1
|
Al-Kaeath N, Zagier S, Alisawi O, Fadhal FA, Mahfoudhi N. High-Throughput Sequencing Identified Multiple Fig Viruses and Viroids Associated with Fig Mosaic Disease in Iraq. THE PLANT PATHOLOGY JOURNAL 2024; 40:486-497. [PMID: 39397303 PMCID: PMC11471924 DOI: 10.5423/ppj.oa.04.2024.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/28/2024] [Indexed: 10/15/2024]
Abstract
Mosaic is the most common viral disease affecting fig plants. Although the Fig mosaic virus is the leading cause of mosaic disease, other viruses are also involved. High-throughput sequencing was used to assess viral infections in fig plants with mosaic. The genomic DNA and total RNAseq of mosaic-symptomatic fig leaves were sequenced using the Illumina platform. The analysis revealed the presence of fig badnavirus 1 (FBV-1), grapevine badnavirus 1 (GBV-1), citrus exocortis viroid (CEVd), and apple dimple fruit viroid (ADFVd). The FBV-1 and GBV-1 sequences were 7,140 bp and 7,239 bp long, respectively. The two genomes encode one open reading frame containing five major protein domains. The viroids, CEVd and ADFVd, were 397 bp and 305 bp long. Phylogenetic analyses revealed a close relationship between FBV-1 and Iranian isolates of the same species, while GBV-1 was closely related to Russian grapevine badnavirus isolates (Tem64, Blu17, KDH48, and Pal9). CEVd was closely related to other Iraqi isolates, while ADFVd was strongly related to a Spanish isolate. A registered endogenous pararetrovirus, caulimovirus-Fca1, with a size of 7,556 bp, was found in the RNA transcripts with a low expression level. This integrant was also detected in the genomes of the two lines 'Horaishi' (a female line) and 'Caprifig 6085' (a male line). Phylogenetic analyses revealed that caulimovirus-Fca1 was distinct from two other clades of different endogenous virus genera.
Collapse
Affiliation(s)
- Nabeel Al-Kaeath
- Institut National de la Recherche Agronomique de Tunisie, Université de Carthage, Laboratoire de Protection des Végétaux LR16INRAT04, Rue Hedi Karray, 1004 ElMenzah, Tunis, Tunisia
- Department of Plant Protection, Higher Agronomic Institute of Chott-Mariem, Sousse University, 4000 Sousse, Tunisia
- Department of Plant Protection, College of Agriculture, University of Al-Muthanna, Samawah 66001, Iraq
| | - Shrooq Zagier
- Department of Plant Protection, Faculty of Agriculture, University of Kufa, Najaf 54001, Iraq
| | - Osamah Alisawi
- Department of Plant Protection, Faculty of Agriculture, University of Kufa, Najaf 54001, Iraq
| | - Fadhal Al Fadhal
- Department of Plant Protection, Faculty of Agriculture, University of Kufa, Najaf 54001, Iraq
| | - Naima Mahfoudhi
- Institut National de la Recherche Agronomique de Tunisie, Université de Carthage, Laboratoire de Protection des Végétaux LR16INRAT04, Rue Hedi Karray, 1004 ElMenzah, Tunis, Tunisia
| |
Collapse
|
2
|
Wang Z, Liu J, Qi X, Su D, Yang J, Cui X. Study of Endogenous Viruses in the Strawberry Plants. Viruses 2024; 16:1306. [PMID: 39205280 PMCID: PMC11359110 DOI: 10.3390/v16081306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Endogenous viral elements (EVEs) have been reported to exist widely in the genomes of eukaryotic organisms, and they are closely associated with the growth, development, genetics, adaptation, and evolution of their hosts. In this study, two methods-homologous sequence search and genome alignment-were used to explore the endogenous viral sequences in the genomes of Fragaria species. Results revealed abundant endogenous pararetroviruses (EPRVs) in the genomes of Fragaria species, including 786 sequences belonging to five known taxa such as Caulimovirus and other unclassified taxa. Differences were observed in the detected EPRVs between the two methods, with the homologous sequence search having a greater number of EPRVs. On the contrary, genome alignment identified various types and sources of virus-like sequences. Furthermore, through genome alignment, a 267-bp sequence with 95% similarity to the gene encoding the aphid-transmitted protein of Strawberry vein banding virus (Caulimovirus venafragariae) was discovered in the F. chiloensis genome, which was likely a recent insertion. In addition, the statistical analysis of the genome alignment results indicated a remarkably higher abundance of virus-like sequences in the genomes of polyploid strawberries compared with diploid ones. Moreover, the differences in virus-like sequences were observed between the genomes of Fragaria species and those of their close relatives. This study enriched the diversity of viruses that infect strawberries, and laid a theoretical foundation for further research on the origin of endogenous viruses in the strawberry genome, host-virus interactions, adaptation, evolution, and their functions.
