1
|
Izraeli Y, Lepetit D, Atias S, Mozes-Daube N, Wodowski G, Lachman O, Luria N, Steinberg S, Varaldi J, Zchori-Fein E, Chiel E. Genomic characterization of viruses associated with the parasitoid Anagyrus vladimiri (Hymenoptera: Encyrtidae). J Gen Virol 2022; 103. [PMID: 36748430 DOI: 10.1099/jgv.0.001810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Knowledge on symbiotic microorganisms of insects has increased dramatically in recent years, yet relatively little data are available regarding non-pathogenic viruses. Here we studied the virome of the parasitoid wasp Anagyrus vladimiri Triapitsyn (Hymenoptera: Encyrtidae), a biocontrol agent of mealybugs. By high-throughput sequencing of viral nucleic acids, we revealed three novel viruses, belonging to the families Reoviridae [provisionally termed AnvRV (Anagyrus vladimiri reovirus)], Iflaviridae (AnvIFV) and Dicistroviridae (AnvDV). Phylogenetic analysis further classified AnvRV in the genus Idnoreovirus, and AnvDV in the genus Triatovirus. The genome of AnvRV comprises 10 distinct genomic segments ranging in length from 1.5 to 4.2 kb, but only two out of the 10 ORFs have a known function. AnvIFV and AnvDV each have one polypeptide ORF, which is typical of iflaviruses but very un-common among dicistroviruses. Five conserved domains were found along both the ORFs of those two viruses. AnvRV was found to be fixed in an A. vladimiri population that was obtained from a mass rearing facility, whereas its prevalence in field-collected A. vladimiri was ~15 %. Similarly, the prevalence of AnvIFV and AnvDV was much higher in the mass rearing population than in the field population. The presence of AnvDV was positively correlated with the presence of Wolbachia in the same individuals. Transmission electron micrographs of females' ovaries revealed clusters and viroplasms of reovirus-like particles in follicle cells, suggesting that AnvRV is vertically transmitted from mother to offspring. AnvRV was not detected in the mealybugs, supporting the assumption that this virus is truly associated with the wasps. The possible effects of these viruses on A. vladimiri's biology, and on biocontrol agents in general, are discussed. Our findings identify RNA viruses as potentially involved in the multitrophic system of mealybugs, their parasitoids and other members of the holobiont.
Collapse
Affiliation(s)
- Yehuda Izraeli
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel.,Department of Entomology, ARO, Newe Ya'ar Research Center, Ramat Yishai, Israel
| | - David Lepetit
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, Villeurbanne, France
| | - Shir Atias
- Department of Entomology, ARO, Newe Ya'ar Research Center, Ramat Yishai, Israel
| | - Netta Mozes-Daube
- Department of Entomology, ARO, Newe Ya'ar Research Center, Ramat Yishai, Israel
| | - Gal Wodowski
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel.,Department of Entomology, ARO, Newe Ya'ar Research Center, Ramat Yishai, Israel
| | - Oded Lachman
- Department of Plant Pathology and Weed Research, ARO, Volcani Research Center, Rishon LeZion, Israel
| | - Neta Luria
- Department of Plant Pathology and Weed Research, ARO, Volcani Research Center, Rishon LeZion, Israel
| | | | - Julien Varaldi
- Laboratoire de Biométrie et Biologie Evolutive, Université Lyon 1, CNRS, Villeurbanne, France
| | - Einat Zchori-Fein
- Department of Entomology, ARO, Newe Ya'ar Research Center, Ramat Yishai, Israel
| | - Elad Chiel
- Department of Biology and Environment, University of Haifa - Oranim, Tivon, Israel
| |
Collapse
|
2
|
Martinez-Mercado MA, de Jesús JLD, Galindo-Sánchez CE, Saavedra-Flores A, Carrillo-Tripp J. Novel viral RNA genomes of the vine mealybug Planococcus ficus. J Gen Virol 2022; 103. [PMID: 35259086 DOI: 10.1099/jgv.0.001717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The vine mealybug, Planococcus ficus (Signoret, 1875), is the most important insect pest in growing areas of the grapevine Vitis vinifera L. in several countries, including Mexico. In Mexico, Baja California (B.C.) is the region with the highest production of V. vinifera L. grapes for industrial purposes. Recently, the diversity of viruses infecting insects only (insect-specific viruses) has been broadly explored to elucidate further ecological viral-host interactions in many insect species, which in some cases has resulted in the application of virus-based biological control agents for insect pests. However, a survey of the Pl. ficus virome has not been done yet. In the present study, we pooled Pl. ficus individuals collected through different vineyards of Ensenada, B.C., Mexico and analysed them by meta-transcriptomics. Novel nearly complete genomes of five RNA viruses were retrieved. These viruses were related to the Iflaviridae and Reoviridae families, and to the Picornavirales and Tolivirales orders. A new isolate belonging to the Dicistroviridae family was also found. Phylogenetic analyses showed that these putative viral genomes group with viruses having hemipteran (including a mealybug species) or other insect hosts, or with viruses associated with insects. Our results suggest that the identified novel RNA viruses could be insect-specific viruses of Pl. ficus. This work is the first insight into the Pl. ficus virome; it guarantees further studies aimed to characterize those viruses with potential for application in biological control of this economically important insect.
