1
|
Mouhand A, Pasi M, Catala M, Zargarian L, Belfetmi A, Barraud P, Mauffret O, Tisné C. Overview of the Nucleic-Acid Binding Properties of the HIV-1 Nucleocapsid Protein in Its Different Maturation States. Viruses 2020; 12:v12101109. [PMID: 33003650 PMCID: PMC7601788 DOI: 10.3390/v12101109] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 12/17/2022] Open
Abstract
HIV-1 Gag polyprotein orchestrates the assembly of viral particles. Its C-terminus consists of the nucleocapsid (NC) domain that interacts with nucleic acids, and p1 and p6, two unstructured regions, p6 containing the motifs to bind ALIX, the cellular ESCRT factor TSG101 and the viral protein Vpr. The processing of Gag by the viral protease subsequently liberates NCp15 (NC-p1-p6), NCp9 (NC-p1) and NCp7, NCp7 displaying the optimal chaperone activity of nucleic acids. This review focuses on the nucleic acid binding properties of the NC domain in the different maturation states during the HIV-1 viral cycle.
Collapse
Affiliation(s)
- Assia Mouhand
- Expression Génétique Microbienne, UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique (IBPC), 75005 Paris, France; (A.M.); (M.C.); (P.B.)
| | - Marco Pasi
- Laboratoire de Biologie et de Pharmacologie Appliquée (LBPA), UMR 8113 CNRS, Institut D’Alembert, École Normale Supérieure Paris-Saclay, Université Paris-Saclay, 4, Avenue des Sciences, 91190 Gif sur Yvette, France; (M.P.); (L.Z.); (A.B.)
| | - Marjorie Catala
- Expression Génétique Microbienne, UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique (IBPC), 75005 Paris, France; (A.M.); (M.C.); (P.B.)
| | - Loussiné Zargarian
- Laboratoire de Biologie et de Pharmacologie Appliquée (LBPA), UMR 8113 CNRS, Institut D’Alembert, École Normale Supérieure Paris-Saclay, Université Paris-Saclay, 4, Avenue des Sciences, 91190 Gif sur Yvette, France; (M.P.); (L.Z.); (A.B.)
| | - Anissa Belfetmi
- Laboratoire de Biologie et de Pharmacologie Appliquée (LBPA), UMR 8113 CNRS, Institut D’Alembert, École Normale Supérieure Paris-Saclay, Université Paris-Saclay, 4, Avenue des Sciences, 91190 Gif sur Yvette, France; (M.P.); (L.Z.); (A.B.)
| | - Pierre Barraud
- Expression Génétique Microbienne, UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique (IBPC), 75005 Paris, France; (A.M.); (M.C.); (P.B.)
| | - Olivier Mauffret
- Laboratoire de Biologie et de Pharmacologie Appliquée (LBPA), UMR 8113 CNRS, Institut D’Alembert, École Normale Supérieure Paris-Saclay, Université Paris-Saclay, 4, Avenue des Sciences, 91190 Gif sur Yvette, France; (M.P.); (L.Z.); (A.B.)
- Correspondence: (O.M.); (C.T.)
| | - Carine Tisné
- Expression Génétique Microbienne, UMR 8261, CNRS, Université de Paris, Institut de Biologie Physico-Chimique (IBPC), 75005 Paris, France; (A.M.); (M.C.); (P.B.)
- Correspondence: (O.M.); (C.T.)
