1
|
Xuyang L, Cristina LM, Laura MA, Xu P. A clade of RHH proteins ubiquitous in Sulfolobales and their viruses regulates cell cycle progression. Nucleic Acids Res 2023; 51:1724-1739. [PMID: 36727447 PMCID: PMC9976892 DOI: 10.1093/nar/gkad011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/30/2022] [Accepted: 01/29/2023] [Indexed: 02/03/2023] Open
Abstract
Cell cycle regulation is crucial for all living organisms and is often targeted by viruses to facilitate their own propagation, yet cell cycle progression control is largely underexplored in archaea. In this work, we reveal a cell cycle regulator (aCcr1) carrying a ribbon-helix-helix (RHH) domain and ubiquitous in the Thermoproteota of the order Sulfolobales and their viruses. Overexpression of several aCcr1 members including gp21 of rudivirus SIRV2 and its host homolog SiL_0190 of Saccharolobus islandicus LAL14/1 results in impairment of cell division, evidenced by growth retardation, cell enlargement and an increase in cellular DNA content. Additionally, both gp21 and SiL_0190 can bind to the motif AGTATTA conserved in the promoter of several genes involved in cell division, DNA replication and cellular metabolism thereby repressing or inducing their transcription. Our results suggest that aCcr1 silences cell division and drives progression to the S-phase in Sulfolobales, a function exploited by viruses to facilitate viral propagation.
Collapse
Affiliation(s)
- Li Xuyang
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Lozano-Madueño Cristina
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Martínez-Alvarez Laura
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Peng Xu
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
2
|
Zhang Z, Liang L, Li D, Li Y, Sun Q, Li Y, Yang H. Bacillus subtilis phage phi18: genomic analysis and receptor identification. Arch Virol 2023; 168:17. [PMID: 36593367 DOI: 10.1007/s00705-022-05686-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/22/2022] [Indexed: 01/04/2023]
Abstract
Bacillus subtilis strains play a pivotal role in the fermentation industry. B. subtilis phages can cause severe damage by infecting bacterial cells used in industrial fermentation processes. In this work, we isolated and characterized a Bacillus subtilis-infecting phage, termed phi18. Transmission electron microscopy revealed that phage phi18 particles have typical myovirus morphology, with an icosahedral head connected to a contractile tail. Genomic analysis revealed that the phage genome is a linear double-stranded DNA molecule of 147,298 bp with terminal redundancy of 14,434 bp, and 226 protein coding genes and four tRNA genes were predicted in the genome. Phage-resistant mutants were selected from a mariner transposon-insertion library of B. subtilis 168 in which two bacterial genes, tagE and pgcA, which are required for the glycosylation of wall teichoic acid (WTA), were found to be disrupted, suggesting that WTA is the receptor for phage phi18. Comparative genomic analysis showed that phage phi18 is a new member of the genus Okubovirus of the family Herelleviridae. Finally, general characteristics of the phage-resistant mutants, including biofilm formation, growth, and sporulation, were examined. The results showed that the phage-resistant mutants grew as rapidly as the parental strain B. subtilis 168 at 42 °C, suggesting that these phage-resistant mutants may be used as starters in fermentation processes.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Key Laboratory of Industrial Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Li Liang
- Shandong Vland Biotech Co., Ltd, Shandong, 251700, China
| | - Donghang Li
- Key Laboratory of Industrial Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yutong Li
- Key Laboratory of Industrial Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Qinghui Sun
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, Hainan Medical University, Hainan, 571199, China
| | - Ye Li
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Hainan University, Hainan, 571199, China
| | - Hongjiang Yang
- Key Laboratory of Industrial Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
3
|
Zhang K, Li S, Wang Y, Wang Z, Mulvenna N, Yang H, Zhang P, Chen H, Li Y, Wang H, Gao Y, Wigneshweraraj S, Matthews S, Zhang K, Liu B. Bacteriophage protein PEIP is a potent Bacillus subtilis enolase inhibitor. Cell Rep 2022; 40:111026. [PMID: 35793626 DOI: 10.1016/j.celrep.2022.111026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/26/2022] [Accepted: 06/09/2022] [Indexed: 11/03/2022] Open
Abstract
Enolase is a highly conserved enzyme that presents in all organisms capable of glycolysis or fermentation. Its immediate product phosphoenolpyruvate is essential for other important processes like peptidoglycan synthesis and the phosphotransferase system in bacteria. Therefore, enolase inhibitors are of great interest. Here, we report that Gp60, a phage-encoded enolase inhibitor protein (PEIP) of bacteriophage SPO1 for Bacillus subtilis, is an enolase inhibitor. PEIP-expressing bacteria exhibit growth attenuation, thinner cell walls, and safranin color in Gram staining owing to impaired peptidoglycan synthesis. We solve the structure of PEIP-enolase tetramer and show that PEIP disassembles enolase by disrupting the basic dimer unit. The structure reveals that PEIP does not compete for substrate binding but induces a cascade of conformational changes that limit accessibility to the enolase catalytic site. This phage-inspired disassembly of enolase represents an alternative strategy for the development of anti-microbial drugs.
