1
|
Souza TA, Silva JMF, Nagata T, Martins TP, Nakasu EYT, Inoue-Nagata AK. A Temporal Diversity Analysis of Brazilian Begomoviruses in Tomato Reveals a Decrease in Species Richness between 2003 and 2016. FRONTIERS IN PLANT SCIENCE 2020; 11:1201. [PMID: 32849745 PMCID: PMC7424291 DOI: 10.3389/fpls.2020.01201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Understanding the molecular evolution and diversity changes of begomoviruses is crucial for predicting future outbreaks of the begomovirus disease in tomato crops. Thus, a molecular diversity study using high-throughput sequencing (HTS) was carried out on samples of infected tomato leaves collected between 2003 and 2016 from Central Brazil. DNA samples were subjected to rolling circle amplification and pooled in three batches, G1 (2003-2005, N = 107), G2 (2009-2011, N = 118), and G3 (2014-2016, N = 129) prior to HTS. Nineteen genome-sized geminivirus sequences were assembled, but only 17 were confirmed by PCR. In the G1 library, five begomoviruses and one capula-like virus were detected, but the number of identified viruses decreased to three begomoviruses in the G2 and G3 libraries. The bipartite begomovirus tomato severe rugose virus (ToSRV) and the monopartite tomato mottle leaf curl virus (ToMoLCV) were found to be the most prevalent begomoviruses in this survey. Our analyses revealed a significant increase in both relative abundance and genetic diversity of ToMoLCV from G1 to G3, and ToSRV from G1 to G2; however, both abundance and diversity decreased from G2 to G3. This suggests that ToMoLCV and ToSRV outcompeted other begomoviruses from G1 to G2 and that ToSRV was being outcompeted by ToMoLCV from G2 to G3. The possible evolutionary history of begomoviruses that were likely transferred from wild native plants and weeds to tomato crops after the introduction of the polyphagous vector Bemisia tabaci MEAM1 and the wide use of cultivars carrying the Ty-1 resistance gene are discussed, as well as the strengths and limitations of the use of HTS in identification and diversity analysis of begomoviruses.
Collapse
Affiliation(s)
- Tadeu Araujo Souza
- Department of Plant Pathology, University of Brasilia, Brasilia, Brazil
- Laboratory of Virology, Embrapa Vegetables, Brasilia, Brazil
| | | | - Tatsuya Nagata
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Thaís Pereira Martins
- Laboratory of Virology, Embrapa Vegetables, Brasilia, Brazil
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | | | - Alice Kazuko Inoue-Nagata
- Department of Plant Pathology, University of Brasilia, Brasilia, Brazil
- Laboratory of Virology, Embrapa Vegetables, Brasilia, Brazil
| |
Collapse
|
2
|
Rubio L, Galipienso L, Ferriol I. Detection of Plant Viruses and Disease Management: Relevance of Genetic Diversity and Evolution. FRONTIERS IN PLANT SCIENCE 2020; 11:1092. [PMID: 32765569 PMCID: PMC7380168 DOI: 10.3389/fpls.2020.01092] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/02/2020] [Indexed: 05/04/2023]
Abstract
Plant viruses cause considerable economic losses and are a threat for sustainable agriculture. The frequent emergence of new viral diseases is mainly due to international trade, climate change, and the ability of viruses for rapid evolution. Disease control is based on two strategies: i) immunization (genetic resistance obtained by plant breeding, plant transformation, cross-protection, or others), and ii) prophylaxis to restrain virus dispersion (using quarantine, certification, removal of infected plants, control of natural vectors, or other procedures). Disease management relies strongly on a fast and accurate identification of the causal agent. For known viruses, diagnosis consists in assigning a virus infecting a plant sample to a group of viruses sharing common characteristics, which is usually referred to as species. However, the specificity of diagnosis can also reach higher taxonomic levels, as genus or family, or lower levels, as strain or variant. Diagnostic procedures must be optimized for accuracy by detecting the maximum number of members within the group (sensitivity as the true positive rate) and distinguishing them from outgroup viruses (specificity as the true negative rate). This requires information on the genetic relationships within-group and with members of other groups. The influence of the genetic diversity of virus populations in diagnosis and disease management is well documented, but information on how to integrate the genetic diversity in the detection methods is still scarce. Here we review the techniques used for plant virus diagnosis and disease control, including characteristics such as accuracy, detection level, multiplexing, quantification, portability, and designability. The effect of genetic diversity and evolution of plant viruses in the design and performance of some detection and disease control techniques are also discussed. High-throughput or next-generation sequencing provides broad-spectrum and accurate identification of viruses enabling multiplex detection, quantification, and the discovery of new viruses. Likely, this technique will be the future standard in diagnostics as its cost will be dropping and becoming more affordable.