Collapse
Affiliation(s)
- Zongneng Wang
- School of Life Sciences, Yunnan University, Kunming 650500, China; (Z.W.); (J.L.); (X.Q.); (D.S.)
| | - Jian Liu
- School of Life Sciences, Yunnan University, Kunming 650500, China; (Z.W.); (J.L.); (X.Q.); (D.S.)
| | - Xingyang Qi
- School of Life Sciences, Yunnan University, Kunming 650500, China; (Z.W.); (J.L.); (X.Q.); (D.S.)
| | - Daifa Su
- School of Life Sciences, Yunnan University, Kunming 650500, China; (Z.W.); (J.L.); (X.Q.); (D.S.)
| | - Junyu Yang
- School of Life Sciences, Yunnan University, Kunming 650500, China; (Z.W.); (J.L.); (X.Q.); (D.S.)
- Yunnan International Joint Laboratory of Virology and Immunology, Kunming 650500, China
| | - Xiaolong Cui
- School of Life Sciences, Yunnan University, Kunming 650500, China; (Z.W.); (J.L.); (X.Q.); (D.S.)
| |
Collapse
|
3
|
Saito N, Chen S, Kitajima K, Zhou Z, Koide Y, Encabo JR, Diaz MGQ, Choi IR, Koyanagi KO, Kishima Y. Phylogenetic analysis of endogenous viral elements in the rice genome reveals local chromosomal evolution in Oryza AA-genome species. FRONTIERS IN PLANT SCIENCE 2023; 14:1261705. [PMID: 37965031 PMCID: PMC10641527 DOI: 10.3389/fpls.2023.1261705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/29/2023] [Indexed: 11/16/2023]
Abstract
Introduction Rice genomes contain endogenous viral elements homologous to rice tungro bacilliform virus (RTBV) from the pararetrovirus family Caulimoviridae. These viral elements, known as endogenous RTBV-like sequences (eRTBVLs), comprise five subfamilies, eRTBVL-A, -B, -C, -D, and -X. Four subfamilies (A, B, C, and X) are present to a limited degree in the genomes of the Asian cultivated rice Oryza sativa (spp. japonica and indica) and the closely related wild species Oryza rufipogon. Methods The eRTBVL-D sequences are widely distributed within these and other Oryza AA-genome species. Fifteen eRTBVL-D segments identified in the japonica (Nipponbare) genome occur mostly at orthologous chromosomal positions in other AA-genome species. The eRTBVL-D sequences were inserted into the genomes just before speciation of the AA-genome species. Results and discussion Ten eRTBVL-D segments are located at six loci, which were used for our evolutionary analyses during the speciation of the AA-genome species. The degree of genetic differentiation varied among the eRTBVL-D segments. Of the six loci, three showed phylogenetic trees consistent with the standard speciation pattern (SSP) of the AA-genome species (Type A), and the other three represented phylogenies different from the SSP (Type B). The atypical phylogenetic trees for the Type B loci revealed chromosome region-specific evolution among the AA-genome species that is associated with phylogenetic incongruences: complex genome rearrangements between eRTBVL-D segments, an introgression between the distant species, and low genetic diversity of a shared eRTBVL-D segment. Using eRTBVL-D as an indicator, this study revealed the phylogenetic incongruence of local chromosomal regions with different topologies that developed during speciation.
Collapse
Affiliation(s)
- Nozomi Saito
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Sunlu Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Jiangsu Province Engineering Research Center of Seed Industry Science and Technology, Cyrus Tang Innovation Center for Seed Industry, Nanjing Agricultural University, Nanjing, China
| | - Katsuya Kitajima
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Zhitong Zhou
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yohei Koide
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Jaymee R. Encabo
- Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines, Los Baños, Laguna, Philippines
| | - Maria Genaleen Q. Diaz
- Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines, Los Baños, Laguna, Philippines
| | - Il-Ryong Choi
- Rice Breeding Platform, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Kanako O. Koyanagi
- Faculty of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuji Kishima
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
4
|
Aubin E, El Baidouri M, Panaud O. Horizontal Gene Transfers in Plants. Life (Basel) 2021; 11:life11080857. [PMID: 34440601 PMCID: PMC8401529 DOI: 10.3390/life11080857] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
In plants, as in all eukaryotes, the vertical transmission of genetic information through reproduction ensures the maintenance of the integrity of species. However, many reports over the past few years have clearly shown that horizontal gene transfers, referred to as HGTs (the interspecific transmission of genetic information across reproductive barriers) are very common in nature and concern all living organisms including plants. The advent of next-generation sequencing technologies (NGS) has opened new perspectives for the study of HGTs through comparative genomic approaches. In this review, we provide an up-to-date view of our current knowledge of HGTs in plants.
