1
|
Xiao Q, Dong ZQ, Zhu Y, Zhang Q, Yang X, Xiao M, Chen P, Lu C, Pan MH. Bombyx mori Nucleopolyhedrovirus (BmNPV) Induces G2/M Arrest to Promote Viral Multiplication by Depleting BmCDK1. INSECTS 2021; 12:insects12121098. [PMID: 34940186 PMCID: PMC8708760 DOI: 10.3390/insects12121098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 01/01/2023]
Abstract
Simple Summary Baculoviruses arrest the cell cycle in the S or G2/M phase in insect cells, but the exact mechanism of this process still remains obscure. Bombyx mori nucleopolyhedrovirus (BmNPV), one of the best characterized baculoviruses, is an important pathogen in silkworms. In the present study, we determined that downregulation of BmCDK1 and BmCyclin B expression was required for BmNPV-mediated G2/M phase arrest, which plays an essential role in facilitating BmNPV replication. Further investigations showed that BmNPV IAP1 interacted with BmCDK1. The overexpression of the BmNPV iap1 gene led to the accumulation of cells in the G2/M phase, and BmNPV iap1 gene knockdown attenuated the effect of BmNPV-mediated G2/M phase arrest. These findings enhance the understanding of BmNPV pathogenesis, and indicate a novel mechanism through which baculoviruses impact the cell cycle progression. Abstract Understanding virus–host interaction is very important for delineating the mechanism involved in viral replication and host resistance. Baculovirus, an insect virus, can cause S or G2/M phase arrest in insect cells. However, the roles and mechanism of Baculovirus-mediated S or G2/M phase arrest are not fully understood. Our results, obtained using flow cytometry (FCM), tubulin-labeling, BrdU-labeling, and CellTiter 96® AQueous One Solution Cell Proliferation Assay (MTS), showed that Bombyx mori nucleopolyhedrovirus (BmNPV) induced G2/M phase arrest and inhibited cellular DNA replication as well as cell proliferation in BmN-SWU1 cells. We found that BmNPV induced G2/M arrest to support its replication and proliferation by reducing the expression of BmCDK1 and BmCyclin B. Co-immunoprecipitation assays confirmed that BmNPV IAP1 interacted with BmCDK1. BmNPV iap1 was involved in the process of BmNPV-induced G2/M arrest by reducing the content of BmCDK1. Taken together, our results improve the understanding of the virus–host interaction network, and provide a potential target gene that connects apoptosis and the cell cycle.
Collapse
Affiliation(s)
- Qin Xiao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Q.X.); (Z.-Q.D.); (Y.Z.); (Q.Z.); (X.Y.); (M.X.); (P.C.)
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Zhan-Qi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Q.X.); (Z.-Q.D.); (Y.Z.); (Q.Z.); (X.Y.); (M.X.); (P.C.)
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Yan Zhu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Q.X.); (Z.-Q.D.); (Y.Z.); (Q.Z.); (X.Y.); (M.X.); (P.C.)
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Qian Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Q.X.); (Z.-Q.D.); (Y.Z.); (Q.Z.); (X.Y.); (M.X.); (P.C.)
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Xiu Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Q.X.); (Z.-Q.D.); (Y.Z.); (Q.Z.); (X.Y.); (M.X.); (P.C.)
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Miao Xiao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Q.X.); (Z.-Q.D.); (Y.Z.); (Q.Z.); (X.Y.); (M.X.); (P.C.)
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Q.X.); (Z.-Q.D.); (Y.Z.); (Q.Z.); (X.Y.); (M.X.); (P.C.)
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Q.X.); (Z.-Q.D.); (Y.Z.); (Q.Z.); (X.Y.); (M.X.); (P.C.)
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
- Correspondence: (C.L.); (M.-H.P.); Tel.: +86-23-6825-0346 (C.L.); +86-23-6825-0076 (M.-H.P.); Fax: +86-23-6825-1128 (C.L. & M.-H.P.)
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; (Q.X.); (Z.-Q.D.); (Y.Z.); (Q.Z.); (X.Y.); (M.X.); (P.C.)
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
- Correspondence: (C.L.); (M.-H.P.); Tel.: +86-23-6825-0346 (C.L.); +86-23-6825-0076 (M.-H.P.); Fax: +86-23-6825-1128 (C.L. & M.-H.P.)
| |
Collapse
|
2
|
Nguyen Q, Nielsen LK, Reid S. Genome scale transcriptomics of baculovirus-insect interactions. Viruses 2013; 5:2721-47. [PMID: 24226166 PMCID: PMC3856412 DOI: 10.3390/v5112721] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/28/2013] [Accepted: 11/04/2013] [Indexed: 01/25/2023] Open
Abstract
Baculovirus-insect cell technologies are applied in the production of complex proteins, veterinary and human vaccines, gene delivery vectors' and biopesticides. Better understanding of how baculoviruses and insect cells interact would facilitate baculovirus-based production. While complete genomic sequences are available for over 58 baculovirus species, little insect genomic information is known. The release of the Bombyx mori and Plutella xylostella genomes, the accumulation of EST sequences for several Lepidopteran species, and especially the availability of two genome-scale analysis tools, namely oligonucleotide microarrays and next generation sequencing (NGS), have facilitated expression studies to generate a rich picture of insect gene responses to baculovirus infections. This review presents current knowledge on the interaction dynamics of the baculovirus-insect system' which is relatively well studied in relation to nucleocapsid transportation, apoptosis, and heat shock responses, but is still poorly understood regarding responses involved in pro-survival pathways, DNA damage pathways, protein degradation, translation, signaling pathways, RNAi pathways, and importantly metabolic pathways for energy, nucleotide and amino acid production. We discuss how the two genome-scale transcriptomic tools can be applied for studying such pathways and suggest that proteomics and metabolomics can produce complementary findings to transcriptomic studies.