Collapse
Affiliation(s)
- Kaining Zhang
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China; Institute for Protein Science and Phage Research, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China
| | - Shanshan Li
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yawen Wang
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China; Institute for Protein Science and Phage Research, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China; Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Zhihao Wang
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China; Institute for Protein Science and Phage Research, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China; MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Nancy Mulvenna
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Hang Yang
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Peipei Zhang
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China; Institute for Protein Science and Phage Research, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China
| | - Huan Chen
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China; Institute for Protein Science and Phage Research, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Hongliang Wang
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Yongxiang Gao
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | | | - Steve Matthews
- Institute for Protein Science and Phage Research, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China; MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Kaiming Zhang
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Bing Liu
- BioBank, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China; Institute for Protein Science and Phage Research, The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710061, China; Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
4
|
Bacteriophage protein Gp46 is a cross-species inhibitor of nucleoid-associated HU proteins. Proc Natl Acad Sci U S A 2022; 119:2116278119. [PMID: 35193978 PMCID: PMC8892312 DOI: 10.1073/pnas.2116278119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2022] [Indexed: 11/24/2022] Open
Abstract
Histone-like protein from Escherichia coli strain U93 (HU) protein is the most abundant nucleoid-associated protein in bacteria, which plays a fundamental role in chromosomal compaction and organization. It is essential for most bacteria as well as Apicomplexans, thus an important target for the development of antimicrobial and antimalaria drugs. We report Gp46 as a phage protein HU inhibitor. It inhibits HU of Bacillus subtilis by occupying its DNA binding site, thus preventing chromosome segregation during cell division. As key residues for the interaction are highly conserved, Gp46 interacts with HUs of a broad range of pathogens, including many pathogenic bacteria and Apicomplexan parasites like Plasmodium falciparum. Thus, this cross-species property could benefit antibiotic and antimalaria drug development that targets HU. The architectural protein histone-like protein from Escherichia coli strain U93 (HU) is the most abundant bacterial DNA binding protein and highly conserved among bacteria and Apicomplexan parasites. It not only binds to double-stranded DNA (dsDNA) to maintain DNA stability but also, interacts with RNAs to regulate transcription and translation. Importantly, HU is essential to cell viability for many bacteria; hence, it is an important antibiotic target. Here, we report that Gp46 from bacteriophage SPO1 of Bacillus subtilis is an HU inhibitor whose expression prevents nucleoid segregation and causes filamentous morphology and growth defects in bacteria. We determined the solution structure of Gp46 and revealed a striking negatively charged surface. An NMR-derived structural model for the Gp46–HU complex shows that Gp46 occupies the DNA binding motif of the HU and therefore, occludes DNA binding, revealing a distinct strategy for HU inhibition. We identified the key residues responsible for the interaction that are conserved among HUs of bacteria and Apicomplexans, including clinically significant Mycobacterium tuberculosis, Acinetobacter baumannii, and Plasmodium falciparum, and confirm that Gp46 can also interact with these HUs. Our findings provide detailed insight into a mode of HU inhibition that provides a useful foundation for the development of antibacteria and antimalaria drugs.