Collapse
|
5
|
Takahashi H, Fukuhara T, Kitazawa H, Kormelink R. Virus Latency and the Impact on Plants. Front Microbiol 2019; 10:2764. [PMID: 31866963 PMCID: PMC6908805 DOI: 10.3389/fmicb.2019.02764] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/12/2019] [Indexed: 11/15/2022] Open
Abstract
Plant viruses are thought to be essentially harmful to the lives of their cultivated crop hosts. In most cases studied, the interaction between viruses and cultivated crop plants negatively affects host morphology and physiology, thereby resulting in disease. Native wild/non-cultivated plants are often latently infected with viruses without any clear symptoms. Although seemingly non-harmful, these viruses pose a threat to cultivated crops because they can be transmitted by vectors and cause disease. Reports are accumulating on infections with latent plant viruses that do not cause disease but rather seem to be beneficial to the lives of wild host plants. In a few cases, viral latency involves the integration of full-length genome copies into the host genome that, in response to environmental stress or during certain developmental stages of host plants, can become activated to generate and replicate episomal copies, a transition from latency to reactivation and causation of disease development. The interaction between viruses and host plants may also lead to the integration of partial-length segments of viral DNA genomes or copy DNA of viral RNA genome sequences into the host genome. Transcripts derived from such integrated viral elements (EVEs) may be beneficial to host plants, for example, by conferring levels of virus resistance and/or causing persistence/latency of viral infections. Studies on viral latency in wild host plants might help us to understand and elucidate the underlying mechanisms of latency and provide insights into the raison d’être for viruses in the lives of plants.
Collapse
Affiliation(s)
- Hideki Takahashi
- Laboratory of Plant Pathology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Plant Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Toshiyuki Fukuhara
- Department of Applied Biological Sciences and Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Richard Kormelink
- Laboratory of Virology, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
6
|
Chen S, Saito N, Encabo JR, Yamada K, Choi IR, Kishima Y. Ancient Endogenous Pararetroviruses in Oryza Genomes Provide Insights into the Heterogeneity of Viral Gene Macroevolution. Genome Biol Evol 2018; 10:2686-2696. [PMID: 30239708 PMCID: PMC6179347 DOI: 10.1093/gbe/evy207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2018] [Indexed: 12/13/2022] Open
Abstract
Endogenous viral sequences in eukaryotic genomes, such as those derived from plant pararetroviruses (PRVs), can serve as genomic fossils to study viral macroevolution. Many aspects of viral evolutionary rates are heterogeneous, including substitution rate differences between genes. However, the evolutionary dynamics of this viral gene rate heterogeneity (GRH) have been rarely examined. Characterizing such GRH may help to elucidate viral adaptive evolution. In this study, based on robust phylogenetic analysis, we determined an ancient endogenous PRV group in Oryza genomes in the range of being 2.41-15.00 Myr old. We subsequently used this ancient endogenous PRV group and three younger groups to estimate the GRH of PRVs. Long-term substitution rates for the most conserved gene and a divergent gene were 2.69 × 10-8 to 8.07 × 10-8 and 4.72 × 10-8 to 1.42 × 10-7 substitutions/site/year, respectively. On the basis of a direct comparison, a long-term GRH of 1.83-fold was identified between these two genes, which is unexpectedly low and lower than the short-term GRH (>3.40-fold) of PRVs calculated using published data. The lower long-term GRH of PRVs was due to the slightly faster rate decay of divergent genes than of conserved genes during evolution. To the best of our knowledge, we quantified for the first time the long-term GRH of viral genes using paleovirological analyses, and proposed that the GRH of PRVs might be heterogeneous on time scales (time-dependent GRH). Our findings provide special insights into viral gene macroevolution and should encourage a more detailed examination of the viral GRH.
Collapse
Affiliation(s)
- Sunlu Chen
- Laboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Nozomi Saito
- Laboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Jaymee R Encabo
- Laboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
- Rice Breeding Platform, International Rice Research Institute, Los Baños, Laguna, Philippines
- Microbiology Division, Institute of Biological Sciences, University of the Philippines Los Baños, Los Baños, Laguna, Philippines
| | - Kanae Yamada
- Laboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Il-Ryong Choi
- Rice Breeding Platform, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Yuji Kishima
- Laboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
7
|
Yu H, Wang X, Lu Z, Xu Y, Deng X, Xu Q. Endogenous pararetrovirus sequences are widely present in Citrinae genomes. Virus Res 2018; 262:48-53. [PMID: 29792903 DOI: 10.1016/j.virusres.2018.05.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 05/20/2018] [Accepted: 05/20/2018] [Indexed: 01/04/2023]
Abstract
Endogenous pararetroviruses (EPRVs) are characterized in several plant genomes and their biological effects have been reported. In this study, hundreds of EPRV segments were identified in six Citrinae genomes. A total of 1034 EPRV segments were identified in the genomes of sweet orange, 2036 in pummelo, 598 in clementine mandarin, 752 in Ichang papeda, 2060 in citron and 245 in atalantia. Genomic analysis indicated that EPRV segments tend to cluster as hot spots in the genomes, particularly on chromosome 2 and 5. Large numbers of simple repeats and transposable elements were identified in the 2-kb flanking regions of the EPRV segments. Comparative genomic analysis and PCR experiments showed that there are highly conserved EPRV segments and species-specific EPRV segments between the Citrinae genomes. Phylogenetic analysis suggested that the integration events of EPRVs could initiate in a common progenitor of Citrinae species and repeatedly occur during the Citrinae divergence.
