1
|
Jiang Q, Meng X, Yu X, Zhang Q, Ke F. Fusing a TurboID tag with the Andrias davidianus ranavirus 2L reduced virus adsorption efficiency. Microb Pathog 2023; 182:106220. [PMID: 37423497 DOI: 10.1016/j.micpath.2023.106220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/11/2023]
Abstract
Andrias davidianus ranavirus (ADRV) is a member of the genus ranavirus (family Iridoviridae). ADRV 2L is an envelope protein that could be essential in viral infection. In the present study, the function of ADRV 2L was investigated by fusion with the biotin ligase TurboID tag. A recombinant ADRV with a V5-TurboID tag fused in the N-terminal of 2L (ADRVT-2L) and a recombinant ADRV expressing V5-TurboID (ADRVT) were constructed, respectively. Infection of the recombinant viruses and wild-type ADRV (ADRVWT) in the Chinese giant salamander thymus cell line (GSTC) showed that ADRVT-2L had reduced cytopathic effect and lower virus titers than the other two viruses, indicating the fusion of a big tag affected ADRV infection. Analysis of the temporal expression profile showed that the expression of V5-TurboID-2L was delayed than wild-type 2L. However, electron microscopy found that the virion morphogenesis was not affected in ADRVT-2L-infected cells. Furthermore, the virus binding assay revealed that the adsorption efficiency of ADRVT-2L was considerably decreased compared to the other two viruses. Therefore, these data showed that linking the TurboID tag to ADRV 2L affected virus adsorption to the cell membrane, which suggested an important role of 2L in virus entry into cells.
Collapse
Affiliation(s)
- Qiqi Jiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xianyu Meng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuedong Yu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Qiya Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Fei Ke
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; The Innovation Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Mittal A, Chauhan A. Aspects of Biological Replication and Evolution Independent of the Central Dogma: Insights from Protein-Free Vesicular Transformations and Protein-Mediated Membrane Remodeling. J Membr Biol 2022; 255:185-209. [PMID: 35333977 PMCID: PMC8951669 DOI: 10.1007/s00232-022-00230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/06/2022] [Indexed: 11/21/2022]
Abstract
Biological membrane remodeling is central to living systems. In spite of serving as “containers” of whole-living systems and functioning as dynamic compartments within living systems, biological membranes still find a “blue collar” treatment compared to the “white collar” nucleic acids and proteins in biology. This may be attributable to the fact that scientific literature on biological membrane remodeling is only 50 years old compared to ~ 150 years of literature on proteins and a little less than 100 years on nucleic acids. However, recently, evidence for symbiotic origins of eukaryotic cells from data only on biological membranes was reported. This, coupled with appreciation of reproducible amphiphilic self-assemblies in aqueous environments (mimicking replication), has already initiated discussions on origins of life beyond nucleic acids and proteins. This work presents a comprehensive compilation and meta-analyses of data on self-assembly and vesicular transformations in biological membranes—starting from model membranes to establishment of Influenza Hemagglutinin-mediated membrane fusion as a prototypical remodeling system to a thorough comparison between enveloped mammalian viruses and cellular vesicles. We show that viral membrane fusion proteins, in addition to obeying “stoichiometry-driven protein folding”, have tighter compositional constraints on their amino acid occurrences than general-structured proteins, regardless of type/class. From the perspective of vesicular assemblies and biological membrane remodeling (with and without proteins) we find that cellular vesicles are quite different from viruses. Finally, we propose that in addition to pre-existing thermodynamic frameworks, kinetic considerations in de novo formation of metastable membrane structures with available “third-party” constituents (including proteins) were not only crucial for origins of life but also continue to offer morphological replication and/or functional mechanisms in modern life forms, independent of the central dogma.
