1
|
Haqshenas G, Wu J, Simpson KJ, Daly RJ, Netter HJ, Baumert TF, Doerig C. Signalome-wide assessment of host cell response to hepatitis C virus. Nat Commun 2017; 8:15158. [PMID: 28480889 PMCID: PMC5424167 DOI: 10.1038/ncomms15158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 03/06/2017] [Indexed: 02/07/2023] Open
Abstract
Host cell signalling during infection with intracellular pathogens remains poorly understood. Here we report on the use of antibody microarray technology to detect variations in the expression levels and phosphorylation status of host cell signalling proteins during hepatitis C virus (HCV) replication. Following transfection with HCV RNA, the JNK and NF-κB pathways are suppressed, while the JAK/STAT5 pathway is activated; furthermore, components of the apoptosis and cell cycle control machineries are affected in the expression and/or phosphorylation status. RNAi-based hit validation identifies components of the JAK/STAT, NF-κB, MAPK and calcium-induced pathways as modulators of HCV replication. Selective chemical inhibition of one of the identified targets, the JNK activator kinase MAP4K2, does impair HCV replication. Thus this study provides a comprehensive picture of host cell pathway mobilization by HCV and uncovers potential therapeutic targets. The strategy of identifying targets for anti-infective intervention within the host cell signalome can be applied to any intracellular pathogen. Development of antiviral strategies depends on an understanding of virus–host interactions. Here, using HCV, Haqshenas et al. show that antibody microarray combined with a targeted siRNA screen can be a powerful tool to identify cellular signalling pathways that are important for virus replication.
Collapse
Affiliation(s)
- Gholamreza Haqshenas
- Infection &Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton Victoria 3800, Australia
| | - Jianmin Wu
- Kinghorn Cancer Centre &Cancer Division, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia.,St Vincent's Clinical School, University of New South Wales, Sydney, New South Wales 2010, Australia.,Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Centre for Cancer Bioinformatics, Peking University Cancer Hospital &Institute, Beijing 100142, China
| | - Kaylene J Simpson
- Victorian Centre for Functional Genomics, The Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria 3002, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Roger J Daly
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton Victoria 3800, Australia
| | - Hans J Netter
- Infection &Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton Victoria 3800, Australia.,Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute, Melbourne Health, Victoria 3000, Australia
| | - Thomas F Baumert
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, 67091 Strasbourg, France.,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France
| | - Christian Doerig
- Infection &Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton Victoria 3800, Australia
| |
Collapse
|
2
|
Abstract
Since the discovery that certain small viral membrane proteins, collectively termed as viroporins, can permeabilize host cellular membranes and also behave as ion channels, attempts have been made to link this feature to specific biological roles. In parallel, most viroporins identified so far are virulence factors, and interest has focused toward the discovery of channel inhibitors that would have a therapeutic effect, or be used as research tools to understand the biological roles of viroporin ion channel activity. However, this paradigm is being shifted by the difficulties inherent to small viral membrane proteins, and by the realization that protein-protein interactions and other diverse roles in the virus life cycle may represent an equal, if not, more important target. Therefore, although targeting the channel activity of viroporins can probably be therapeutically useful in some cases, the focus may shift to their other functions in following years. Small-molecule inhibitors have been mostly developed against the influenza A M2 (IAV M2 or AM2). This is not surprising since AM2 is the best characterized viroporin to date, with a well-established biological role in viral pathogenesis combined the most extensive structural investigations conducted, and has emerged as a validated drug target. For other viroporins, these studies are still mostly in their infancy, and together with those for AM2, are the subject of the present review.