Collapse
Affiliation(s)
- Huiwen Yu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Xia Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Zhihao Lu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Yuantao Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
8
|
Chen S, Zheng H, Kishima Y. Genomic fossils reveal adaptation of non-autonomous pararetroviruses driven by concerted evolution of noncoding regulatory sequences. PLoS Pathog 2017; 13:e1006413. [PMID: 28662199 PMCID: PMC5491270 DOI: 10.1371/journal.ppat.1006413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/16/2017] [Indexed: 11/19/2022] Open
Abstract
The interplay of different virus species in a host cell after infection can affect the adaptation of each virus. Endogenous viral elements, such as endogenous pararetroviruses (PRVs), have arisen from vertical inheritance of viral sequences integrated into host germline genomes. As viral genomic fossils, these sequences can thus serve as valuable paleogenomic data to study the long-term evolutionary dynamics of virus-virus interactions, but they have rarely been applied for this purpose. All extant PRVs have been considered autonomous species in their parasitic life cycle in host cells. Here, we provide evidence for multiple non-autonomous PRV species with structural defects in viral activity that have frequently infected ancient grass hosts and adapted through interplay between viruses. Our paleogenomic analyses using endogenous PRVs in grass genomes revealed that these non-autonomous PRV species have participated in interplay with autonomous PRVs in a possible commensal partnership, or, alternatively, with one another in a possible mutualistic partnership. These partnerships, which have been established by the sharing of noncoding regulatory sequences (NRSs) in intergenic regions between two partner viruses, have been further maintained and altered by the sequence homogenization of NRSs between partners. Strikingly, we found that frequent region-specific recombination, rather than mutation selection, is the main causative mechanism of NRS homogenization. Our results, obtained from ancient DNA records of viruses, suggest that adaptation of PRVs has occurred by concerted evolution of NRSs between different virus species in the same host. Our findings further imply that evaluation of within-host NRS interactions within and between populations of viral pathogens may be important.
Collapse
Affiliation(s)
- Sunlu Chen
- Laboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Huizhen Zheng
- Laboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yuji Kishima
- Laboratory of Plant Breeding, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
- * E-mail:
| |
Collapse
|
9
|
Chen S, Kishima Y. Endogenous pararetroviruses in rice genomes as a fossil record useful for the emerging field of palaeovirology. MOLECULAR PLANT PATHOLOGY 2016; 17:1317-1320. [PMID: 27870389 PMCID: PMC6638417 DOI: 10.1111/mpp.12490] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 07/03/2016] [Accepted: 08/03/2016] [Indexed: 05/26/2023]
Affiliation(s)
- Sunlu Chen
- Laboratory of Plant Breeding, Research Faculty of AgricultureHokkaido UniversitySapporo060‐8589Japan
| | - Yuji Kishima
- Laboratory of Plant Breeding, Research Faculty of AgricultureHokkaido UniversitySapporo060‐8589Japan
| |
Collapse
|
10
|
Plant Virus Diversity and Evolution. CURRENT RESEARCH TOPICS IN PLANT VIROLOGY 2016. [PMCID: PMC7123681 DOI: 10.1007/978-3-319-32919-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Historically, the majority of plant virology focused on agricultural systems. Recent efforts have expanded our knowledge of the true diversity of plant viruses by studying those viruses that infect wild, undomesticated plants. Those efforts have provided answers to basic ecological questions regarding viruses in the wild, and insights into evolutionary questions, regarding the origins of viruses. While much work has been done, we have merely scratched the surface of the diversity that is estimated to exist. In this chapter we discuss the state of our knowledge of virus diversity, both in agricultural systems as well as in native wild systems, the border between these two systems and how viruses adapt and move across this border into an artificial, domesticated environment. We look at how this diversity has affected our outlook on viruses as a whole, shifting our past view of viruses as purely antagonistic entities of destruction to one where viruses are in a mutually beneficial relationship with their hosts. Additionally, we discuss the current work that plant virology has put forth regarding the evolutionary mechanisms, the life histories, and the deep evolution of viruses.
Collapse
|