1
|
Gao F, Li P, Yin Y, Du X, Cao G, Wu S, Zhao Y. Molecular breeding of livestock for disease resistance. Virology 2023; 587:109862. [PMID: 37562287 DOI: 10.1016/j.virol.2023.109862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Animal infectious diseases pose a significant threat to the global agriculture and biomedicine industries, leading to significant economic losses and public health risks. The emergence and spread of viral infections such as African swine fever virus (ASFV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine epidemic diarrhea virus (PEDV), and avian influenza virus (AIV) have highlighted the need for innovative approaches to develop resilient and disease-resistant animal populations. Gene editing technologies, such as CRISPR/Cas9, offer a promising avenue for generating animals with enhanced disease resistance. This review summarizes recent advances in molecular breeding strategies for generating disease-resistant animals, focusing on the development of disease-resistant livestock. We also highlight the potential applications of genome-wide CRISPR/Cas9 library screening and base editors in producing precise gene modified livestock for disease resistance in the future. Overall, gene editing technologies have the potential to revolutionize animal breeding and improve animal health and welfare.
Collapse
Affiliation(s)
- Fei Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China; Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Pan Li
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China; College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Ye Yin
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China
| | - Xuguang Du
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China; Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Gengsheng Cao
- Henan Livestock Genome Editing and Biobreeding Engineering Research Center, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Sen Wu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China; Sanya Institute of China Agricultural University, Sanya, 572025, China.
| | - Yaofeng Zhao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, National Engineering Laboratory for Animal Breeding, Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Bovine tongue epithelium-derived cells: A new source of bovine mesenchymal stem cells. Biosci Rep 2020; 40:222523. [PMID: 32232387 PMCID: PMC7167252 DOI: 10.1042/bsr20181829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/28/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) possess the ability to differentiate into multiple cell lineages, and thus, confer great potential for use in regenerative medicine and biotechnology. In the present study, we attempted to isolate and characterize bovine tongue tissue epithelium-derived MSCs (boT-MSCs) and investigate the culture conditions required for long-term culturing of boT-MSCs. boT-MSCs were successfully isolated by the collagenase digestion method and their proliferative capacity was maintained for up to 20 or more passages. We observed a significant increase in the proliferation of boT-MSCs during the 20 consecutive passages under low-glucose Dulbecco’s modified Eagle’s medium culture condition among the three culture conditions. These boT-MSCs presented pluripotency markers (octamer-binding transcription factor 3/4 (Oct3/4) and sex determining region Y-box2 (Sox2)) and cell surface markers, which included CD13, CD29, CD44, CD73, CD90, CD105, CD166, and major histocompatibility complex (MHC) class I (MHC-I) but not CD11b, CD14, CD31, CD34, CD45, CD80, CD86, CD106, CD117, and MHC-II at third passage. Moreover, these boT-MSCs could differentiate into mesodermal (adipocyte, osteocyte, and chondrocyte) cell lineages. Thus, the present study suggests that the tongue of bovines could be used as a source of bovine MSCs.
Collapse
|
3
|
RNAi combining Sleeping Beauty transposon system inhibits ex vivo expression of foot-and-mouth disease virus VP1 in transgenic sheep cells. Sci Rep 2017; 7:10065. [PMID: 28855524 PMCID: PMC5577316 DOI: 10.1038/s41598-017-09302-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/25/2017] [Indexed: 11/08/2022] Open
Abstract
Foot and mouth disease, which is induced by the foot and mouth disease virus (FMDV), takes its toll on the cloven-hoofed domestic animals. The VP1 gene in FMDV genome encodes the viral capsid, a vital element for FMDV replication. Sleeping Beauty (SB) is an active DNA-transposon system responsible for genetic transformation and insertional mutagenesis in vertebrates. In this study, a conserved VP1-shRNA which specifically targets the ovine FMDV-VP1 gene was constructed and combined with SB transposase and transposon. Then, they were microinjected into pronuclear embryos to breed transgenic sheep. Ninety-two lambs were born and the VP1-shRNA was positively integrated into eight of them. The rate of transgenic sheep production in SB transposon system was significantly higher than that in controls (13.04% vs. 3.57% and 7.14%, P < 0.05). The ear fibroblasts of the transgenic lambs transfected with the PsiCheck2-VP1 vector had a significant inhibitory effect on the VP1 gene of the FMDV. In conclusion, the VP1-shRNA transgenic sheep were successfully generated by the current new method. The ear fibroblasts from these transgenic sheep possess a great resistance to FMDV. The result indicated that RNAi technology combining the "Sleeping Beauty" transposon system is an efficient method to produce transgenic animals.