Collapse
|
3
|
Two different conformations in hepatitis C virus p7 protein account for proton transport and dye release. PLoS One 2014; 9:e78494. [PMID: 24409277 PMCID: PMC3883635 DOI: 10.1371/journal.pone.0078494] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 10/18/2013] [Indexed: 12/28/2022] Open
Abstract
The p7 protein from the hepatitis C virus (HCV) is a 63 amino acid long polypeptide that is essential for replication, and is involved in protein trafficking and proton transport. Therefore, p7 is a possible target for antivirals. The consensus model for the channel formed by p7 protein is a hexameric or heptameric oligomer of α-helical hairpin monomers, each having two transmembrane domains, TM1 and TM2, where the N-terminal TM1 would face the lumen of this channel. A reported high-throughput functional assay to search for p7 channel inhibitors is based on carboxyfluorescein (CF) release from liposomes after p7 addition. However, the rationale for the dual ability of p7 to serve as an ion or proton channel in the infected cell, and to permeabilize membranes to large molecules like CF is not clear. We have recreated both activities in vitro, examining the conformation present in these assays using infrared spectroscopy. Our results indicate that an α-helical form of p7, which can transport protons, is not able to elicit CF release. In contrast, membrane permeabilization to CF is observed when p7 contains a high percentage of β-structure, or when using a C-terminal fragment of p7, encompassing TM2. We propose that the reported inhibitory effect of some small compounds, e.g., rimantadine, on both CF release and proton transport can be explained via binding to the membrane-inserted C-terminal half of p7, increasing its rigidity, in a similar way to the influenza A M2-rimantadine interaction.
Collapse
|
4
|
The p7 protein of hepatitis C virus is degraded via the proteasome-dependent pathway. Virus Res 2013; 176:211-5. [DOI: 10.1016/j.virusres.2013.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/16/2013] [Accepted: 06/18/2013] [Indexed: 01/12/2023]
|
5
|
Chien TH, Chiang YL, Chen CP, Henklein P, Hänel K, Hwang IS, Willbold D, Fischer WB. Assembling an ion channel: ORF 3a from SARS-CoV. Biopolymers 2013; 99:628-35. [PMID: 23483519 PMCID: PMC7161858 DOI: 10.1002/bip.22230] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 01/15/2013] [Accepted: 01/28/2013] [Indexed: 11/29/2022]
Abstract
Protein 3a is a 274 amino acid polytopic channel protein with three putative transmembrane domains (TMDs) encoded by severe acute respiratory syndrome corona virus (SARS-CoV). Synthetic peptides corresponding to each of its three individual transmembrane domains (TMDs) are reconstituted into artificial lipid bilayers. Only TMD2 and TMD3 induce channel activity. Reconstitution of the peptides as TMD1 + TMD3 as well as TMD2 + TMD3 in a 1 : 1 mixture induces membrane activity for both mixtures. In a 1 : 1 : 1 mixture, channel like behavior is almost restored. Expression of full length 3a and reconstitution into artificial lipid bilayers reveal a weak cation selective (PK ≈ 2 PCl ) rectifying channel. In the presence of nonphysiological concentration of Ca-ions the channel develops channel activity.
Collapse
Affiliation(s)
- Tze-Hsiang Chien
- Institute of Biophotonics, School of Biomedical Science and Engineering, National Yang-Ming University, Taipei, 112, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Wanka L, Iqbal K, Schreiner PR. The lipophilic bullet hits the targets: medicinal chemistry of adamantane derivatives. Chem Rev 2013; 113:3516-604. [PMID: 23432396 PMCID: PMC3650105 DOI: 10.1021/cr100264t] [Citation(s) in RCA: 452] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Lukas Wanka
- Institute of Organic Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany; Fax +49(641)9934309
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314-6399, USA
| | - Khalid Iqbal
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314-6399, USA
| | - Peter R. Schreiner
- Institute of Organic Chemistry, Justus-Liebig University Giessen, Heinrich-Buff-Ring 58, 35392 Giessen, Germany; Fax +49(641)9934309
| |
Collapse
|
7
|
Gouklani H, Beyer C, Drummer H, Gowans EJ, Netter HJ, Haqshenas G. Identification of specific regions in hepatitis C virus core, NS2 and NS5A that genetically interact with p7 and co-ordinate infectious virus production. J Viral Hepat 2013; 20:e66-71. [PMID: 23490391 DOI: 10.1111/jvh.12004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Accepted: 07/15/2012] [Indexed: 12/27/2022]
Abstract
The p7 protein of hepatitis C virus (HCV) is a small, integral membrane protein that plays a critical role in virus replication. Recently, we reported two intergenotypic JFH1 chimeric viruses encoding the partial or full-length p7 protein of the HCV-A strain of genotype 1b (GT1b; Virology; 2007; 360:134). In this study, we determined the consensus sequences of the entire polyprotein coding regions of the wild-type JFH1 and the revertant chimeric viruses and identified predominant amino acid substitutions in core (K74M), NS2 (T23N, H99P) and NS5A (D251G). Forward genetic analysis demonstrated that all single mutations restored the infectivity of the defective chimeric genomes suggesting that the infectious virus production involves the association of p7 with specific regions in core, NS2 and NS5A. In addition, it was demonstrated that the NS2 T23N facilitated the generation of infectious intergenotypic chimeric virus encoding p7 from GT6 of HCV.