Collapse
Affiliation(s)
- Miguel A Martinez-Mercado
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Baja California 22860, Mexico
| | - José Luis Duarte de Jesús
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Baja California 22860, Mexico
| | - Clara E Galindo-Sánchez
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Baja California 22860, Mexico
| | - Anaid Saavedra-Flores
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Baja California 22860, Mexico
| | - Jimena Carrillo-Tripp
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California (CICESE), Baja California 22860, Mexico
| |
Collapse
|
3
|
Swevers L, Kontogiannatos D, Kolliopoulou A, Ren F, Feng M, Sun J. Mechanisms of Cell Entry by dsRNA Viruses: Insights for Efficient Delivery of dsRNA and Tools for Improved RNAi-Based Pest Control. Front Physiol 2021; 12:749387. [PMID: 34858204 PMCID: PMC8632066 DOI: 10.3389/fphys.2021.749387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/11/2021] [Indexed: 12/18/2022] Open
Abstract
While RNAi is often heralded as a promising new strategy for insect pest control, a major obstacle that still remains is the efficient delivery of dsRNA molecules within the cells of the targeted insects. However, it seems overlooked that dsRNA viruses already have developed efficient strategies for transport of dsRNA molecules across tissue barriers and cellular membranes. Besides protecting their dsRNA genomes in a protective shell, dsRNA viruses also display outer capsid layers that incorporate sophisticated mechanisms to disrupt the plasma membrane layer and to translocate core particles (with linear dsRNA genome fragments) within the cytoplasm. Because of the perceived efficiency of the translocation mechanism, it is well worth analyzing in detail the molecular processes that are used to achieve this feat. In this review, the mechanism of cell entry by dsRNA viruses belonging to the Reoviridae family is discussed in detail. Because of the large amount of progress in mammalian versus insect models, the mechanism of infections of reoviruses in mammals (orthoreoviruses, rotaviruses, orbiviruses) will be treated as a point of reference against which infections of reoviruses in insects (orbiviruses in midges, plant viruses in hemipterans, insect-specific cypoviruses in lepidopterans) will be compared. The goal of this discussion is to uncover the basic principles by which dsRNA viruses cross tissue barriers and translocate their cargo to the cellular cytoplasm; such knowledge subsequently can be incorporated into the design of dsRNA virus-based viral-like particles for optimal delivery of RNAi triggers in targeted insect pests.
Collapse
Affiliation(s)
- Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Dimitrios Kontogiannatos
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Feifei Ren
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Sadeghi M, Popov V, Guzman H, Phan TG, Vasilakis N, Tesh R, Delwart E. Genomes of viral isolates derived from different mosquitos species. Virus Res 2017; 242:49-57. [PMID: 28855097 DOI: 10.1016/j.virusres.2017.08.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/10/2017] [Accepted: 08/23/2017] [Indexed: 10/19/2022]
Abstract
Eleven viral isolates derived mostly in albopictus C6/36 cells from mosquito pools collected in Southeast Asia and the Americas between 1966 and 2014 contained particles with electron microscopy morphology typical of reoviruses. Metagenomics analysis yielded the near complete genomes of three novel reoviruses, Big Cypress orbivirus, Ninarumi virus, and High Island virus and a new tetravirus, Sarawak virus. Strains of previously characterized Sathuvarachi, Yunnan, Banna and Parry's Lagoon viruses (Reoviridae), Bontang virus (Mesoniviridae), and Culex theileri flavivirus (Flaviviridae) were also characterized. The availability of these mosquito virus genomes will facilitate their detection by metagenomics or PCR to better determine their geographic range, extent of host tropism, and possible association with arthropod or vertebrate disease.