Collapse
Affiliation(s)
- Aditya Mittal
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi (IIT Delhi), Hauz Khas, New Delhi, 110016, India. .,Supercomputing Facility for Bioinformatics and Computational Biology (SCFBio), IIT Delhi, Hauz Khas, New Delhi, 110016, India.
| | - Akanksha Chauhan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi (IIT Delhi), Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
3
|
He J, Mi S, Qin XW, Weng SP, Guo CJ, He JG. Tiger frog virus ORF104R interacts with cellular VDAC2 to inhibit cell apoptosis. FISH & SHELLFISH IMMUNOLOGY 2019; 92:889-896. [PMID: 31299465 DOI: 10.1016/j.fsi.2019.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/06/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Ranaviruses belong to the family Iridoviridae, and have become a serious threat to both farmed and natural populations of fish and amphibians. Previous reports showed that ranaviruses could encode viral Bcl-2 family-like proteins (vBcl-2), which play a critical role in the regulation of cell apoptosis. However, the mechanism of ranaviruses vBcl-2 interactions with host protein in mediating apoptosis remains unknown. Tiger frog virus (TFV) belonging to the genus Ranavirus has been isolated from infected tadpoles of Rana tigrina rugulosa, and it causes a high mortality rate among tiger frog tadpoles cultured in southern China. This study elucidated the molecular mechanism underlying the interaction of TFV ORF104R with the VDAC2 protein to regulate cell apoptosis. TFV ORF104R is highly similar to other ranaviruses vBcl-2 and host Mcl-1 proteins, indicating that TFV ORF104R is a postulate vBcl-2 protein. Transcription and protein expression levels showed that TFV orf104r was a late viral gene. Western blot results suggested that TFV ORF104R was a viral structural protein. Subcellular localization analysis indicated that TFV ORF104R was predominantly colocalized with the mitochondria. Overexpressed TFV ORF104R could suppress the release of cytochrome C and the activities of caspase-9 and caspase-3. These results indicated that TFV ORF104R might play an important role in anti-apoptosis. Furthermore, the interaction between TFV ORF104R and VDAC2 was detected by co-immunoprecipitation in vitro. The above observations suggest that the molecular mechanism of TFV-regulated anti-apoptosis is through the interaction of TFV ORF104R with the VDAC2 protein. Our study provided a mechanistic basis for the ranaviruses vBcl-2-mediated inhibition of apoptosis and improved the understanding on how TFV subverts host defense mechanisms in vivo.
Collapse
Affiliation(s)
- Jian He
- State Key Laboratory for Biocontrol / Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China
| | - Shu Mi
- State Key Laboratory for Biocontrol / Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China
| | - Xiao-Wei Qin
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Institute of Aquatic Economic Animals / Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Shao-Ping Weng
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Institute of Aquatic Economic Animals / Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Chang-Jun Guo
- State Key Laboratory for Biocontrol / Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Institute of Aquatic Economic Animals / Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China.
| | - Jian-Guo He
- State Key Laboratory for Biocontrol / Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou, Guangdong, 510006, PR China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Institute of Aquatic Economic Animals / Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| |
Collapse
|
4
|
Rana grylio virus 43R encodes an envelope protein involved in virus entry. Virus Genes 2018; 54:779-791. [PMID: 30411182 DOI: 10.1007/s11262-018-1606-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 10/06/2018] [Indexed: 12/31/2022]
Abstract
Rana grylio virus (RGV), a member of genus Ranavirus in the family Iridoviridae, is a viral pathogen infecting aquatic animal. RGV 43R has homologues only in Ranavirus and contains a transmembrane (TM) domain, but its role in RGV infection is unknown. In this study, 43R was determined to be associated with virion membrane. The transcripts encoding 43R and the protein itself appeared late in RGV-infected EPC cells and its expression was blocked by viral DNA replication inhibitor, indicating that 43R is a late expressed protein. Subcellular localization showed that 43R-EGFP fusion protein distributed in cytoplasm of EPC cells and that TM domain is essential for its distribution in cytoplasm. 43R-EGFP fusion protein colocalized with viral factories in RGV-infected cells. A recombinant RGV deleting 43R (Δ43R-RGV) was constructed by homologous recombination to investigate its role in virus infection. Compared with wild type RGV, the ability of Δ43R-RGV to induce the cytopathic effect and its virus titers were significantly reduced. Furthermore, it is revealed that 43R deletion significantly inhibited viral entry but did not influence viral DNA replication by measuring and comparing the DNA levels of RGV and Δ43R-RGV in the infected cells at the early stage of infection. RGV neutralization with anti-43R serum reduced the virus titer. Therefore, these data showed that RGV 43R is a late gene that encodes an envelope protein involved in RGV entry.
