [Accepted: 12/13/2007] [Indexed: 05/19/2023]
Abstract
RNA replication and systemic trafficking play significant roles in developmental regulation and host-pathogen interactions. Viroids are the simplest noncoding eukaryotic RNA pathogens and genetic units that are capable of autonomous replication and systemic trafficking and offer excellent models to investigate the role of RNA structures in these processes. Like other RNAs, the predicted secondary structure of a viroid RNA contains many loops and bulges flanked by double-stranded helices, the biological functions of which are mostly unknown. Using Potato spindle tuber viroid infection of Nicotiana benthamiana as the experimental system, we tested the hypothesis that these loops/bulges are functional motifs that regulate replication in single cells or trafficking in a plant. Through a genome-wide mutational analysis, we identified multiple loops/bulges essential or important for each of these biological processes. Our results led to a genomic map of viroid RNA motifs that mediate single-cell replication and systemic trafficking, respectively. This map provides a framework to enable high-throughput studies on the tertiary structures and functional mechanisms of RNA motifs that regulate viroid replication and trafficking. Our model and approach should also be valuable for comprehensive investigations of the replication and trafficking motifs in other RNAs.
Collapse
Affiliation(s)
- Xuehua Zhong
- Department of Plant Cellular and Molecular Biology, Plant Biotechnology Center, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
36
|
Abstract
Viroids, as a consequence of not encoding any protein, are extremely dependent on their hosts. Replication of these minimal genomes, composed exclusively by a circular RNA of 246-401 nt, occurs in the nucleus (family Pospiviroidae) or in the chloroplast (family Avsunviroidae) by an RNA-based rolling-circle mechanism with three steps: (1) synthesis of longer-than-unit strands catalyzed by host DNA-dependent RNA polymerases recruited and redirected to transcribe RNA templates, (2) cleavage to unit-length, which in family Avsunviroidae is mediated by hammerhead ribozymes, and (3) circularization through an RNA ligase or autocatalytically. This consistent but still fragmentary picture has emerged from a combination of studies with in vitro systems (analysis of RNA preparations from infected plants, transcription assays with nuclear and chloroplastic fractions, characterization of enzymes and ribozymes mediating cleavage and ligation of viroid strands, dissection of 5' terminal groups of viroid strands, and in situ hybridization and microscopy of subcellular fractions and tissues), and in vivo systems (tissue infiltration studies, protoplasts, studies in planta and use of transgenic plants expressing viroid RNAs).
Collapse
Affiliation(s)
- Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | | | | | | | | |
Collapse
|
37
|
Owens RA. Potato spindle tuber viroid: the simplicity paradox resolved? MOLECULAR PLANT PATHOLOGY 2007; 8:549-560. [PMID: 20507521 DOI: 10.1111/j.1364-3703.2007.00418.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
TAXONOMY Potato spindle tuber viroid (PSTVd) is the type species of the genus Posipiviroid, family Pospiviroidae. An absence of hammerhead ribozymes and the presence of a 'central conserved region' distinguish PSTVd and related viroids from members of a second viroid family, the Avsunviroidae. PHYSICAL PROPERTIES Viroids are small, unencapsidated, circular, single-stranded RNA molecules which replicate autonomously when inoculated into host plants. Because viroids are non-protein-coding RNAs, designation of the more abundant, highly infectious polarity strand as the positive strand is arbitrary. PSTVd assumes a rod-like, highly structured conformation that is resistant to nuclease degradation in vitro. Naturally occurring sequence variants of PSTVd range in size from 356 to 361 nt. HOSTS AND SYMPTOMS: The natural host range of PSTVd-cultivated potato, certain other Solanum spp., and avocado-appears to be quite limited. Foliar symptoms in potato are often obscure, and the severity of tuber symptoms (elongation with the appearance of prominent bud scales/eyebrows and growth cracks) depends on both temperature and length of infection. PSTVd has a broad experimental host range, especially among solanaceous species, and strains are classified as mild, intermediate or severe based upon the symptoms observed in sensitive tomato cultivars. These symptoms include shortening of internodes, petioles and mid-ribs, severe epinasty and wrinkling of the leaves, and necrosis of mid-ribs, petioles and stems.
Collapse
Affiliation(s)
- Robert A Owens
- Molecular Plant Pathology Laboratory, U.S. Department of Agriculture/Agricultural Research Service-Beltsville, MD 20705, USA.
| |
Collapse
|
38
|
Ding B, Itaya A. Viroid: a useful model for studying the basic principles of infection and RNA biology. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:7-20. [PMID: 17249418 DOI: 10.1094/mpmi-20-0007] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Viroids are small, circular, noncoding RNAs that currently are known to infect only plants. They also are the smallest self-replicating genetic units known. Without encoding proteins and requirement for helper viruses, these small RNAs contain all the information necessary to mediate intracellular trafficking and localization, replication, systemic trafficking, and pathogenicity. All or most of these functions likely result from direct interactions between distinct viroid RNA structural motifs and their cognate cellular factors. In this review, we discuss current knowledge of these RNA motifs and cellular factors. An emerging theme is that the structural simplicity, functional versatility, and experimental tractability of viroid RNAs make viroid-host interactions an excellent model to investigate the basic principles of infection and further the general mechanisms of RNA-templated replication, intracellular and intercellular RNA trafficking, and RNA-based regulation of gene expression. We anticipate that significant advances in understanding viroid-host interactions will be achieved through multifaceted secondary and tertiary RNA structural analyses in conjunction with genetic, biochemical, cellular, and molecular tools to characterize the RNA motifs and cellular factors associated with the processes leading to systemic infection.