Collapse
Affiliation(s)
- Luis Rubio
- Centro de Protección Vegetal y Biotecnology, Instituto Valenciano de Investigaciones Agrarias, Moncada, Spain
- *Correspondence: Luis Rubio,
| | - Luis Galipienso
- Centro de Protección Vegetal y Biotecnology, Instituto Valenciano de Investigaciones Agrarias, Moncada, Spain
| | - Inmaculada Ferriol
- Plant Responses to Stress Programme, Centre for Research in Agricultural Genomics (CRAG-CSIC_UAB-UB) Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
3
|
Torre C, Donaire L, Gómez-Aix C, Juárez M, Peterschmitt M, Urbino C, Hernando Y, Agüero J, Aranda MA. Characterization of Begomoviruses Sampled during Severe Epidemics in Tomato Cultivars Carrying the Ty-1 Gene. Int J Mol Sci 2018; 19:E2614. [PMID: 30177671 PMCID: PMC6164481 DOI: 10.3390/ijms19092614] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/25/2018] [Accepted: 08/28/2018] [Indexed: 12/27/2022] Open
Abstract
Tomato yellow leaf curl virus (TYLCV, genus Begomovirus, family Geminiviridae) is a major species that causes a tomato disease for which resistant tomato hybrids (mainly carriers of the Ty-1/Ty-3 gene) are being used widely. We have characterized begomoviruses severely affecting resistant tomato crops in Southeast Spain. Circular DNA was prepared from samples by rolling circle amplification, and sequenced by massive sequencing (2015) or cloning and Sanger sequencing (2016). Thus, 23 complete sequences were determined, all belonging to the TYLCV Israel strain (TYLCV-IL). Massive sequencing also revealed the absence of other geminiviral and beta-satellite sequences. A phylogenetic analysis showed that the Spanish isolates belonged to two groups, one related to early TYLCV-IL isolates in the area (Group 1), and another (Group 2) closely related to El Jadida (Morocco) isolates, suggesting a recent introduction. The most parsimonious evolutionary scenario suggested that the TYLCV isolates of Group 2 are back recombinant isolates derived from TYLCV-IS76, a recombinant virus currently predominating in Moroccan epidemics. Thus, an infectious Group 2 clone (TYLCV-Mu15) was constructed and used in in planta competition assays against TYLCV-IS76. TYLCV-Mu15 predominated in single infections, whereas TYLCV-IS76 did so in mixed infections, providing credibility to a scenario of co-occurrence of both types of isolates.
Collapse
Affiliation(s)
- Covadonga Torre
- Abiopep S.L., Departamento de I + D + i, Parque Científico de Murcia, Ctra. de Madrid, Km 388, Complejo de Espinardo, Edf. R, 2°, 30100 Murcia, Spain.
| | - Livia Donaire
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Departamento de Biología del Estrés y Patología Vegetal, P.O. Box 164, 30100 Murcia, Spain.
| | - Cristina Gómez-Aix
- Abiopep S.L., Departamento de I + D + i, Parque Científico de Murcia, Ctra. de Madrid, Km 388, Complejo de Espinardo, Edf. R, 2°, 30100 Murcia, Spain.
