1
|
Ke F, Zhang QY. Advances on genomes studies of large DNA viruses in aquaculture: A minireview. Genomics 2023; 115:110720. [PMID: 37757975 DOI: 10.1016/j.ygeno.2023.110720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023]
Abstract
Genomic studies of viral diseases in aquaculture have received more and more attention with the growth of the aquaculture industry, especially the emerging and re-emerging viruses whose genome could contain recombination, mutation, insertion, and so on, and may lead to more severe diseases and more widespread infections in aquaculture animals. The present review is focused on aquaculture viruses, which is belonged to two clades, Varidnaviria and Duplodnaviria, and one class Naldaviricetes, and respectively three families: Iridoviridae (ranaviruses), Alloherpesviridae (fish herpesviruses), and Nimaviridae (whispoviruses). The viruses possessed DNA genomes nearly or larger than 100 kbp with gene numbers more than 100 and were considered large DNA viruses. Genome analysis and experimental investigation have identified several genes involved in genome replication, transcription, and virus-host interactions. In addition, some genes involved in virus genetic variation or specificity were also discussed. A summary of these advances would provide reference to future discovery and research on emerging or re-emerging aquaculture viruses.
Collapse
Affiliation(s)
- Fei Ke
- Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qi-Ya Zhang
- Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
2
|
Yu XD, Ke F, Zhang QY, Gui JF. Genome Characteristics of Two Ranavirus Isolates from Mandarin Fish and Largemouth Bass. Pathogens 2023; 12:pathogens12050730. [PMID: 37242400 DOI: 10.3390/pathogens12050730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Ranaviruses are promiscuous pathogens that threaten lower vertebrates globally. In the present study, two ranaviruses (SCRaV and MSRaV) were isolated from two fishes of the order Perciformes: mandarin fish (Siniperca chuatsi) and largemouth bass (Micropterus salmoides). The two ranaviruses both induced cytopathic effects in cultured cells from fish and amphibians and have the typical morphologic characteristics of ranaviruses. Complete genomes of the two ranaviruses were then sequenced and analyzed. Genomes of SCRaV and MSRaV have a length of 99, 405, and 99, 171 bp, respectively, and both contain 105 predicted open reading frames (ORFs). Eleven of the predicted proteins have differences between SCRaV and MSRaV, in which only one (79L) possessed a relatively large difference. A comparison of the sequenced six ranaviruses from the two fish species worldwide revealed that sequence identities of the six proteins (11R, 19R, 34L, 68L, 77L, and 103R) were related to the place where the virus was isolated. However, there were obvious differences in protein sequence identities between the two viruses and iridoviruses from other hosts, with more than half lower than 55%. Especially, 12 proteins of the two isolates had no homologs in viruses from other hosts. Phylogenetic analysis revealed that ranaviruses from the two fishes clustered in one clade. Further genome alignment showed five groups of genome arrangements of ranaviruses based on the locally collinear blocks, in which the ranaviruses, including SCRaV and MSRaV, constitute the fifth group. These results provide new information on the ranaviruses infecting fishes of Perciformes and also are useful for further research of functional genomics of the type of ranaviruses.
Collapse
Affiliation(s)
- Xue-Dong Yu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Fei Ke
- The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qi-Ya Zhang
- The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian-Fang Gui
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
3
|
Ke F, Zhang QY. Aquatic animal viruses mediated immune evasion in their host. FISH & SHELLFISH IMMUNOLOGY 2019; 86:1096-1105. [PMID: 30557608 DOI: 10.1016/j.fsi.2018.12.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/09/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
Viruses are important and lethal pathogens that hamper aquatic animals. The result of the battle between host and virus would determine the occurrence of diseases. The host will fight against virus infection with various responses such as innate immunity, adaptive immunity, apoptosis, and so on. On the other hand, the virus also develops numerous strategies such as immune evasion to antagonize host antiviral responses. Here, We review the research advances on virus mediated immune evasions to host responses containing interferon response, NF-κB signaling, apoptosis, and adaptive response, which are executed by viral genes, proteins, and miRNAs from different aquatic animal viruses including Alloherpesviridae, Iridoviridae, Nimaviridae, Birnaviridae, Reoviridae, and Rhabdoviridae. Thus, it will facilitate the understanding of aquatic animal virus mediated immune evasion and potentially benefit the development of novel antiviral applications.
Collapse
Affiliation(s)
- Fei Ke
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
4
|
Zhu Y, Li Y, Bai B, Fang J, Zhang K, Yin X, Li S, Li W, Ma Y, Cui Y, Wang J, Liu X, Li X, Sun L, Jin N. Construction of an attenuated goatpox virus AV41 strain by deleting the TK gene and ORF8-18. Antiviral Res 2018; 157:111-119. [PMID: 30030019 DOI: 10.1016/j.antiviral.2018.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 11/28/2022]
Abstract
Goatpox virus (GTPV) is prevalent in goats and is associated with high mortality. This virus causes fever, skin nodules, lesions in the respiratory and lymph node enlargement. Considering the safety risks and side effects of vaccination with attenuated live GPTV vaccine strain AV41, an attenuated goatpox virus (GTPV-TK-ORF), was constructed by deleting non-essential gene fragments without affecting replication and related to the virulence and immunomodulatory functions of the goatpox virus AV41 strain (GTPV-AV41) using homologous recombination and the Cre (Cyclization Recombination Enzyme)/Loxp system. The results of both in vivo and in vitro experiments demonstrated that GTPV-TK-ORF was safer than wild type GTPV-AV41, possessed satisfactory immunogenicity, and could protect goats from a virulent GTPV-AV40 infection. Moreover, the IFN-γ, GTPV-specific antibody, and neutralizing antibody levels in the GTPV-TK-ORF-immunized group were significantly higher than that in the normal saline control group following immunization (P < 0.01). Thus, GTPV-TK-ORF may be used as a potential novel vaccine and viral vector with good safety and immunogenicity.
Collapse
Affiliation(s)
- Yilong Zhu
- Changchun University of Chinese Medicine, Changchun, 130117, China; Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China
| | - Yiquan Li
- Changchun University of Chinese Medicine, Changchun, 130117, China; Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China; Medical College, Yanbian University, Yanji, 133002, China
| | - Bing Bai
- Changchun University of Chinese Medicine, Changchun, 130117, China; Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China
| | - Jinbo Fang
- Changchun University of Chinese Medicine, Changchun, 130117, China; Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China
| | - Kelong Zhang
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China
| | - Xunzhe Yin
- Changchun University of Chinese Medicine, Changchun, 130117, China; Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China
| | - Shanzhi Li
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China
| | - Wenjie Li
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China
| | - Yizhen Ma
- Changchun University of Chinese Medicine, Changchun, 130117, China; Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China
| | - Yingli Cui
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China
| | - Jing Wang
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China
| | - Xing Liu
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China
| | - Xiao Li
- Changchun University of Chinese Medicine, Changchun, 130117, China; Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China; Institute of Virology, Wenzhou University Town, Wenzhou, 325035, China.
| | - Lili Sun
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China; Department of Head and Neck Surgery, Tumor Hospital of Jilin Province, Changchun, 130012, China.
| | - Ningyi Jin
- Changchun University of Chinese Medicine, Changchun, 130117, China; Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, 130122, China; Institute of Virology, Wenzhou University Town, Wenzhou, 325035, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|