Collapse
Affiliation(s)
- H Gouklani
- The Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Vic, Australia
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
The p7 protein of hepatitis C virus (HCV) is a viroporin that is dispensable for viral genome replication but plays a critical role in virus morphogenesis. In this study, we generated a JFH1-based intergenotypic chimeric genome that encoded a heterologous genotype 1b (GT1b) p7. The parental intergenotypic chimeric genome was nonviable in human hepatoma cells, and infectious chimeric virions were produced only when cells transfected with the chimeric genomes were passaged several times. Sequence analysis of the entire polyprotein-coding region of the recovered chimeric virus revealed one predominant amino acid substitution in nonstructural protein 2 (NS2), T23N, and one in NS5B, K151R. Forward genetic analysis demonstrated that each of these mutations per se restored the infectivity of the parental chimeric genome, suggesting that interactions between p7, NS2, and NS5B were required for virion assembly/maturation. p7 and NS5B colocalized in cellular compartments, and the NS5B mutation did not affect the colocalization pattern. The NS5B K151R mutation neither increased viral RNA replication in human hepatoma cells nor altered the polymerase activity of NS5B in an in vitro assay. In conclusion, this study suggests that HCV NS5B is involved in virus morphogenesis.
Collapse
|
9
|
Bianchi A, Crotta S, Brazzoli M, Foung SKH, Merola M. Hepatitis C virus e2 protein ectodomain is essential for assembly of infectious virions. Int J Hepatol 2011; 2011:968161. [PMID: 22007314 PMCID: PMC3172978 DOI: 10.4061/2011/968161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 09/05/2010] [Indexed: 12/17/2022] Open
Abstract
The Hepatitis C virus E1 and E2 envelope proteins are the major players in all events required for virus entry into target cells. In addition, the recently developed HCV cell culture system has indicated that E1E2 heterodimer formation is a prerequisite for viral particle production. In this paper, we explored a new genetic approach to construct intergenotypic 2a/1b chimeras, maintaining the structural region of the infectious strain JFH1 and substituting the soluble portion of E1 and/or E2 proteins. This strategy provides useful information on the role of the surface-exposed domain of the envelope proteins in virus morphogenesis and allows comparative analysis of different HCV genotypes. We found that substituting the E2 protein ectodomain region abolishes the production of chimeric infectious particles. Our data indicate that the soluble part of the E2 protein is involved in a genotype-specific interplay with remaining viral proteins that affect the HCV assembly process.