Collapse
Affiliation(s)
- Quan Nguyen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia.
| | | | | |
Collapse
|
3
|
Ishigami T, Abe K, Aoki I, Minegishi S, Ryo A, Matsunaga S, Matsuoka K, Takeda H, Sawasaki T, Umemura S, Endo Y. Anti‐interleukin‐5 and multiple autoantibodies are associated with human atherosclerotic diseases and serum interleukin‐5 levels. FASEB J 2013; 27:3437-45. [DOI: 10.1096/fj.12-222653] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Tomoaki Ishigami
- Department of Medical Science and Cardiorenal MedicineYokohama City University Graduate School of MedicineYokohamaJapan
| | - Kaito Abe
- Department of Medical Science and Cardiorenal MedicineYokohama City University Graduate School of MedicineYokohamaJapan
| | - Ichiro Aoki
- Department of Molecular PathologyYokohama City University Graduate School of MedicineYokohamaJapan
| | - Shintaro Minegishi
- Department of Medical Science and Cardiorenal MedicineYokohama City University Graduate School of MedicineYokohamaJapan
| | - Akihide Ryo
- Department of MicrobiologyYokohama City University Graduate School of MedicineYokohamaJapan
| | - Satoko Matsunaga
- Department of MicrobiologyYokohama City University Graduate School of MedicineYokohamaJapan
| | - Kazuhiro Matsuoka
- Ehime University Cell‐Free Science and Technology Research Center Division of Proteomedical Sciences; EhimeJapan
| | - Hiroyuki Takeda
- Ehime University Cell‐Free Science and Technology Research Center Division of Proteomedical Sciences; EhimeJapan
| | - Tatsuya Sawasaki
- Ehime University Cell‐Free Science and Technology Research Center Division of Proteomedical Sciences; EhimeJapan
| | - Satoshi Umemura
- Department of Medical Science and Cardiorenal MedicineYokohama City University Graduate School of MedicineYokohamaJapan
| | - Yaeta Endo
- Ehime University Cell‐Free Science and Technology Research Center Division of Proteomedical Sciences; EhimeJapan
| |
Collapse
|
4
|
BmCyclin B and BmCyclin B3 are required for cell cycle progression in the silkworm, Bombyx mori. SCIENCE CHINA-LIFE SCIENCES 2013; 56:360-5. [PMID: 23504272 DOI: 10.1007/s11427-013-4459-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 01/04/2013] [Indexed: 10/27/2022]
Abstract
Cyclin B is an important regulator of the cell cycle G2 to M phase transition. The silkworm genomic database shows that there are two Cyclin B genes in the silkworm (Bombyx mori), BmCyclin B and BmCyclin B3. Using silkworm EST data, the cyclin B3 (EU074796) gene was cloned. Its complete cDNA was 1665 bp with an ORF of 1536 bp derived from seven exons and six introns. The BmCyclin B3 gene encodes 511 amino acids, and the predicted molecular weight is 57.8 kD with an isoelectric point of 9.18. The protein contains one protein damage box and two cyclin boxes. RNA interference-mediated reduction of BmCyclin B and BmCyclin B3 expression induced cell cycle arrest in G2 or M phase in BmN-SWU1 cells, thus inhibiting cell proliferation. These results suggest that BmCyclin B and BmCyclin B3 are necessary for completing the cell cycle in silkworm cells.
Collapse
|
5
|
Abstract
Baculoviruses play an important ecological role regulating the size of insect populations. For many years, baculoviruses have been applied as targeted biocontrol agents against forestry and agriculture pests. Baculovirus insecticides are effective against insect pests such as velvetbean caterpillar (Anticarsia gemmatalis ), cotton bollworm (Helicoverpa zea ), and gypsy moth (Lymantria dispar ). Baculoviruses are transmitted to insects by the oral route mediated by the occlusion-derived virus (ODV). The ODV is also specialized to exploit the insect midgut that is one of the most extreme biological environments where the viruses are subject to caustic pH and digestive proteases. The molecular biology of the ODV reveals new frontiers in protein chemistry. Finally, ODVs establishes infection in insect gut tissues that are virtually nonsupportive to virus replication and which are continuously sloughed away. ODVs carry with them a battery of proteins that enable them to rapidly exploit and harness these unstable cells for virus replication.
Collapse
Affiliation(s)
- Jeffery Slack
- Laboratory for Molecular Virology, Great Lakes Forestry Centre, Sault Ste. Marie, Ontario, Canada
| | | |
Collapse
|