| |
Collapse
|
2
|
Nucleocapsid Protein Precursors NCp9 and NCp15 Suppress ATP-Mediated Rescue of AZT-Terminated Primers by HIV-1 Reverse Transcriptase. Antimicrob Agents Chemother 2020; 64:AAC.00958-20. [PMID: 32747359 DOI: 10.1128/aac.00958-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/29/2020] [Indexed: 01/20/2023] Open
Abstract
In HIV-1, development of resistance to AZT (3'-azido-3'-deoxythymidine) is mediated by the acquisition of thymidine analogue resistance mutations (TAMs) (i.e., M41L, D67N, K70R, L210W, T215F/Y, and K219E/Q) in the viral reverse transcriptase (RT). Clinically relevant combinations of TAMs, such as M41L/T215Y or D67N/K70R/T215F/K219Q, enhance the ATP-mediated excision of AZT monophosphate (AZTMP) from the 3' end of the primer, allowing DNA synthesis to continue. Additionally, during HIV-1 maturation, the Gag polyprotein is cleaved to release a mature nucleocapsid protein (NCp7) and two intermediate precursors (NCp9 and NCp15). NC proteins interact with the viral genome and facilitate the reverse transcription process. Using wild-type and TAM-containing RTs, we showed that both NCp9 and NCp15 inhibited ATP-mediated rescue of AZTMP-terminated primers annealed to RNA templates but not DNA templates, while NCp7 had no effect on rescue activity. RNase H inactivation by introducing the active-site mutation E478Q led to the loss of the inhibitory effect shown by NCp9. NCp15 had a stimulatory effect on the RT's RNase H activity not observed with NCp7 and NCp9. However, analysis of RNase H cleavage patterns revealed that in the presence of NCp9, RNA/DNA complexes containing duplexes of 12 bp had reduced stability in comparison with those obtained in the absence of NC or with NCp7 or NCp15. These effects are expected to have a strong influence on the inhibitory action of NCp9 and NCp15 by affecting the efficiency of RNA-dependent DNA polymerization after unblocking DNA primers terminated with AZTMP and other nucleotide analogues.
Collapse
|
3
|
Mouhand A, Belfetmi A, Catala M, Larue V, Zargarian L, Brachet F, Gorelick RJ, Van Heijenoort C, Mirambeau G, Barraud P, Mauffret O, Tisné C. Modulation of the HIV nucleocapsid dynamics finely tunes its RNA-binding properties during virion genesis. Nucleic Acids Res 2019; 46:9699-9710. [PMID: 29986076 PMCID: PMC6182130 DOI: 10.1093/nar/gky612] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023] Open
Abstract
During HIV-1 assembly and budding, Gag protein, in particular the C-terminal domain containing the nucleocapsid domain (NCd), p1 and p6, is the site of numerous interactions with viral and cellular factors. Most in vitro studies of Gag have used constructs lacking p1 and p6. Here, using NMR spectroscopy, we show that the p1-p6 region of Gag (NCp15) is largely disordered, but interacts transiently with the NCd. These interactions modify the dynamic properties of the NCd. Indeed, using isothermal titration calorimetry (ITC), we have measured a higher entropic penalty to RNA-binding for the NCd precursor, NCp15, than for the mature form, NCp7, which lacks p1 and p6. We propose that during assembly and budding of virions, concomitant with Gag oligomerization, transient interactions between NCd and p1-p6 become salient and responsible for (i) a higher level of structuration of p6, which favours recruitment of budding partners; and (ii) a higher entropic penalty to RNA-binding at specific sites that favours non-specific binding of NCd at multiple sites on the genomic RNA (gRNA). The contributions of p6 and p1 are sequentially removed via proteolysis during Gag maturation such that the RNA-binding specificity of the mature protein is governed by the properties of NCd.