Collapse
Affiliation(s)
- Alessia Bianchi
- Department of Molecular Immunology, Novartis Vaccines and Diagnostic, Via Fiorentina 1, 53100 Siena, Italy
| | - Stefania Crotta
- Department of Molecular Immunology, Novartis Vaccines and Diagnostic, Via Fiorentina 1, 53100 Siena, Italy,Division of Immunoregulation, National Institute of Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Michela Brazzoli
- Department of Molecular Immunology, Novartis Vaccines and Diagnostic, Via Fiorentina 1, 53100 Siena, Italy
| | | | - Marcello Merola
- Department of Molecular Immunology, Novartis Vaccines and Diagnostic, Via Fiorentina 1, 53100 Siena, Italy,Department of Structural and Functional Biology, University of Naples “Federico II” at MSA, 80132 Naples, Italy,*Marcello Merola:
| |
Collapse
|
10
|
Steinmann E, Pietschmann T. Hepatitis C virus p7-a viroporin crucial for virus assembly and an emerging target for antiviral therapy. Viruses 2010; 2:2078-2095. [PMID: 21994720 PMCID: PMC3185753 DOI: 10.3390/v2092078] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 09/02/2010] [Accepted: 09/06/2010] [Indexed: 12/17/2022] Open
Abstract
The hepatitis C virus (HCV), a hepatotropic plus-strand RNA virus of the family Flaviviridae, encodes a set of 10 viral proteins. These viral factors act in concert with host proteins to mediate virus entry, and to coordinate RNA replication and virus production. Recent evidence has highlighted the complexity of HCV assembly, which not only involves viral structural proteins but also relies on host factors important for lipoprotein synthesis, and a number of viral assembly co-factors. The latter include the integral membrane protein p7, which oligomerizes and forms cation-selective pores. Based on these properties, p7 was included into the family of viroporins comprising viral proteins from multiple virus families which share the ability to manipulate membrane permeability for ions and to facilitate virus production. Although the precise mechanism as to how p7 and its ion channel function contributes to virus production is still elusive, recent structural and functional studies have revealed a number of intriguing new facets that should guide future efforts to dissect the role and function of p7 in the viral replication cycle. Moreover, a number of small molecules that inhibit production of HCV particles, presumably via interference with p7 function, have been reported. These compounds should not only be instrumental in increasing our understanding of p7 function, but may, in the future, merit further clinical development to ultimately optimize HCV-specific antiviral treatments.
Collapse
Affiliation(s)
| | - Thomas Pietschmann
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-511-220027-130; Fax: +49-511-220027-139
| |
Collapse
|
11
|
Montserret R, Saint N, Vanbelle C, Salvay AG, Simorre JP, Ebel C, Sapay N, Renisio JG, Böckmann A, Steinmann E, Pietschmann T, Dubuisson J, Chipot C, Penin F. NMR structure and ion channel activity of the p7 protein from hepatitis C virus. J Biol Chem 2010; 285:31446-61. [PMID: 20667830 DOI: 10.1074/jbc.m110.122895] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The small membrane protein p7 of hepatitis C virus forms oligomers and exhibits ion channel activity essential for virus infectivity. These viroporin features render p7 an attractive target for antiviral drug development. In this study, p7 from strain HCV-J (genotype 1b) was chemically synthesized and purified for ion channel activity measurements and structure analyses. p7 forms cation-selective ion channels in planar lipid bilayers and at the single-channel level by the patch clamp technique. Ion channel activity was shown to be inhibited by hexamethylene amiloride but not by amantadine. Circular dichroism analyses revealed that the structure of p7 is mainly α-helical, irrespective of the membrane mimetic medium (e.g. lysolipids, detergents, or organic solvent/water mixtures). The secondary structure elements of the monomeric form of p7 were determined by (1)H and (13)C NMR in trifluoroethanol/water mixtures. Molecular dynamics simulations in a model membrane were combined synergistically with structural data obtained from NMR experiments. This approach allowed us to determine the secondary structure elements of p7, which significantly differ from predictions, and to propose a three-dimensional model of the monomeric form of p7 associated with the phospholipid bilayer. These studies revealed the presence of a turn connecting an unexpected N-terminal α-helix to the first transmembrane helix, TM1, and a long cytosolic loop bearing the dibasic motif and connecting TM1 to TM2. These results provide the first detailed experimental structural framework for a better understanding of p7 processing, oligomerization, and ion channel gating mechanism.
