1
|
Scheets K. Analysis of gene functions in Maize chlorotic mottle virus. Virus Res 2016; 222:71-79. [PMID: 27242072 DOI: 10.1016/j.virusres.2016.04.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 04/11/2016] [Accepted: 04/18/2016] [Indexed: 12/16/2022]
Abstract
Gene functions of strains of Maize chlorotic mottle virus, which comprises the monotypic genus Machlomovirus, have not been previously identified. In this study mutagenesis of the seven genes encoded in maize chlorotic mottle virus (MCMV) showed that the genes with positional and sequence similarity to their homologs in viruses of related tombusvirid genera had similar functions. p50 and its readthrough protein p111 are the only proteins required for replication in maize protoplasts, and they function at a low level in trans. Two movement proteins, p7a and p7b, and coat protein, encoded on subgenomic RNA1, are required for cell-to-cell movement in maize, and p7a and p7b function in trans. A unique protein, p31, expressed as a readthrough extension of p7a, is required for efficient systemic infection. The 5' proximal MCMV gene encodes a unique 32kDa protein that is not required for replication or movement. Transcripts lacking p32 expression accumulate to about 1/3 the level of wild type transcripts in protoplasts and produce delayed, mild infections in maize plants. Additional studies on p32, p31 and the unique amino-terminal region of p50 are needed to further characterize the life cycle of this unique tombusvirid.
Collapse
Affiliation(s)
- Kay Scheets
- Department of Plant Biology, Ecology, and Evolution, 301 Physical Sciences, Oklahoma State University, Stillwater, OK, 74078-3013, USA.
| |
Collapse
|
2
|
Vaira AM, Lim HS, Bauchan GR, Owens RA, Natilla A, Dienelt MM, Reinsel MD, Hammond J. Lolium latent virus (Alphaflexiviridae) coat proteins: expression and functions in infected plant tissue. J Gen Virol 2012; 93:1814-1824. [PMID: 22573739 DOI: 10.1099/vir.0.042960-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
The genome of Lolium latent virus (LoLV; genus Lolavirus, family Alphaflexiviridae) is encapsidated by two carboxy-coterminal coat protein (CP) variants (about 28 and 33 kDa), in equimolar proportions. The CP ORF contains two 5'-proximal AUGs encoding Met 1 and Met 49, respectively promoting translation of the 33 and 28 kDa CP variants. The 33 kDa CP N-terminal domain includes a 42 aa sequence encoding a putative chloroplast transit peptide, leading to protein cleavage and alternative derivation of the approximately 28 kDa CP. Mutational analysis of the two in-frame start codons and of the putative proteolytic-cleavage site showed that the N-terminal sequence is crucial for efficient cell-to-cell movement, functional systemic movement, homologous CP interactions and particle formation, but is not required for virus replication. Blocking production of the 28 kDa CP by internal initiation shows no major outcome, whereas additional mutation to prevent proteolytic cleavage at the chloroplast membrane has a dramatic effect on virus infection.