Collapse
Affiliation(s)
- Assia Mouhand
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, USPC, 4 avenue de l'Observatoire, 75006 Paris, France.,Laboratoire d'Expression génétique microbienne, IBPC, CNRS, Université Paris Diderot, USPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Anissa Belfetmi
- LBPA, CNRS UMR 8113, ENS Paris-Saclay, Université Paris-Saclay, 61 Avenue du Pdt Wilson, F-94235 Cachan, France
| | - Marjorie Catala
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, USPC, 4 avenue de l'Observatoire, 75006 Paris, France.,Laboratoire d'Expression génétique microbienne, IBPC, CNRS, Université Paris Diderot, USPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Valéry Larue
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, USPC, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Loussiné Zargarian
- LBPA, CNRS UMR 8113, ENS Paris-Saclay, Université Paris-Saclay, 61 Avenue du Pdt Wilson, F-94235 Cachan, France
| | - Franck Brachet
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, USPC, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Robert J Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, MD 21702-1201, USA
| | - Carine Van Heijenoort
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Univ. Paris Sud, Université Paris-Saclay, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Gilles Mirambeau
- Infectious disease & AIDS Research unit, IDIBAPS, Barcelona, Barcelona, Spain.,Sorbonne Université, Faculté des Sciences et Ingénierie, UFR 927 des Sciences de la Vie, Paris, France
| | - Pierre Barraud
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, USPC, 4 avenue de l'Observatoire, 75006 Paris, France.,Laboratoire d'Expression génétique microbienne, IBPC, CNRS, Université Paris Diderot, USPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Olivier Mauffret
- LBPA, CNRS UMR 8113, ENS Paris-Saclay, Université Paris-Saclay, 61 Avenue du Pdt Wilson, F-94235 Cachan, France
| | - Carine Tisné
- Laboratoire de Cristallographie et RMN biologiques, CNRS, Université Paris Descartes, USPC, 4 avenue de l'Observatoire, 75006 Paris, France.,Laboratoire d'Expression génétique microbienne, IBPC, CNRS, Université Paris Diderot, USPC, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
4
|
Potempa M, Lee SK, Wolfenden R, Swanstrom R. The triple threat of HIV-1 protease inhibitors. Curr Top Microbiol Immunol 2015; 389:203-41. [PMID: 25778681 DOI: 10.1007/82_2015_438] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Newly released human immunodeficiency virus type 1 (HIV-1) particles obligatorily undergo a maturation process to become infectious. The HIV-1 protease (PR) initiates this step, catalyzing the cleavage of the Gag and Gag-Pro-Pol structural polyproteins. Proper organization of the mature virus core requires that cleavage of these polyprotein substrates proceeds in a highly regulated, specific series of events. The vital role the HIV-1 PR plays in the viral life cycle has made it an extremely attractive target for inhibition and has accordingly fostered the development of a number of highly potent substrate-analog inhibitors. Though the PR inhibitors (PIs) inhibit only the HIV-1 PR, their effects manifest at multiple different stages in the life cycle due to the critical importance of the PR in preparing the virus for these subsequent events. Effectively, PIs masquerade as entry inhibitors, reverse transcription inhibitors, and potentially even inhibitors of post-reverse transcription steps. In this chapter, we review the triple threat of PIs: the intermolecular cooperativity in the form of a cooperative dose-response for inhibition in which the apparent potency increases with increasing inhibition; the pleiotropic effects of HIV-1 PR inhibition on entry, reverse transcription, and post-reverse transcription steps; and their potency as transition state analogs that have the potential for further improvement that could lead to an inability of the virus to evolve resistance in the context of single drug therapy.
Collapse
Affiliation(s)
- Marc Potempa
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | | | | | | |
Collapse
|
5
|
Wu T, Gorelick RJ, Levin JG. Selection of fully processed HIV-1 nucleocapsid protein is required for optimal nucleic acid chaperone activity in reverse transcription. Virus Res 2014; 193:52-64. [PMID: 24954787 PMCID: PMC4252486 DOI: 10.1016/j.virusres.2014.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 12/14/2022]
Abstract
The mature HIV-1 nucleocapsid protein (NCp7) is generated by sequential proteolytic cleavage of precursor proteins containing additional C-terminal peptides: NCp15 (NCp7-spacer peptide 2 (SP2)-p6); and NCp9 (NCp7-SP2). Here, we compare the nucleic acid chaperone activities of the three proteins, using reconstituted systems that model the annealing and elongation steps in tRNA(Lys3)-primed (-) strong-stop DNA synthesis and subsequent minus-strand transfer. The maximum levels of annealing are similar for all of the proteins, but there are important differences in their ability to facilitate reverse transcriptase (RT)-catalyzed DNA extension. Thus, at low concentrations, NCp9 has the greatest activity, but with increasing concentrations, DNA synthesis is significantly reduced. This finding reflects NCp9's strong nucleic acid binding affinity (associated with the highly basic SP2 domain) as well as its slow dissociation kinetics, which together limit the ability of RT to traverse the nucleic acid template. NCp15 has the poorest activity of the three proteins due to its acidic p6 domain. Indeed, mutants with alanine substitutions for the acidic residues in p6 have improved chaperone function. Collectively, these data can be correlated with the known biological properties of NCp9 and NCp15 mutant virions and help to explain why mature NC has evolved as the critical cofactor for efficient virus replication and long-term viral fitness.