Collapse
|
5
|
Liu J, Cvirkaite-Krupovic V, Baquero DP, Yang Y, Zhang Q, Shen Y, Krupovic M. Virus-induced cell gigantism and asymmetric cell division in archaea. Proc Natl Acad Sci U S A 2021; 118:e2022578118. [PMID: 33782110 PMCID: PMC8054024 DOI: 10.1073/pnas.2022578118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Archaeal viruses represent one of the most mysterious parts of the global virosphere, with many virus groups sharing no evolutionary relationship to viruses of bacteria or eukaryotes. How these viruses interact with their hosts remains largely unexplored. Here we show that nonlytic lemon-shaped virus STSV2 interferes with the cell cycle control of its host, hyperthermophilic and acidophilic archaeon Sulfolobus islandicus, arresting the cell cycle in the S phase. STSV2 infection leads to transcriptional repression of the cell division machinery, which is homologous to the eukaryotic endosomal sorting complexes required for transport (ESCRT) system. The infected cells grow up to 20-fold larger in size, have 8,000-fold larger volume compared to noninfected cells, and accumulate massive amounts of viral and cellular DNA. Whereas noninfected Sulfolobus cells divide symmetrically by binary fission, the STSV2-infected cells undergo asymmetric division, whereby giant cells release normal-sized cells by budding, resembling the division of budding yeast. Reinfection of the normal-sized cells produces a new generation of giant cells. If the CRISPR-Cas system is present, the giant cells acquire virus-derived spacers and terminate the virus spread, whereas in its absence, the cycle continues, suggesting that CRISPR-Cas is the primary defense system in Sulfolobus against STSV2. Collectively, our results show how an archaeal virus manipulates the cell cycle, transforming the cell into a giant virion-producing factory.
Collapse
Affiliation(s)
- Junfeng Liu
- Archaeal Virology Unit, Institut Pasteur, 75015 Paris, France
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | | | - Diana P Baquero
- Archaeal Virology Unit, Institut Pasteur, 75015 Paris, France
| | - Yunfeng Yang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China
| | - Qi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500 Kunming, China
| | - Yulong Shen
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, 266237 Qingdao, China;
| | - Mart Krupovic
- Archaeal Virology Unit, Institut Pasteur, 75015 Paris, France;
| |
Collapse
|
6
|
Bhambhani A, Iadicicco I, Lee J, Ahmed S, Belfatto M, Held D, Marconi A, Parks A, Stewart CR, Margolin W, Levin PA, Haeusser DP. Bacteriophage SP01 Gene Product 56 Inhibits Bacillus subtilis Cell Division by Interacting with FtsL and Disrupting Pbp2B and FtsW Recruitment. J Bacteriol 2020; 203:e00463-20. [PMID: 33077634 PMCID: PMC7950406 DOI: 10.1128/jb.00463-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Previous work identified gene product 56 (gp56), encoded by the lytic bacteriophage SP01, as being responsible for inhibition of Bacillus subtilis cell division during its infection. Assembly of the essential tubulin-like protein FtsZ into a ring-shaped structure at the nascent site of cytokinesis determines the timing and position of division in most bacteria. This FtsZ ring serves as a scaffold for recruitment of other proteins into a mature division-competent structure permitting membrane constriction and septal cell wall synthesis. Here, we show that expression of the predicted 9.3-kDa gp56 of SP01 inhibits later stages of B. subtilis cell division without altering FtsZ ring assembly. Green fluorescent protein-tagged gp56 localizes to the membrane at the site of division. While its localization does not interfere with recruitment of early division proteins, gp56 interferes with the recruitment of late division proteins, including Pbp2b and FtsW. Imaging of cells with specific division components deleted or depleted and two-hybrid analyses suggest that gp56 localization and activity depend on its interaction with FtsL. Together, these data support a model in which gp56 interacts with a central part of the division machinery to disrupt late recruitment of the division proteins involved in septal cell wall synthesis.IMPORTANCE Studies over the past decades have identified bacteriophage-encoded factors that interfere with host cell shape or cytokinesis during viral infection. The phage factors causing cell filamentation that have been investigated to date all act by targeting FtsZ, the conserved prokaryotic tubulin homolog that composes the cytokinetic ring in most bacteria and some groups of archaea. However, the mechanisms of several phage factors that inhibit cytokinesis, including gp56 of bacteriophage SP01 of Bacillus subtilis, remain unexplored. Here, we show that, unlike other published examples of phage inhibition of cytokinesis, gp56 blocks B. subtilis cell division without targeting FtsZ. Rather, it utilizes the assembled FtsZ cytokinetic ring to localize to the division machinery and to block recruitment of proteins needed for septal cell wall synthesis.