Collapse
|
4
|
Gutkoska J, LaRocco M, Ramirez-Medina E, de Los Santos T, Lawrence P. Host microRNA-203a Is antagonistic to the progression of foot-and-mouth disease virus infection. Virology 2017; 504:52-62. [PMID: 28152384 DOI: 10.1016/j.virol.2017.01.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/22/2017] [Accepted: 01/23/2017] [Indexed: 12/11/2022]
Abstract
Sam68 was previously shown to be a critical host factor for foot-and-mouth disease virus (FMDV) replication. MicroRNA (miR) miR-203a is reportedly a negative regulator of Sam68 expression both in vitro and in vivo. Here, transfection of miR-203a-3p and miR-203a-5p mimics separately and in combination in a porcine cell line followed by FMDV infection resulted in diminished viral protein synthesis and a 4 and 6log reduction in virus titers relative to negative controls, respectively. Unexpectedly, Sam68 expression was increased by miR-203a-5p transfection, but not miR-203a-3p. miR-203a-5p also down-regulated Survivin expression, which was predicted to play a role in FMDV infection. Moreover, miR-203a-5p but not miR-203a-3p affected a reduction in FMDV viral RNA. These effects were not replicated with a related Picornavirus, suggesting FMDV specificity. Importantly, miR-203a-3p and miR-203a-5p impaired FMDV infection across multiple FMDV serotypes. We concluded that miR-203a-3p and miR-203a-5p represent attractive potential naturally occurring bio-therapeutics against FMDV.
Collapse
Affiliation(s)
- Joseph Gutkoska
- Plum Island Animal Disease Center Foreign Animal Disease Research Unit (FADRU) Agricultural Research Service (ARS), United States Department of Agriculture (USDA), 40550 Route 25, Orient Point, NY 11957, United States
| | - Michael LaRocco
- Plum Island Animal Disease Center Foreign Animal Disease Research Unit (FADRU) Agricultural Research Service (ARS), United States Department of Agriculture (USDA), 40550 Route 25, Orient Point, NY 11957, United States
| | - Elizabeth Ramirez-Medina
- Plum Island Animal Disease Center Foreign Animal Disease Research Unit (FADRU) Agricultural Research Service (ARS), United States Department of Agriculture (USDA), 40550 Route 25, Orient Point, NY 11957, United States
| | - Teresa de Los Santos
- Plum Island Animal Disease Center Foreign Animal Disease Research Unit (FADRU) Agricultural Research Service (ARS), United States Department of Agriculture (USDA), 40550 Route 25, Orient Point, NY 11957, United States
| | - Paul Lawrence
- Plum Island Animal Disease Center Foreign Animal Disease Research Unit (FADRU) Agricultural Research Service (ARS), United States Department of Agriculture (USDA), 40550 Route 25, Orient Point, NY 11957, United States.
| |
Collapse
|
5
|
Samir M, Pessler F. Small Non-coding RNAs Associated with Viral Infectious Diseases of Veterinary Importance: Potential Clinical Applications. Front Vet Sci 2016; 3:22. [PMID: 27092305 PMCID: PMC4819147 DOI: 10.3389/fvets.2016.00022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/22/2016] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) represent a class of small non-coding RNA (sncRNA) molecules that can regulate mRNAs by inducing their degradation or by blocking translation. Considering that miRNAs are ubiquitous, stable, and conserved across animal species, it seems feasible to exploit them for clinical applications. Unlike in human viral diseases, where some miRNA-based molecules have progressed to clinical application, in veterinary medicine, this concept is just starting to come into view. Clinically, miRNAs could represent powerful diagnostic tools to pinpoint animal viral diseases and/or prognostic tools to follow up disease progression or remission. Additionally, the possible consequences of miRNA dysregulation make them potential therapeutic targets and open the possibilities to use them as tools to generate viral disease-resistant livestock. This review presents an update of preclinical studies on using sncRNAs to combat viral diseases that affect pet and farm animals. Moreover, we discuss the possibilities and challenges of bringing these bench-based discoveries to the veterinary clinic.