Collapse
Affiliation(s)
- Anna Maria Vaira
- USDA-ARS, USNA, Floral and Nursery Plants Research Unit, 10300 Baltimore Avenue, Beltsville, MD, USA
- Istituto di Virologia Vegetale CNR, Strada delle Cacce 73, 10135, Torino, Italy
| | - Hyoun-Sub Lim
- Department of Applied Biology, Chungnam National University, Daejeon, 305-764, Republic of Korea
| | - Gary R Bauchan
- USDA-ARS, PSI, Electron and Confocal Microscopy Unit, 10300 Baltimore Avenue, Beltsville, MD, USA
| | - Robert A Owens
- USDA-ARS, PSI, Molecular Plant Pathology Laboratory, 10300 Baltimore Avenue, Beltsville, MD, USA
| | - Angela Natilla
- USDA-ARS, PSI, Molecular Plant Pathology Laboratory, 10300 Baltimore Avenue, Beltsville, MD, USA
| | - Margaret M Dienelt
- USDA-ARS, USNA, Floral and Nursery Plants Research Unit, 10300 Baltimore Avenue, Beltsville, MD, USA
| | - Michael D Reinsel
- USDA-ARS, USNA, Floral and Nursery Plants Research Unit, 10300 Baltimore Avenue, Beltsville, MD, USA
| | - John Hammond
- USDA-ARS, USNA, Floral and Nursery Plants Research Unit, 10300 Baltimore Avenue, Beltsville, MD, USA
| |
Collapse
|
3
|
Fernández-Miragall O, Hernández C. An internal ribosome entry site directs translation of the 3'-gene from Pelargonium flower break virus genomic RNA: implications for infectivity. PLoS One 2011; 6:e22617. [PMID: 21818349 PMCID: PMC3144232 DOI: 10.1371/journal.pone.0022617] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 06/26/2011] [Indexed: 01/31/2023] Open
Abstract
Pelargonium flower break virus (PFBV, genus Carmovirus) has a single-stranded positive-sense genomic RNA (gRNA) which contains five ORFs. The two 5'-proximal ORFs encode the replicases, two internal ORFs encode movement proteins, and the 3'-proximal ORF encodes a polypeptide (p37) which plays a dual role as capsid protein and as suppressor of RNA silencing. Like other members of family Tombusviridae, carmoviruses express ORFs that are not 5'-proximal from subgenomic RNAs. However, in one case, corresponding to Hisbiscus chlorotic ringspot virus, it has been reported that the 3'-proximal gene can be translated from the gRNA through an internal ribosome entry site (IRES). Here we show that PFBV also holds an IRES that mediates production of p37 from the gRNA, raising the question of whether this translation strategy may be conserved in the genus. The PFBV IRES was functional both in vitro and in vivo and either in the viral context or when inserted into synthetic bicistronic constructs. Through deletion and mutagenesis studies we have found that the IRES is contained within a 80 nt segment and have identified some structural traits that influence IRES function. Interestingly, mutations that diminish IRES activity strongly reduced the infectivity of the virus while the progress of the infection was favoured by mutations potentiating such activity. These results support the biological significance of the IRES-driven p37 translation and suggest that production of the silencing suppressor from the gRNA might allow the virus to early counteract the defence response of the host, thus facilitating pathogen multiplication and spread.
Collapse
Affiliation(s)
- Olga Fernández-Miragall
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| | - Carmen Hernández
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| |
Collapse
|
4
|
Castaño A, Ruiz L, Hernández C. Insights into the translational regulation of biologically active open reading frames of Pelargonium line pattern virus. Virology 2009; 386:417-26. [PMID: 19217134 DOI: 10.1016/j.virol.2009.01.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 12/13/2008] [Accepted: 01/15/2009] [Indexed: 10/21/2022]
Abstract
Pelargonium line pattern virus (PLPV), a proposed member of a prospective genus (Pelarspovirus) within family Tombusviridae, has a positive-sense, single-stranded genomic RNA. According to previous predictions, it contains six open reading frames (ORFs) potentially encoding proteins of 27 (p27), 13 (p13), 87 (p87), 7 (p7), 6 (p6), and 37 kDa (p37). Using a variety of techniques we demonstrate that all predicted ORFs are functional, with the exception of (p13) and (p6). We also characterize a previously unidentified ORF which encodes a 9.7 kDa protein (p9.7) that is essential for viral movement. Furthermore, we present evidence that the single subgenomic RNA (sgRNA) produced by the virus directs synthesis of p7, p9.7 and p37. Remarkably, the translation of these totally unrelated proteins is coordinated via leaky-scanning. This mechanism seems to be favoured by the poor translation context of the start codon of ORF(p7), the non-AUG weak initiation codon of ORF(p9.7) and the lack of additional AUG codons in any reading frame preceding ORF(p37). The results also suggest that precise regulation of protein production from the sgRNA is critical for virus viability. Altogether, the data supports the notion that PLPV belongs to a new genus of plant viruses.