Collapse
Affiliation(s)
- Amit Bhambhani
- Biology Department, Canisius College, Buffalo, New York, USA
| | | | - Jules Lee
- Biology Department, Canisius College, Buffalo, New York, USA
| | - Syed Ahmed
- Biology Department, Canisius College, Buffalo, New York, USA
| | - Max Belfatto
- Biology Department, Canisius College, Buffalo, New York, USA
| | - David Held
- Biology Department, Canisius College, Buffalo, New York, USA
| | - Alexia Marconi
- Biology Department, Canisius College, Buffalo, New York, USA
| | - Aaron Parks
- Biology Department, Canisius College, Buffalo, New York, USA
| | | | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas, Houston, Texas, USA
| | - Petra Anne Levin
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | | |
Collapse
|
7
|
Mulvenna N, Hantke I, Burchell L, Nicod S, Bell D, Turgay K, Wigneshweraraj S. Xenogeneic modulation of the ClpCP protease of Bacillus subtilis by a phage-encoded adaptor-like protein. J Biol Chem 2019; 294:17501-17511. [PMID: 31362989 PMCID: PMC6873191 DOI: 10.1074/jbc.ra119.010007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/24/2019] [Indexed: 11/06/2022] Open
Abstract
Like eukaryotic and archaeal viruses, which coopt the host's cellular pathways for their replication, bacteriophages have evolved strategies to alter the metabolism of their bacterial host. SPO1 bacteriophage infection of Bacillus subtilis results in comprehensive remodeling of cellular processes, leading to conversion of the bacterial cell into a factory for phage progeny production. A cluster of 26 genes in the SPO1 genome, called the host takeover module, encodes for potentially cytotoxic proteins that specifically shut down various processes in the bacterial host, including transcription, DNA synthesis, and cell division. However, the properties and bacterial targets of many genes of the SPO1 host takeover module remain elusive. Through a systematic analysis of gene products encoded by the SPO1 host takeover module, here we identified eight gene products that attenuated B. subtilis growth. Of the eight phage gene products that attenuated bacterial growth, a 25-kDa protein called Gp53 was shown to interact with the AAA+ chaperone protein ClpC of the ClpCP protease of B. subtilis Our results further reveal that Gp53 is a phage-encoded adaptor-like protein that modulates the activity of the ClpCP protease to enable efficient SPO1 phage progeny development. In summary, our findings indicate that the bacterial ClpCP protease is the target of xenogeneic (dys)regulation by a SPO1 phage-derived factor and add Gp53 to the list of antibacterial products that target bacterial protein degradation and therefore may have utility for the development of novel antibacterial agents.