Collapse
Affiliation(s)
- Tiyun Wu
- Section on Viral Gene Regulation, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2780, USA
| | - Robert J Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702-1201, USA
| | - Judith G Levin
- Section on Viral Gene Regulation, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2780, USA.
| |
Collapse
|
6
|
Wang W, Naiyer N, Mitra M, Li J, Williams MC, Rouzina I, Gorelick RJ, Wu Z, Musier-Forsyth K. Distinct nucleic acid interaction properties of HIV-1 nucleocapsid protein precursor NCp15 explain reduced viral infectivity. Nucleic Acids Res 2014; 42:7145-59. [PMID: 24813443 PMCID: PMC4066767 DOI: 10.1093/nar/gku335] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During human immunodeficiency virus type 1 (HIV-1) maturation, three different forms of nucleocapsid (NC) protein—NCp15 (p9 + p6), NCp9 (p7 + SP2) and NCp7—appear successively. A mutant virus expressing NCp15 shows greatly reduced infectivity. Mature NCp7 is a chaperone protein that facilitates remodeling of nucleic acids (NAs) during reverse transcription. To understand the strict requirement for NCp15 processing, we compared the chaperone function of the three forms of NC. NCp15 anneals tRNA to the primer-binding site at a similar rate as NCp7, whereas NCp9 is the most efficient annealing protein. Assays to measure NA destabilization show a similar trend. Dynamic light scattering studies reveal that NCp15 forms much smaller aggregates relative to those formed by NCp7 and NCp9. Nuclear magnetic resonance studies suggest that the acidic p6 domain of HIV-1 NCp15 folds back and interacts with the basic zinc fingers. Neutralizing the acidic residues in p6 improves the annealing and aggregation activity of NCp15 to the level of NCp9 and increases the protein–NA aggregate size. Slower NCp15 dissociation kinetics is observed by single-molecule DNA stretching, consistent with the formation of electrostatic inter-protein contacts, which likely contribute to the distinct aggregate morphology, irregular HIV-1 core formation and non-infectious virus.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemistry and Biochemistry, Center for Retrovirus Research and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Nada Naiyer
- Department of Chemistry and Biochemistry, Center for Retrovirus Research and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Mithun Mitra
- Department of Chemistry and Biochemistry, Center for Retrovirus Research and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Jialin Li
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Mark C Williams
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Ioulia Rouzina
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert J Gorelick
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Zhengrong Wu
- Department of Chemistry and Biochemistry, Center for Retrovirus Research and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retrovirus Research and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Role of the SP2 domain and its proteolytic cleavage in HIV-1 structural maturation and infectivity. J Virol 2012; 86:13708-16. [PMID: 23055560 DOI: 10.1128/jvi.01704-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
HIV-1 buds as an immature, noninfectious virion. Proteolysis of its main structural component, Gag, is required for morphological maturation and infectivity and leads to release of four functional domains and the spacer peptides SP1 and SP2. The N-terminal cleavages of Gag and the separation of SP1 from CA are all essential for viral infectivity, while the roles of the two C-terminal cleavages and the role of SP2, separating the NC and p6 domains, are less well defined. We have analyzed HIV-1 variants with defective cleavage at either or both sites flanking SP2, or largely lacking SP2, regarding virus production, infectivity, and structural maturation. Neither the presence nor the proteolytic processing of SP2 was required for particle release. Viral infectivity was almost abolished when both cleavage sites were defective and severely reduced when the fast cleavage site between SP2 and p6 was defective. This correlated with an increased proportion of irregular core structures observed by cryo-electron tomography, although processing of CA was unaffected. Mutation of the slow cleavage site between NC and SP2 or deletion of most of SP2 had only a minor effect on infectivity and did not induce major alterations in mature core morphology. We speculate that not only separation of NC and p6 but also the processing kinetics in this region are essential for successful maturation, while SP2 itself is dispensable.