Collapse
Affiliation(s)
- Roland Montserret
- Institut de Biologie et Chimie des Protéines, UMR 5086, CNRS, Université de Lyon, IFR128 BioSciences Gerland-Lyon Sud, 69367 Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Luscombe CA, Huang Z, Murray MG, Miller M, Wilkinson J, Ewart GD. A novel Hepatitis C virus p7 ion channel inhibitor, BIT225, inhibits bovine viral diarrhea virus in vitro and shows synergism with recombinant interferon-alpha-2b and nucleoside analogues. Antiviral Res 2010; 86:144-53. [PMID: 20156486 DOI: 10.1016/j.antiviral.2010.02.312] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 12/21/2009] [Accepted: 02/04/2010] [Indexed: 11/16/2022]
Abstract
The novel small molecule, BIT225 (N-[5-(1-methyl-1H-pyrazol-4-yl)-napthalene-2-carbonyl]-guanidine: CAS No. 917909-71-8), was initially identified using a screening strategy designed to detect inhibitors of Hepatitis C virus (HCV) p7 ion channel activity. Here we report that BIT225 has potent stand-alone antiviral activity against the HCV model pestivirus bovine viral diarrhea virus (BVDV) with an IC(50) of 314nM. Combinations of BIT225 with recombinant interferon alpha-2b (rIFNalpha-2b) show synergistic antiviral action against BVDV and the synergy is further enhanced by addition of ribavirin. Synergy was also observed between BIT225 and two nucleoside analogues known to inhibit the HCV RNA-dependent RNA polymerase. BIT225 has successfully completed a phase Ia dose escalating, single dose safety trial in healthy volunteers and a phase Ib/IIa trial to evaluate the safety and pharmacokinetics of repeated dosing for selected doses of BIT225 in HCV-infected persons. A modest, but statistically significant drop in patient viral load was detected over the 7 days of dosing (ref. www.biotron.com.au). Given the critical role of the p7 protein in the HCV life cycle and pathogenicity, our data indicate that molecules like BIT225, representing a new class of antiviral compounds, may be developable for therapeutic use against HCV infection, either as monotherapy, or in combination with other HCV drugs.
Collapse
|
13
|
Characterization of determinants important for hepatitis C virus p7 function in morphogenesis by using trans-complementation. J Virol 2009; 83:11682-93. [PMID: 19726506 DOI: 10.1128/jvi.00691-09] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Hepatitis C virus (HCV) p7 is an integral membrane protein that forms ion channels in vitro and that is crucial for the efficient assembly and release of infectious virions. Due to these properties, p7 was included in the family of viroporins that comprises proteins like influenza A virus M2 and human immunodeficiency virus type 1 (HIV-1) vpu, which alter membrane permeability and facilitate the release of infectious viruses. p7 from different HCV isolates sustains virus production with variable efficiency. Moreover, p7 determinants modulate processing at the E2/p7 and the p7/NS2 signal peptidase cleavage sites, and E2/p7 cleavage is incomplete. Consequently, it was unclear if a differential ability to sustain virus production was due to variable ion channel activity or due to alternate processing at these sites. Therefore, we developed a trans-complementation assay permitting the analysis of p7 outside of the HCV polyprotein and thus independently of processing. The rescue of p7-defective HCV genomes was accomplished by providing E2, p7, and NS2, or, in some cases, by p7 alone both in a transient complementation assay as well as in stable cell lines. In contrast, neither influenza A virus M2 nor HIV-1 vpu compensated for defective p7 in HCV morphogenesis. Thus, p7 is absolutely essential for the production of infectious HCV particles. Moreover, our data indicate that p7 can operate independently of an upstream signal sequence, and that a tyrosine residue close to the conserved dibasic motif of p7 is important for optimal virus production in the context of genotype 2a viruses. The experimental system described here should be helpful to investigate further key determinants of p7 that are essential for its structure and function in the absence of secondary effects caused by altered polyprotein processing.
Collapse
|
14
|
Meshkat Z, Audsley M, Beyer C, Gowans EJ, Haqshenas G. Reverse genetic analysis of a putative, influenza virus M2 HXXXW-like motif in the p7 protein of hepatitis C virus. J Viral Hepat 2009; 16:187-94. [PMID: 19175872 DOI: 10.1111/j.1365-2893.2008.01064.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The p7 protein of hepatitis C virus (HCV) has been classified into a family of viral proteins, designated viroporins that form ion channels. The M2 protein of influenza virus is the prototype viroporin and encodes a HXXXW motif that constitutes the main functional element of the M2 channels. Alignment of different p7 proteins revealed that a HXXXW sequence (positions 17-21) is also highly conserved among some HCV genotypes. To study the putative HXXXW motif in p7, five mutants of the Japanese fulminant hepatitis 1 strain of HCV that encoded H17A, H17G, H17E, Y21A and Y21W were generated. After transfection of human hepatoma cells with the mutant transcripts, unlike H17A and H17G that produced up to 1 log lower viral titres than wild type, H17E and Y21W showed slightly higher infectivity. In conclusion, this study demonstrated that the HXXXW sequence exists in the p7 proteins of some HCV genotypes and that H17 plays an important role in virus replication.