Collapse
Affiliation(s)
- Biao Ding
- Department of Plant Cellular and Molecular Biology, Plant Biotechnology Center, Ohio State University, 207 Rightmire Hall, 1060 Carmack Road, Columbus 43210, USA.
| | | |
Collapse
|
39
|
Daròs JA, Elena SF, Flores R. Viroids: an Ariadne's thread into the RNA labyrinth. EMBO Rep 2006; 7:593-8. [PMID: 16741503 PMCID: PMC1479586 DOI: 10.1038/sj.embor.7400706] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 04/05/2006] [Indexed: 11/09/2022] Open
Abstract
Viroids are structurally, functionally and evolutionarily different from viruses. Despite their small, non-protein-encoding, single-stranded circular RNA genome, viroids can infect higher plants and cause certain diseases. Members of the two viroid families, Pospiviroidae and Avsunviroidae, have evolved to usurp the transcriptional machinery of their host nuclei and chloroplasts, respectively, in which replication proceeds through a rolling-circle mechanism involving RNA polymerization, cleavage and ligation. Remarkably, viroids subvert certain DNA-dependent RNA polymerases to transcribe RNA templates, and, in the family Avsunviroidae, post-transcriptional cleavage is catalysed by hammerhead ribozymes. Viroids are models for studying RNA evolution and for analysing RNA transport in plants, because they can move intracellularly, intercellularly through plasmodesmata and to distal parts of the plant through the vascular system. Viroids elicit RNA-silencing phenomena, which might mediate some of their biological properties, including pathogenesis. As some viroids behave as catalytic RNAs, they are regarded as remnants of the RNA world.
Collapse
Affiliation(s)
- José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Universidad Politécnica de Valencia, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Santiago F Elena
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Universidad Politécnica de Valencia, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Universidad Politécnica de Valencia, Avenida de los Naranjos s/n, 46022 Valencia, Spain
- Tel: +34 963 877 861; Fax: +34 963 877 859;
| |
Collapse
|
40
|
Greco-Stewart VS, Miron P, Abrahem A, Pelchat M. The human RNA polymerase II interacts with the terminal stem-loop regions of the hepatitis delta virus RNA genome. Virology 2006; 357:68-78. [PMID: 16959288 DOI: 10.1016/j.virol.2006.08.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 06/02/2006] [Accepted: 08/07/2006] [Indexed: 12/28/2022]
Abstract
The hepatitis delta virus (HDV) is an RNA virus that depends on DNA-dependent RNA polymerase (RNAP) for its transcription and replication. While it is generally accepted that RNAP II is involved in HDV replication, its interaction with HDV RNA requires confirmation. A monoclonal antibody specific to the carboxy terminal domain of the largest subunit of RNAP II was used to establish the association of RNAP II with both polarities of HDV RNA in HeLa cells. Co-immunoprecipitations using HeLa nuclear extract revealed that RNAP II interacts with HDV-derived RNAs at sites located within the terminal stem-loop domains of both polarities of HDV RNA. Analysis of these regions revealed a strong selection to maintain a rod-like conformation and demonstrated several conserved features. These results provide the first direct evidence of an association between human RNAP II and HDV RNA and suggest two transcription start sites on both polarities of HDV RNA.
Collapse
Affiliation(s)
- Valerie S Greco-Stewart
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | | | | | | |
Collapse
|
41
|
Zhong X, Leontis N, Qian S, Itaya A, Qi Y, Boris-Lawrie K, Ding B. Tertiary structural and functional analyses of a viroid RNA motif by isostericity matrix and mutagenesis reveal its essential role in replication. J Virol 2006; 80:8566-81. [PMID: 16912306 PMCID: PMC1563885 DOI: 10.1128/jvi.00837-06] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2006] [Accepted: 06/19/2006] [Indexed: 02/07/2023] Open
Abstract
RNA-templated RNA replication is essential for viral or viroid infection, as well as for regulation of cellular gene expression. Specific RNA motifs likely regulate various aspects of this replication. Viroids of the Pospiviroidae family, as represented by the Potato spindle tuber viroid (PSTVd), replicate in the nucleus by utilizing DNA-dependent RNA polymerase II. We investigated the role of the loop E (sarcin/ricin) motif of the PSTVd genomic RNA in replication. A tertiary-structural model of this motif, inferred by comparative sequence analysis and comparison with nuclear magnetic resonance and X-ray crystal structures of loop E motifs in other RNAs, is presented in which core non-Watson-Crick base pairs are precisely specified. Isostericity matrix analysis of these base pairs showed that the model accounts for the reported natural sequence variations and viable experimental mutations in loop E motifs of PSTVd and other viroids. Furthermore, isostericity matrix analysis allowed us to design disruptive, as well as compensatory, mutations of PSTVd loop E. Functional analyses of such mutants by in vitro and in vivo experiments demonstrated that loop E structural integrity is crucial for replication, specifically during transcription. Our results suggest that the PSTVd loop E motif exists and functions in vivo and provide loss-of-function genetic evidence for the essential role of a viroid RNA three-dimensional motif in rolling-circle replication. The use of isostericity matrix analysis of non-Watson-Crick base pairing to rationalize mutagenesis of tertiary motifs and systematic in vitro and in vivo functional assays of mutants offers a novel, comprehensive approach to elucidate the tertiary-structure-function relationships for RNA motifs of general biological significance.
Collapse
Affiliation(s)
- Xuehua Zhong
- Department of Plant Cellular and Molecular Biology, Ohio State University, Columbus, 43210, USA
| | | | | | | | | | | | | |
Collapse
|