Collapse
Affiliation(s)
- Aurora Castaño
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-UPV), Campus Universidad Politécnica de Valencia, Avenida de los Naranjos, 46022 Valencia, Spain
| | | | | |
Collapse
|
5
|
Su'etsugu M, Nakamura K, Keyamura K, Kudo Y, Katayama T. Hda monomerization by ADP binding promotes replicase clamp-mediated DnaA-ATP hydrolysis. J Biol Chem 2008; 283:36118-31. [PMID: 18977760 DOI: 10.1074/jbc.m803158200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP-DnaA is the initiator of chromosomal replication in Escherichia coli, and the activity of DnaA is regulated by the regulatory inactivation of the DnaA (RIDA) system. In this system, the Hda protein promotes DnaA-ATP hydrolysis to produce inactive ADP-DnaA in a mechanism that is mediated by the DNA-loaded form of the replicase sliding clamp. In this study, we first revealed that hda translation uses an unusual initiation codon, CUG, located downstream of the annotated initiation codon. The CUG initiation codon could be used for restricting the Hda level, as this initiation codon has a low translation efficiency, and the cellular Hda level is only approximately 100 molecules per cell. Hda translated using the correct reading frame was purified and found to have a high RIDA activity in vitro. Moreover, we found that Hda has a high affinity for ADP but not for other nucleotides, including ATP. ADP-Hda was active in the RIDA system in vitro and stable in a monomeric state, whereas apo-Hda formed inactive homomultimers. Both ADP-Hda and apo-Hda could form complexes with the DNA-loaded clamp; however, only ADP-Hda-DNA-clamp complexes were highly functional in the following interaction with DnaA. Formation of ADP-Hda was also observed in vivo, and mutant analysis suggested that ADP binding is crucial for cellular Hda activity. Thus, we propose that ADP is a crucial Hda ligand that promotes the activated conformation of the protein. ADP-dependent monomerization might enable the arginine finger of the Hda AAA+ domain to be accessible to ATP bound to the DnaA AAA+ domain.
Collapse
Affiliation(s)
- Masayuki Su'etsugu
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
6
|
James D, Varga A, Croft H. Analysis of the complete genome of peach chlorotic mottle virus: identification of non-AUG start codons, in vitro coat protein expression, and elucidation of serological cross-reactions. Arch Virol 2007; 152:2207-15. [PMID: 17891331 DOI: 10.1007/s00705-007-1050-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 07/23/2007] [Indexed: 11/28/2022]
Abstract
The entire genome of peach chlorotic mottle virus (PCMV), originally identified as Prunus persica cv. Agua virus (4N6), was sequenced and analysed. PCMV cross-reacts with antisera to diverse viruses, such as plum pox virus (PPV), genus Potyvirus, family Potyviridae; and apple stem pitting virus (ASPV), genus Foveavirus, family Flexiviridae. The PCMV genome consists of 9005 nucleotides (nts), excluding a poly(A) tail at the 3' end of the genome. Five open reading frames (ORFs) were identified with four untranslated regions (UTR) including a 5', a 3', and two intergenic UTRs. The genome organisation of PCMV is similar to that of ASPV and the two genomes share a nucleotide (nt) sequence identity of 58%. PCMV ORF1 encodes the replication-associated protein complex (Mr 241,503), ORF2-ORF4 code for the triple gene block proteins (TGBp; Mr 24,802, 12,370, and 7320, respectively), and ORF5 encodes the coat protein (CP) (Mr 42,505). Two non-AUG start codons participate in the initiation of translation: 35AUC and 7676AUA initiate translation of ORF1 and ORF5. In vitro expression with subsequent Western blot analysis confirmed ORF5 as the CP-encoding gene and confirmed that the codon AUA is able to initiate translation of the CP. Expression of a truncated CP fragment (Mr 39, 689) was demonstrated, and both proteins are expressed in vivo, since both were observed in Western blot analysis of PCMV-infected peach and Nicotiana occidentalis. The expressed proteins cross-reacted with an antiserum against ASPV. The amino acid sequences of the CPs of PCMV and ASPV CP share only 37% identity, but there are 11 shared peptides 4-8 aa residues long. These may constitute linear epitopes responsible for ASPV antiserum cross reactions. No significant common linear epitopes were associated with PPV. Extensive phylogenetic analysis indicates that PCMV is closely related to ASPV and is a new and distinct member of the genus Foveavirus.
Collapse
Affiliation(s)
- D James
- Centre for Plant Health, Research Section, Sidney Laboratory, Canadian Food Inspection Agency, Sidney, British Columbia, Canada.
| | | | | |
Collapse
|