Collapse
|
8
|
Jalalirad M, Saadatmand J, Laughrea M. Dominant role of the 5' TAR bulge in dimerization of HIV-1 genomic RNA, but no evidence of TAR-TAR kissing during in vivo virus assembly. Biochemistry 2012; 51:3744-58. [PMID: 22482513 DOI: 10.1021/bi300111p] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The 5' untranslated region of HIV-1 genomic RNA (gRNA) contains two stem-loop structures that appear to be equally important for gRNA dimerization: the 57-nucleotide 5' TAR, at the very 5' end, and the 35-nucleotide SL1 (nucleotides 243-277). SL1 is well-known for containing the dimerization initiation site (DIS) in its apical loop. The DIS is a six-nucleotide palindrome. Here, we investigated the mechanism of TAR-directed gRNA dimerization. We found that the trinucleotide bulge (UCU24) of the 5' TAR has dominant impacts on both formation of HIV-1 RNA dimers and maturation of the formed dimers. The ΔUCU trinucleotide deletion strongly inhibited the first process and blocked the other, thus impairing gRNA dimerization as severely as deletion of the entire 5' TAR, and more severely than deletion of the DIS, inactivation of the viral protease, or most severe mutations in the nucleocapsid protein. The apical loop of TAR contains a 10-nucleotide palindrome that has been postulated to stimulate gRNA dimerization by a TAR-TAR kissing mechanism analogous to the one used by SL1 to stimulate dimerization. Using mutations that strongly destabilize formation of the TAR palindrome duplex, as well as compensatory mutations that restore duplex formation to a wild-type-like level, we found no evidence of TAR-TAR kissing, even though mutations nullifying the kissing potential of the TAR palindrome could impair dimerization by a mechanism other than hindering of SL1. However, nullifying the kissing potential of TAR had much less severe effects than ΔUCU. By not uncovering a dimerization mechanism intrinsic to TAR, our data suggest that TAR mutations exert their effect 3' of TAR, yet not on SL1, because TAR and SL1 mutations have synergistic effects on gRNA dimerization.
Collapse
Affiliation(s)
- Mohammad Jalalirad
- McGill AIDS Center, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | | | | |
Collapse
|
9
|
[What's going on post-budding?]. Uirusu 2011; 61:91-8. [PMID: 21972560 DOI: 10.2222/jsv.61.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In general, the retrovirus particles become infectious on post-budding with cleavages of structural protein Gag by viral protease. Protease defective mutants bud particles normally, but the particles are non-infectious and called donuts-like particle because of their morphology. The viral genomes inside the donuts-like particles form very fragile dimer, which are far different from those in wild-type particles. The ordered particle maturation process is essential for infectivity of virus, but its mechanism largely remains unclear. We have constructed HIV-1 Gag cleavage site mutants to enable the steady state observation of virion maturation steps, and precisely study Gag processing, RNA dimerization, virion morphology and infectivity. As results, we found that these process progressed synchronously, but each transition point did not coincide completely. The mutual relationship between viral protein and RNA maturation is discussed for a further understanding of the retroviral life cycle.
Collapse
|
10
|
Briggs JAG, Kräusslich HG. The molecular architecture of HIV. J Mol Biol 2011; 410:491-500. [PMID: 21762795 DOI: 10.1016/j.jmb.2011.04.021] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 04/07/2011] [Accepted: 04/11/2011] [Indexed: 11/17/2022]
Abstract
Assembly of human immunodeficiency virus type 1 is driven by oligomerization of the Gag polyprotein at the plasma membrane of an infected cell, leading to membrane envelopment and budding of an immature virus particle. Proteolytic cleavage of Gag at five positions subsequently causes a dramatic rearrangement of the interior virion organization to form an infectious particle. Within the mature virus, the genome is encased within a conical capsid core. Here, we describe the molecular architecture of the virus assembly site, the immature virus, the maturation intermediates and the mature virus core and highlight recent advances in our understanding of these processes from electron microscopy and X-ray crystallography studies.