Collapse
Affiliation(s)
- Mohammadreza Sadeghi
- Blood Systems Research Institute, San Francisco, CA, USA; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA; Department of Virology, University of Helsinki, Helsinki, Finland
| | - Vsevolod Popov
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Hilda Guzman
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Tung Gia Phan
- Blood Systems Research Institute, San Francisco, CA, USA; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Nikos Vasilakis
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Robert Tesh
- Department of Pathology, Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA; Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, CA, USA; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
5
|
Flowers EM, Bachvaroff TR, Warg JV, Neill JD, Killian ML, Vinagre AS, Brown S, Almeida ASE, Schott EJ. Genome Sequence Analysis of CsRV1: A Pathogenic Reovirus that Infects the Blue Crab Callinectes sapidus Across Its Trans-Hemispheric Range. Front Microbiol 2016; 7:126. [PMID: 26904003 PMCID: PMC4748042 DOI: 10.3389/fmicb.2016.00126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/25/2015] [Indexed: 01/15/2023] Open
Abstract
The blue crab, Callinectes sapidus Rathbun, 1896, which is a commercially important trophic link in coastal ecosystems of the western Atlantic, is infected in both North and South America by C. sapidus Reovirus 1 (CsRV1), a double stranded RNA virus. The 12 genome segments of a North American strain of CsRV1 were sequenced using Ion Torrent technology. Putative functions could be assigned for 3 of the 13 proteins encoded in the genome, based on their similarity to proteins encoded in other reovirus genomes. Comparison of the CsRV1 RNA-dependent RNA polymerase (RdRP) sequence to genomes of other crab-infecting reoviruses shows that it is similar to the mud crab reovirus found in Scylla serrata and WX-2012 in Eriocheir sinensis, Chinese mitten crab, and supports the idea that there is a distinct “Crabreo” genus, different from Seadornavirus and Cardoreovirus, the two closest genera in the Reoviridae. A region of 98% nucleotide sequence identity between CsRV1 and the only available sequence of the P virus of Macropipus depurator suggests that these two viruses may be closely related. An 860 nucleotide region of the CsRV1 RdRP gene was amplified and sequenced from 15 infected crabs collected from across the geographic range of C. sapidus. Pairwise analysis of predicted protein sequences shows that CsRV1 strains in Brazil can be distinguished from those in North America based on conserved residues in this gene. The sequencing, annotation, and preliminary population metrics of the genome of CsRV1 should facilitate additional studies in diverse disciplines, including structure-function relationships of reovirus proteins, investigations into the evolution of the Reoviridae, and biogeographic research on the connectivity of C. sapidus populations across the Northern and Southern hemispheres.
Collapse
Affiliation(s)
- Emily M Flowers
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental ScienceBaltimore, MD USA; University of Maryland School of MedicineBaltimore, MD USA
| | - Tsvetan R Bachvaroff
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science Baltimore, MD USA
| | - Janet V Warg
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of Agriculture Ames, IA USA
| | - John D Neill
- National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture Ames, IA USA
| | - Mary L Killian
- National Veterinary Services Laboratories, Animal and Plant Health Inspection Service, United States Department of Agriculture Ames, IA USA
| | - Anapaula S Vinagre
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul Porto Alegre, Brazil
| | - Shanai Brown
- Department of Biology, Morgan State University Baltimore, MD USA
| | - Andréa Santos E Almeida
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science Baltimore, MD USA
| | - Eric J Schott
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science Baltimore, MD USA
| |
Collapse
|
6
|
Hermanns K, Zirkel F, Kurth A, Drosten C, Junglen S. Cimodo virus belongs to a novel lineage of reoviruses isolated from African mosquitoes. J Gen Virol 2014; 95:905-909. [DOI: 10.1099/vir.0.062349-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A novel reovirus, designated Cimodo virus (CMDV), was isolated from mosquitoes collected in a rainforest region in Côte d’Ivoire. The entire genome comprised 24 835 bp divided into 12 segments ranging from 585 to 4080 bp. The icosahedral non-enveloped virions were 80 nm in diameter. Eight major viral proteins of about 150, 135, 120, 80, 66, 59, 42 and 30 kDa were identified and seven proteins were mapped to the corresponding genome segments by liquid chromatography mass spectrometry. Predicted protein genes diverged by >77 % encoded amino acids from their closest reovirus relatives. The deep phylogenetic branching suggests that CMDV defines an as-yet-unidentified genus within the subfamily Spinareovirinae.