Collapse
Affiliation(s)
- Nancy Mulvenna
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ingo Hantke
- Institute für Mikrobiologie, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Lynn Burchell
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Sophie Nicod
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - David Bell
- SynbiCITE, iHub, Imperial College London, White City, London W12 0BZ, United Kingdom
| | - Kürşad Turgay
- Institute für Mikrobiologie, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany.,Max Planck Unit for the Science of Pathogens, Chariteplatz 1, 10117 Berlin, Germany
| | - Sivaramesh Wigneshweraraj
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
8
|
Botka T, Pantůček R, Mašlaňová I, Benešík M, Petráš P, Růžičková V, Havlíčková P, Varga M, Žemličková H, Koláčková I, Florianová M, Jakubů V, Karpíšková R, Doškař J. Lytic and genomic properties of spontaneous host-range Kayvirus mutants prove their suitability for upgrading phage therapeutics against staphylococci. Sci Rep 2019; 9:5475. [PMID: 30940900 PMCID: PMC6445280 DOI: 10.1038/s41598-019-41868-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/17/2019] [Indexed: 12/20/2022] Open
Abstract
Lytic bacteriophages are valuable therapeutic agents against bacterial infections. There is continual effort to obtain new phages to increase the effectivity of phage preparations against emerging phage-resistant strains. Here we described the genomic diversity of spontaneous host-range mutants of kayvirus 812. Five mutant phages were isolated as rare plaques on phage-resistant Staphylococcus aureus strains. The host range of phage 812-derived mutants was 42% higher than the wild type, determined on a set of 186 methicillin-resistant S. aureus strains representing the globally circulating human and livestock-associated clones. Comparative genomics revealed that single-nucleotide polymorphisms from the parental phage 812 population were fixed in next-step mutants, mostly in genes for tail and baseplate components, and the acquired point mutations led to diverse receptor binding proteins in the phage mutants. Numerous genome changes associated with rearrangements between direct repeat motifs or intron loss were found. Alterations occurred in host-takeover and terminal genomic regions or the endolysin gene of mutants that exhibited the highest lytic activity, which implied various mechanisms of overcoming bacterial resistance. The genomic data revealed that Kayvirus spontaneous mutants are free from undesirable genes and their lytic properties proved their suitability for rapidly updating phage therapeutics.
Collapse
Affiliation(s)
- Tibor Botka
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 611 37, Czech Republic
| | - Roman Pantůček
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 611 37, Czech Republic.
| | - Ivana Mašlaňová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 611 37, Czech Republic
| | - Martin Benešík
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 611 37, Czech Republic
| | - Petr Petráš
- National Institute of Public Health, Praha, 100 42, Czech Republic
| | - Vladislava Růžičková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 611 37, Czech Republic
| | - Pavla Havlíčková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 611 37, Czech Republic
| | - Marian Varga
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 611 37, Czech Republic
| | - Helena Žemličková
- National Institute of Public Health, Praha, 100 42, Czech Republic.,Department of Clinical Microbiology, University Hospital and Faculty of Medicine in Hradec Králové, Charles University, Hradec Králové, 500 05, Czech Republic
| | | | | | - Vladislav Jakubů
- National Institute of Public Health, Praha, 100 42, Czech Republic
| | | | - Jiří Doškař
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 611 37, Czech Republic
| |
Collapse
|
9
|
Abstract
When Bacillus subtilis is infected by bacteriophage SPO1, the phage directs the remodeling of the host cell, converting it into a factory for phage reproduction. Much synthesis of host DNA, RNA, and protein is shut off, and cell division is prevented. Here I describe the protocols by which we have demonstrated those processes, and identified the roles played by specific SPO1 gene products in causing those processes.
Collapse
|
10
|
Yang S, Pei H, Zhang X, Wei Q, Zhu J, Zheng J, Jia Z. Characterization of DicB by partially masking its potent inhibitory activity of cell division. Open Biol 2017; 6:rsob.160082. [PMID: 27466443 PMCID: PMC4967827 DOI: 10.1098/rsob.160082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 07/01/2016] [Indexed: 11/12/2022] Open
Abstract
DicB, a protein encoded by the Kim (Qin) prophage in Escherichia coli, inhibits cell division through interaction with MinC. Thus far, characterization of DicB has been severely hampered owing to its potent activity which ceases cell division and leads to cell death. In this work, through fusing maltose-binding protein to the N-terminus of DicB (MBP–DicB), we successfully expressed and purified recombinant DicB that enabled in vitro analysis for the first time. More importantly, taking advantage of the reduced inhibitory activity of MBP–DicB, we were able to study its effects on cell growth and morphology. Inhibition of cell growth by MBP–DicB was systematically evaluated using various DicB constructs, and their corresponding effects on cell morphology were also investigated. Our results revealed that the N-terminal segment of DicB plays an essential functional role, in contrast to its C-terminal tail. The N-terminus of DicB is of critical importance as even the first amino acid (following the initial Met) could not be removed, although it could be mutated. This study provides the first glimpse of the molecular determinants underlying DicB's function.