Collapse
Affiliation(s)
- Z Meshkat
- The Macfarlane Burnet Institute, Melbourne, Vic, Australia
| | | | | | | | | |
Collapse
|
15
|
Gottwein JM, Bukh J. Cutting the gordian knot-development and biological relevance of hepatitis C virus cell culture systems. Adv Virus Res 2008; 71:51-133. [PMID: 18585527 DOI: 10.1016/s0065-3527(08)00002-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Worldwide approximately 180 million people are chronically infected with hepatitis C virus (HCV). HCV isolates exhibit extensive genetic heterogeneity and have been grouped in six genotypes and various subtypes. Additionally, several naturally occurring intergenotypic recombinants have been described. Research on the viral life cycle, efficient therapeutics, and a vaccine has been hampered by the absence of suitable cell culture systems. The first system permitting studies of the full viral life cycle was intrahepatic transfection of RNA transcripts of HCV consensus complementary DNA (cDNA) clones into chimpanzees. However, such full-length clones were not infectious in vitro. The development of the replicon system and HCV pseudo-particles allowed in vitro studies of certain aspects of the viral life cycle, RNA replication, and viral entry, respectively. Identification of the genotype 2 isolate JFH1, which for unknown reasons showed an exceptional replication capability and resulted in formation of infectious viral particles in the human hepatoma cell line Huh7, led in 2005 to the development of the first full viral life cycle in vitro systems. JFH1-based systems now enable in vitro studies of the function of viral proteins, their interaction with each other and host proteins, new antivirals, and neutralizing antibodies in the context of the full viral life cycle. However, several challenges remain, including development of cell culture systems for all major HCV genotypes and identification of other susceptible cell lines.
Collapse
Affiliation(s)
- Judith M Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases and Clinical Research Centre, Copenhagen University Hospital, Hvidovre, Denmark
| | | |
Collapse
|
16
|
Hepatitis C virus p7 protein is crucial for assembly and release of infectious virions. PLoS Pathog 2008. [PMID: 17658949 DOI: 10.1371/journal.ppat.0030103.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hepatitis C virus (HCV) infection is associated with chronic liver disease and currently affects about 3% of the world population. Although much has been learned about the function of individual viral proteins, the role of the HCV p7 protein in virus replication is not known. Recent data, however, suggest that it forms ion channels that may be targeted by antiviral compounds. Moreover, this protein was shown to be essential for infectivity in chimpanzee. Employing the novel HCV infection system and using a genetic approach to investigate the function of p7 in the viral replication cycle, we find that this protein is essential for efficient assembly and release of infectious virions across divergent virus strains. We show that p7 promotes virus particle production in a genotype-specific manner most likely due to interactions with other viral factors. Virus entry, on the other hand, is largely independent of p7, as the specific infectivity of released virions with a defect in p7 was not affected. Together, these observations indicate that p7 is primarily involved in the late phase of the HCV replication cycle. Finally, we note that p7 variants from different isolates deviate substantially in their capacity to promote virus production, suggesting that p7 is an important virulence factor that may modulate fitness and in turn virus persistence and pathogenesis.
