Haddad H, Al-Zyoud W. Prion propensity of Betacoronaviruses including SARS-CoV-2.
Heliyon 2025;
11:e42199. [PMID:
40034268 PMCID:
PMC11874563 DOI:
10.1016/j.heliyon.2025.e42199]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/09/2024] [Accepted: 01/21/2025] [Indexed: 03/05/2025] Open
Abstract
Prions are considered as sub-viral protein particles that have exceptional ability for multiple structural or functional conformational changes, that any might affect the regulation of viral infections. The aim of this study is to utilize two computational platforms to predict the prion-forming potential of the spike protein (S) in Betacoronavirus, including SARS-CoV-2 clades. The abovementioned computational platforms included two algorithms; the Prion Aggregation Prediction Algorithm (PAPA) and the Supervised Machine Learning Algorithm Called Prion RANKing and Classification (pRANK) have been adopted due to their high classifier performance proteome-wide when compared with other algorithms, such as PLAAC-LLR and prionW. The findings of this study imply the propensity of some Betacorona viruses, including the Wild type of SARS-CoV-2 and some variants, specifically as Gamma and Delta, to develop prion-like sequence which can act as a regulator for viral pathogenicity or as a biochemical threat.
Collapse