Collapse
Affiliation(s)
- Kyra Hermanns
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Florian Zirkel
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Andreas Kurth
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Christian Drosten
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Sandra Junglen
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| |
Collapse
|
7
|
Cao G, Meng X, Xue R, Zhu Y, Zhang X, Pan Z, Zheng X, Gong C. Characterization of the complete genome segments from BmCPV-SZ, a novelBombyx moricypovirus 1 isolate. Can J Microbiol 2012; 58:872-83. [DOI: 10.1139/w2012-064] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A novel Bombyx mori cypovirus 1 isolated from infected silkworm larvae and tentatively assigned as Bombyx mori cypovirus 1 isolate Suzhou (BmCPV-SZ). The complete nucleotide sequences of genomic segments S1–S10 from BmCPV-SZ were determined. All segments possessed a single open reading frame; however, bioinformatic evidence suggested a short overlapping coding sequence in S1. Each BmCPV-SZ segment possessed the conserved terminal sequences AGUAA and GUUAGCC at the 5′ and 3′ ends, respectively. The conserved A/G at the –3 position in relation to the AUG codon could be found in the BmCPV-SZ genome, and it was postulated that this conserved A/G may be the most important nucleotide for efficient translation initiation in cypoviruses (CPVs). Examination of the putative amino acid sequences encoded by BmCPV-SZ revealed some characteristic motifs. Homology searches showed that viral structural proteins VP1, VP3, and VP4 had localized homologies with proteins of Rice ragged stunt virus , a member of the genus Oryzavirus within the family Reoviridae. A phylogenetic tree based on RNA-dependent RNA polymerase sequences demonstrated that CPV is more closely related to Rice ragged stunt virus and Aedes pseudoscutellaris reovirus than to other members of Reoviridae, suggesting that they may have originated from common ancestors.
Collapse
Affiliation(s)
- Guangli Cao
- School of Biology and Basic Medical Science, Soochow University, Suzhou 215123, People’s Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, People’s Republic of China
| | - Xiangkun Meng
- School of Biology and Basic Medical Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Renyu Xue
- School of Biology and Basic Medical Science, Soochow University, Suzhou 215123, People’s Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, People’s Republic of China
| | - Yuexiong Zhu
- School of Biology and Basic Medical Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Xiaorong Zhang
- School of Biology and Basic Medical Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Zhonghua Pan
- School of Biology and Basic Medical Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Xiaojian Zheng
- School of Biology and Basic Medical Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Chengliang Gong
- School of Biology and Basic Medical Science, Soochow University, Suzhou 215123, People’s Republic of China
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, People’s Republic of China
| |
Collapse
|
8
|
Abstract
This chapter describes the different RNA viruses that have been detected at least once in parasitoid wasps. It could be wondered whether the other families of parasitoids are really absent, or if this is due to the fact that inadequate techniques were used to detect viruses. In fact, several different methods have been used: TEM of the venom glands of females, extraction of nucleic acids, followed by DNAse digestion to eliminate the polydnavirus or ascovirus genome, RT-PCR with primers specific of RdRp or data mining in an EST library. To resolve this problem of detecting RNA viruses, a systematic search for viruses in parasitoids should be carried out using a combination of these different methods. Only a few hymenopteran species are known to be infected by RNA viruses, although thousands of species are known to carry polydnaviruses or VLPs. This could suggest that the presence of polydnaviruses or VLPs may block infections with other viruses.