Collapse
Affiliation(s)
- Shaoyuan Yang
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Hairun Pei
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Xiaoying Zhang
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Qiang Wei
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Jia Zhu
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Jimin Zheng
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Zongchao Jia
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China Department of Biomedical and Molecular Sciences, Queen's University, Ontario, Canada K7L 3N6
| |
Collapse
|
11
|
Haeusser DP, Hoashi M, Weaver A, Brown N, Pan J, Sawitzke JA, Thomason LC, Court DL, Margolin W. The Kil peptide of bacteriophage λ blocks Escherichia coli cytokinesis via ZipA-dependent inhibition of FtsZ assembly. PLoS Genet 2014; 10:e1004217. [PMID: 24651041 PMCID: PMC3961180 DOI: 10.1371/journal.pgen.1004217] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/17/2014] [Indexed: 11/19/2022] Open
Abstract
Assembly of the essential, tubulin-like FtsZ protein into a ring-shaped structure at the nascent division site determines the timing and position of cytokinesis in most bacteria and serves as a scaffold for recruitment of the cell division machinery. Here we report that expression of bacteriophage λ kil, either from a resident phage or from a plasmid, induces filamentation of Escherichia coli cells by rapid inhibition of FtsZ ring formation. Mutant alleles of ftsZ resistant to the Kil protein map to the FtsZ polymer subunit interface, stabilize FtsZ ring assembly, and confer increased resistance to endogenous FtsZ inhibitors, consistent with Kil inhibiting FtsZ assembly. Cells with the normally essential cell division gene zipA deleted (in a modified background) display normal FtsZ rings after kil expression, suggesting that ZipA is required for Kil-mediated inhibition of FtsZ rings in vivo. In support of this model, point mutations in the C-terminal FtsZ-interaction domain of ZipA abrogate Kil activity without discernibly altering FtsZ-ZipA interactions. An affinity-tagged-Kil derivative interacts with both FtsZ and ZipA, and inhibits sedimentation of FtsZ filament bundles in vitro. Together, these data inspire a model in which Kil interacts with FtsZ and ZipA in the cell to prevent FtsZ assembly into a coherent, division-competent ring structure. Phage growth assays show that kil+ phage lyse ∼30% later than kil mutant phage, suggesting that Kil delays lysis, perhaps via its interaction with FtsZ and ZipA.
Collapse
Affiliation(s)
- Daniel P. Haeusser
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, Texas, United States of America
| | - Marina Hoashi
- National Cancer Institute at Frederick, Gene Regulation and Chromosome Biology Laboratory, Frederick, Maryland, United States of America
| | - Anna Weaver
- National Cancer Institute at Frederick, Gene Regulation and Chromosome Biology Laboratory, Frederick, Maryland, United States of America
| | - Nathan Brown
- National Cancer Institute at Frederick, Gene Regulation and Chromosome Biology Laboratory, Frederick, Maryland, United States of America
| | - James Pan
- National Cancer Institute at Frederick, Gene Regulation and Chromosome Biology Laboratory, Frederick, Maryland, United States of America
| | - James A. Sawitzke
- National Cancer Institute at Frederick, Gene Regulation and Chromosome Biology Laboratory, Frederick, Maryland, United States of America
| | - Lynn C. Thomason
- Frederick National Laboratory for Cancer Research, Leidos Biomedical, Inc., Gene Regulation and Chromosome Biology Laboratory, Frederick, Maryland, United States of America
| | - Donald L. Court
- National Cancer Institute at Frederick, Gene Regulation and Chromosome Biology Laboratory, Frederick, Maryland, United States of America
| | - William Margolin
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, Houston, Texas, United States of America
| |
Collapse
|