Collapse
|
17
|
Steinmann E, Penin F, Kallis S, Patel AH, Bartenschlager R, Pietschmann T. Hepatitis C virus p7 protein is crucial for assembly and release of infectious virions. PLoS Pathog 2008; 3:e103. [PMID: 17658949 PMCID: PMC1924870 DOI: 10.1371/journal.ppat.0030103] [Citation(s) in RCA: 268] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 06/07/2007] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) infection is associated with chronic liver disease and currently affects about 3% of the world population. Although much has been learned about the function of individual viral proteins, the role of the HCV p7 protein in virus replication is not known. Recent data, however, suggest that it forms ion channels that may be targeted by antiviral compounds. Moreover, this protein was shown to be essential for infectivity in chimpanzee. Employing the novel HCV infection system and using a genetic approach to investigate the function of p7 in the viral replication cycle, we find that this protein is essential for efficient assembly and release of infectious virions across divergent virus strains. We show that p7 promotes virus particle production in a genotype-specific manner most likely due to interactions with other viral factors. Virus entry, on the other hand, is largely independent of p7, as the specific infectivity of released virions with a defect in p7 was not affected. Together, these observations indicate that p7 is primarily involved in the late phase of the HCV replication cycle. Finally, we note that p7 variants from different isolates deviate substantially in their capacity to promote virus production, suggesting that p7 is an important virulence factor that may modulate fitness and in turn virus persistence and pathogenesis. The hepatitis C virus (HCV), a major human pathogen associated with severe liver disease, encodes a small membrane protein designated p7. Although recent reports indicated that p7 forms channels conducting ions across membranes and is essential for HCV infection, its exact role in the viral life cycle remained elusive. In this study, we illustrate that HCV relies on p7 function for efficient assembly and release of infectious progeny virions from liver cells. Conversely, entry of HCV particles into new host cells is independent of p7. This new evidence supports the recent proposal to include p7 into the family of viroporins that comprises proteins from diverse viruses, for instance, HIV-1 and influenza A virus. Members of this group of functionally related proteins form membrane pores that promote virus release and in some cases also virus entry. Moreover, we identify several conserved p7 residues crucial for functioning of this protein. These amino acids possibly stabilize the structure of p7 or directly participate in channelling of ions. Interestingly, p7 variants from divergent patient isolates differ with regard to their ability to promote virus production, suggesting that p7 modulates viral fitness. Together these observations shed new light on fundamental aspects of the HCV replication strategy.
Collapse
Affiliation(s)
- Eike Steinmann
- Department of Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Francois Penin
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS, Université Lyon 1, IFR 128 BioSciences Lyon-Gerland, Lyon, France
| | - Stephanie Kallis
- Department of Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Arvind H Patel
- Medical Research Council Virology Unit, Institute of Virology, University of Glasgow, Glasgow, United Kingdom
| | - Ralf Bartenschlager
- Department of Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Thomas Pietschmann
- Department of Molecular Virology, University of Heidelberg, Heidelberg, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
18
|
StGelais C, Tuthill TJ, Clarke DS, Rowlands DJ, Harris M, Griffin S. Inhibition of hepatitis C virus p7 membrane channels in a liposome-based assay system. Antiviral Res 2007; 76:48-58. [PMID: 17574688 PMCID: PMC7615709 DOI: 10.1016/j.antiviral.2007.05.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 04/05/2007] [Accepted: 05/09/2007] [Indexed: 12/21/2022]
Abstract
Chemotherapy for patients chronically infected with hepatitis C virus (HCV) is ineffective in over 50% of cases, generating a high demand for new drug targets. The p7 protein of HCV displays membrane channel activity in vitro and is essential for replication in vivo though its precise role in the virus life cycle is unknown. p7 channel activity can be specifically inhibited by several classes of compounds, making this protein an attractive candidate for drug development, though techniques used to date in characterising this protein are unsuited to compound library screening. Here we describe an assay for the channel forming ability of p7 based on the release of a fluorescent indicator from liposomes. We show that recombinant p7 from genotype 1b HCV causes a dose-dependent release of dye when mixed with liposomes and that this property is enhanced at acidic pH. We demonstrate that this activity is due to the formation of a size-selective pore rather than non-specific disruption of liposomes and that activity can be blocked by amantadine and several other compounds, validating it as a measure of p7 channel function. This system provides the first convenient in vitro assay for exploiting p7 as a therapeutic target.
Collapse
Affiliation(s)
- Corine StGelais
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Tobias J. Tuthill
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Dean S. Clarke
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - David J. Rowlands
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Mark Harris
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Stephen Griffin
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|