Collapse
Affiliation(s)
- John A G Briggs
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | | |
Collapse
|
11
|
Ohishi M, Nakano T, Sakuragi S, Shioda T, Sano K, Sakuragi JI. The relationship between HIV-1 genome RNA dimerization, virion maturation and infectivity. Nucleic Acids Res 2010; 39:3404-17. [PMID: 21186186 PMCID: PMC3082877 DOI: 10.1093/nar/gkq1314] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The relationship between virion protein maturation and genomic RNA dimerization of human immunodeficiency virus type 1 (HIV-1) remains incompletely understood. We have constructed HIV-1 Gag cleavage site mutants to enable the steady state observation of virion maturation steps, and precisely study Gag processing, RNA dimerization, virion morphology and infectivity. Within the virion maturation process, the RNA dimer stabilization begins during the primary cleavage (p2-NC) of Pr55 Gag. However, the primary cleavage alone is not sufficient, and the ensuing cleavages are required for the completion of dimerization. From our observations, the increase of cleavage products may not put a threshold on the transition from fragile to stable dimeric RNA. Most of the RNA dimerization process did not require viral core formation, and particle morphology dynamics during viral maturation did not completely synchronize with the transition of dimeric RNA status. Although the endogenous virion RT activity was fully acquired at the initial step of maturation, the following process was necessary for viral DNA production in infected cell, suggesting the maturation of viral RNA/protein plays critical role for viral infectivity other than RT process.
Collapse
Affiliation(s)
- Masahisa Ohishi
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Mirambeau G, Lyonnais S, Gorelick RJ. Features, processing states, and heterologous protein interactions in the modulation of the retroviral nucleocapsid protein function. RNA Biol 2010; 7:724-34. [PMID: 21045549 PMCID: PMC3073331 DOI: 10.4161/rna.7.6.13777] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 09/14/2010] [Accepted: 09/16/2010] [Indexed: 11/19/2022] Open
Abstract
Retroviral nucleocapsid (NC) is central to viral replication. Nucleic acid chaperoning is a key function for NC through the action of its conserved basic amino acids and zinc-finger structures. NC manipulates genomic RNA from its packaging in the producer cell to reverse transcription into the infected host cell. This chaperone function, in conjunction with NC's aggregating properties, is up-modulated by successive NC processing events, from the Gag precursor to the fully mature protein, resulting in the condensation of the nucleocapsid within the capsid shell. Reverse transcription also depends on NC processing, whereas this process provokes NC dissociation from double-stranded DNA, leading to a preintegration complex (PIC), competent for host chromosomal integration. In addition NC interacts with cellular proteins, some of which are involved in viral budding, and also with several viral proteins. All of these properties are reviewed here, focusing on HIV-1 as a paradigmatic reference and highlighting the plasticity of the nucleocapsid architecture.
Collapse
|
13
|
Jalalirad M, Laughrea M. Formation of immature and mature genomic RNA dimers in wild-type and protease-inactive HIV-1: differential roles of the Gag polyprotein, nucleocapsid proteins NCp15, NCp9, NCp7, and the dimerization initiation site. Virology 2010; 407:225-36. [PMID: 20828778 DOI: 10.1016/j.virol.2010.08.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 08/06/2010] [Accepted: 08/13/2010] [Indexed: 12/22/2022]
Abstract
Formation of immature genomic RNA (gRNA) dimers is exquisitely nucleocapsid (NC)-dependent in protease-inactive (PR-in) HIV-1. This establishes that Pr55gag/Pr160gag-pol has NC-dependent chaperone activity within intact HIV-1. Mutations in the proximal zinc finger and the linker of the NC sequence of Pr55gag/Pr160gag-pol abolish gRNA dimerization in PR-in HIV-1. In wild type, where the NC of Pr55gag is processed into progressively smaller proteins termed NCp15 (NCp7-p1-p6), NCp9 (NCp7-p1) and NCp7, formation of immature dimers is much swifter than in PR-in HIV-1. NCp7 and NCp15 direct this rapid accumulation. NCp9 is sluggish in this process, but it stimulates the transition from immature to mature gRNA dimer as well as NCp7 and much better than NCp15. The amino-terminus, proximal zinc finger, linker, and distal zinc finger of NCp7 contribute to this maturation event in intact HIV-1. The DIS is a dimerization initiation site for all immature gRNA dimers, irrespective of their mechanism of formation.
Collapse
Affiliation(s)
- Mohammad Jalalirad
- McGill AIDS Center, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal QC, Canada H3T 1E2
| | | |
Collapse
|