Collapse
|
9
|
Spear A, Sisterson MS, Stenger DC. Reovirus genomes from plant-feeding insects represent a newly discovered lineage within the family Reoviridae. Virus Res 2011; 163:503-11. [PMID: 22142476 DOI: 10.1016/j.virusres.2011.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 10/14/2022]
Abstract
A complex set of double-stranded RNAs (dsRNAs) was isolated from threecornered alfalfa hopper (Spissistilus festinus), a plant-feeding hemipteran pest. A subset of these dsRNAs constitute the genome of a new reovirus, provisionally designated Spissistilus festinus reovirus (SpFRV). SpFRV was present in threecornered alfalfa hopper populations in the San Joaquin Valley of California, with incidence ranging from 10% to 60% in 24 of 25 sample sets analyzed. The 10 dsRNA segments of SpFRV were completely sequenced and shown to share conserved terminal sequences (5'-AGAGA and CGAUGUUGU-3') of the positive-sense strand that are distinct from known species of the family Reoviridae. Comparisons of the RNA directed RNA polymerase (RdRp) indicated SpFRV is most closely related (39.1% amino acid identity) to another new reovirus infecting the angulate leafhopper (Acinopterus angulatus) and provisionally designated Acinopterus angulatus reovirus (AcARV). The RdRp of both viruses was distantly related to Raspberry latent virus RdRp at 27.0% (SpFRV) and 30.0% (AcARV) or Rice ragged stunt virus RdRp at 26.2% (SpFRV) and 29.0% (AcARV) amino acid identity. RdRp phylogeny confirmed that SpFRV and AcARV are sister taxa sharing a most recent common ancestor. SpFRV segment 6 encodes a protein containing two NTP binding motifs that are conserved in homologs of reoviruses in the subfamily Spinareovirinae. The protein encoded by SpFRV segment 4 was identified as a guanylyltransferase homolog. SpFRV segments 1, 3, and 10 encode homologs of reovirus structural proteins. No homologs were identified for proteins encoded by SpFRV segments 5, 7, 8, and 9. Collectively, the low level of sequence identity with other reoviruses, similar segment terminal sequences, RdRp phylogeny, and host taxa indicate that SpFRV and AcARV may be considered members of a proposed new genus of the family Reoviridae (subfamily Spinareovirinae), with SpFRV assigned as the type species.
Collapse
Affiliation(s)
- Allyn Spear
- United States Department of Agriculture - Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 S. Riverbend Ave., Parlier, CA 93648, USA
| | | | | |
Collapse
|
10
|
Chen J, Xiong J, Yang J, Mao Z, Chen X. Nucleotide sequences of four RNA segments of a reovirus isolated from the mud crab Scylla serrata provide evidence that this virus belongs to a new genus in the family Reoviridae. Arch Virol 2010; 156:523-8. [PMID: 21153426 DOI: 10.1007/s00705-010-0852-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Accepted: 10/23/2010] [Indexed: 11/30/2022]
Abstract
This is the first sequence-based characterization of mud crab (Scylla serrata) reovirus (SsRV), which causes severe disease of cultured mud crabs in southern China. We sequenced and analyzed genome segments S1, S2, S3, and S7, which were 4,327, 2,721, 2,715, and 1,517 nucleotides long, respectively. Conserved motifs were found at the 5' (AUAAAU) and 3' (AACGAU) ends of each segment. RNA segments S1, S2, S3, and S7 each contained a single open reading frame (ORF) that encoded predicted proteins of 160, 100, 96, and 46 kDa, respectively. The ORFs of segments S1 and S2 showed distant homologies (< 25%) with cognate genes of other reoviruses, whereas the ORFs of segments S3 and S7 had no homologies with any other viral genes. Based on these observations, we propose that SsRV should be considered a member of a new genus in the family Reoviridae.
Collapse
Affiliation(s)
- Jigang Chen
- College of Biological and Environmental Sciences, Zhejiang Wanli University, No.8, South Qianhu Road, Ningbo 315100, Zhejiang Province, China.
| | | | | | | | | |
Collapse
|
11
|
A pathogenic picorna-like virus from the endoparasitoid wasp, Pteromalus puparum: Initial discovery and partial genomic characterization. Virus Res 2008; 138:144-9. [DOI: 10.1016/j.virusres.2008.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 09/02/2008] [Accepted: 09/03/2008] [Indexed: 11/22/2022]
|