Collapse
Affiliation(s)
- Mohamed Samir
- TWINCORE Center for Experimental and Clinical Infection Research, Hannover, Germany; Zoonoses Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Frank Pessler
- TWINCORE Center for Experimental and Clinical Infection Research, Hannover, Germany; Helmholtz Center for Infection Research, Braunschweig, Germany
| |
Collapse
|
6
|
Li W, Wang K, Kang S, Deng S, Han H, Lian L, Lian Z. Tongue Epithelium Cells from shRNA Mediated Transgenic Goat Show High Resistance to Foot and Mouth Disease Virus. Sci Rep 2015; 5:17897. [PMID: 26671568 PMCID: PMC4680861 DOI: 10.1038/srep17897] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 11/06/2015] [Indexed: 01/22/2023] Open
Abstract
Foot and mouth disease induced by foot and mouth disease virus (FMDV) is severe threat to cloven-hoofed domestic animals. The gene 3Dpol in FMDV genome encodes the viral RNA polymerase, a vital element for FMDV replication. In this study, a conserved 3D-7414shRNA targeting FMDV-3Dpol gene was designed and injected into pronuclear embryos to produce the transgenic goats. Sixty-one goats were produced, of which, seven goats positively integrated 3D-7414shRNA. Loss of function assay demonstrated that siRNA effectively knockdown 3Dpol gene in skin epithelium cells of transgenic goats. Subsequently, the tongue epithelium cells from transgenic and non-transgenic goats were infected with FMDV O/YS/CHA/05 strain. A significant decrease of virus titres and virus copy number was observed in cells of transgenic goats compared with that of non-transgenic goats, which indicated that 3D-7414siRNA inhibited FMDV replication by interfering FMDV-3Dpol gene. Furthermore, we found that expression of TLR7, RIG-I and TRAF6 was lower in FMDV infected cells from transgenic goats compared to that from non-transgenic goats, which might result from lower virus copy number in transgenic goats’ cells. In conclusion, we successfully produced transgenic goats highly expressing 3D-7414siRNA targeting 3Dpol gene, and the tongue epithelium cells from the transgenic goats showed effective resistance to FMDV.
Collapse
Affiliation(s)
- Wenting Li
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Kejun Wang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shimeng Kang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shoulong Deng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongbing Han
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ling Lian
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhengxing Lian
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
7
|
Du J, Guo X, Gao S, Luo J, Gong X, Hao C, Yang B, Lin T, Shao J, Cong G, Chang H. Induction of protection against foot-and-mouth disease virus in cell culture and transgenic suckling mice by miRNA targeting integrin αv receptor. J Biotechnol 2014; 187:154-61. [DOI: 10.1016/j.jbiotec.2014.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/25/2014] [Accepted: 07/01/2014] [Indexed: 11/29/2022]
|
8
|
Potential applications for antiviral therapy and prophylaxis in bovine medicine. Anim Health Res Rev 2014; 15:102-17. [PMID: 24810855 DOI: 10.1017/s1466252314000048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Viral disease is one of the major causes of financial loss and animal suffering in today's cattle industry. Increases in global commerce and average herd size, urbanization, vertical integration within the industry and alterations in global climate patterns have allowed the spread of pathogenic viruses, or the introduction of new viral species, into regions previously free of such pathogens, creating the potential for widespread morbidity and mortality in naïve cattle populations. Despite this, no antiviral products are currently commercially licensed for use in bovine medicine, although significant progress has been made in the development of antivirals for use against bovine viral diarrhea virus (BVDV), foot and mouth disease virus (FMDV) and bovine herpesvirus (BHV). BVDV is extensively studied as a model virus for human antiviral studies. Consequently, many compounds with efficacy have been identified and a few have been successfully used to prevent infection in vivo although commercial development is still lacking. FMDV is also the subject of extensive antiviral testing due to the importance of outbreak containment for maintenance of export markets. Thirdly, BHV presents an attractive target for antiviral development due to its worldwide presence. Antiviral studies for other bovine viral pathogens are largely limited to preliminary studies. This review summarizes the current state of knowledge of antiviral compounds against several key bovine pathogens and the potential for commercial antiviral applications in the prevention and control of several selected bovine diseases.
Collapse
|