| | - Miguel Juárez
- Escuela Politécnica Superior de Orihuela, Universidad Miguel Hernández de Elche, Ctra. de Beniel, Km 3.2, 03312 Alicante, Spain.
| | - Michel Peterschmitt
- Centre de Coopération Internationale en Recherche Agronomique Pour le Développement (CIRAD), UMR-BGPI, Equipe Interactions Virus-Insecte-Plante, TA A-54/K, Campus International de Baillarguet, CEDEX 5, 34398 Monptellier, France.
| | - Cica Urbino
- Centre de Coopération Internationale en Recherche Agronomique Pour le Développement (CIRAD), UMR-BGPI, Equipe Interactions Virus-Insecte-Plante, TA A-54/K, Campus International de Baillarguet, CEDEX 5, 34398 Monptellier, France.
| | - Yolanda Hernando
- Abiopep S.L., Departamento de I + D + i, Parque Científico de Murcia, Ctra. de Madrid, Km 388, Complejo de Espinardo, Edf. R, 2°, 30100 Murcia, Spain.
| | - Jesús Agüero
- Abiopep S.L., Departamento de I + D + i, Parque Científico de Murcia, Ctra. de Madrid, Km 388, Complejo de Espinardo, Edf. R, 2°, 30100 Murcia, Spain.
| | - Miguel A Aranda
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Departamento de Biología del Estrés y Patología Vegetal, P.O. Box 164, 30100 Murcia, Spain.
| |
Collapse
|
4
|
Castaño A, Ruiz L, Elena SF, Hernández C. Population differentiation and selective constraints in Pelargonium line pattern virus. Virus Res 2011; 155:274-82. [DOI: 10.1016/j.virusres.2010.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 09/23/2010] [Accepted: 10/16/2010] [Indexed: 12/23/2022]
|
5
|
Genetic diversity of tomato-infecting Tomato yellow leaf curl virus (TYLCV) isolates in Korea. Virus Genes 2010; 42:117-27. [PMID: 20963475 DOI: 10.1007/s11262-010-0541-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Accepted: 10/07/2010] [Indexed: 10/18/2022]
Abstract
Epidemic outbreaks of Tomato yellow leaf curl virus (TYLCV) diseases occurred in greenhouse grown tomato (Solanum lycopersicum) plants of Busan (TYLCV-Bus), Boseong (TYLCV-Bos), Hwaseong (TYLCV-Hwas), Jeju Island (TYLCV-Jeju), and Nonsan (TYLCV-Nons) in Korea during 2008-2009. Tomato disease by TYLCV has never occurred in Korea before. We synthesized the full-length genomes of each TYLCV isolate from the tomato plants collected at each area and determined their nucleotides (nt) sequences and deduced the amino acids of six open reading frames in the genomes. TYLCV-Bus and -Bos genomes shared higher nt identities with four Japanese isolates -Ng, -Omu, -Mis, and -Miy. On the other hand, TYLCV-Hwas, -Jeju, and -Nons genomes shared higher nt identities with five Chinese isolates TYLCV-AH1, -ZJ3, -ZJHZ12, -SH2, -Sh10, and two Japanese isolates -Han and -Tosa. On the basis of a neighbor-joining tree, five Korean TYLCV isolates were separated into three clades. TYLCV-Bus and -Bos formed the first clade, clustering with four Japanese isolates TYLCV-Mis, -Omu, -Ng, and -Miy. TYLCV-Jeju and -Nons formed the second clade, clustering with two Chinese isolates -ZJHZ212 and -Sh10. TYLCV-Hwas was clustered with two Japanese isolates -Han and -Tosa and three Chinese isolates -AH1, -ZJ3, and -SH2. Two fragments that had a potentially recombinant origin were identified using the RDP, GENECONV, BootScan, MaxChi, Chimaera, SiScan, and 3Seq methods implemented in RDP3.41. On the basis of RDP analysis, all TYLCV isolates could originated from the interspecies recombination between TYLCV-Mld[PT] isolated from Portugal as a major parent and TYLCTHV-MM isolated from Myanmar as a minor parent.
Collapse
|