Collapse
|
5
|
Yuan JM, Chen YS, He J, Weng SP, Guo CJ, He JG. Identification and differential expression analysis of MicroRNAs encoded by Tiger Frog Virus in cross-species infection in vitro. Virol J 2016; 13:73. [PMID: 27129448 PMCID: PMC4851794 DOI: 10.1186/s12985-016-0530-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 04/19/2016] [Indexed: 01/20/2023] Open
Abstract
Background Tiger frog virus (TFV), dsDNA virus of the genus Ranavirus and family Iridoviridae, causes a high mortality of tiger frog tadpoles cultured in Southern China. MicroRNAs (miRNAs) have been identified in many viruses especially DNA viruses such as Singapore Grouper Iridoviruses (SGIV). MicroRNAs play important roles in regulating gene expression for virus subsistence in host. Considering that TFV infects cells of different species under laboratory conditions, we aim to identify the specific and essential miRNAs expressed in ZF4 and HepG2 cells. Methods We identified and predicted novel viral miRNAs in TFV-infected ZF4 and HepG2 cells by deep sequencing and software prediction. Then, we verified and described the expression patterns of TFV-encoded miRNAs by using qRT-PCR and Northern blot. Results Deep sequencing predicted 24 novel TFV-encoded miRNAs, and qRT-PCR verified 19 and 23 miRNAs in TFV-infected ZF4 (Group Z) and HepG2 (Group H) cells, respectively. Northern blot was performed to validate eight and five TFV-encoded miRNAs in Groups H and Z, respectively. We compared the expression of TFV-encoded miRNAs from two groups and defined TFV-miR-11 as the essential viral miRNA and TFV-miR-13 and TFV-miR-14 as the specific miRNAs that contribute to HepG2 cell infection. Conclusions We identified novel viral miRNAs and compared their expression in two host cells. The results of this study provide novel insights into the role of viral miRNAs in cross-species infection in vitro. Electronic supplementary material The online version of this article (doi:10.1186/s12985-016-0530-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ji-Min Yuan
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China.,State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Yong-Shun Chen
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China.,Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275 PR China
| | - Jian He
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China.,Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275 PR China
| | - Shao-Ping Weng
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Chang-Jun Guo
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China. .,State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China.
| | - Jian-Guo He
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China.,State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| |
Collapse
|
6
|
Chen YS, Chen NN, Qin XW, Mi S, He J, Lin YF, Gao MS, Weng SP, Guo CJ, He JG. Tiger frog virus ORF080L protein interacts with LITAF and impairs EGF-induced EGFR degradation. Virus Res 2016; 217:133-42. [PMID: 26956473 DOI: 10.1016/j.virusres.2016.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 02/23/2016] [Accepted: 03/02/2016] [Indexed: 10/22/2022]
Abstract
Tiger frog virus (TFV) belongs to the genus Ranavirus, family Iridoviridae, and causes severe mortality in commercial cultures in China. TFV ORF080L is a gene homolog of lipopolysaccharide-induced TNF-α factor (LITAF), which is a regulator in endosome-to-lysosome trafficking through its function in the endosomal sorting complex required for transport machinery. The characteristics and biological roles of TFV ORF080L were identified. TFV ORF080L was predicted to encode an 84-amino acid peptide (VP080L). It had high-sequence identity with mammalian LITAF, but lacked the N-terminus of LITAF, which contains two PPXY motifs. Transcription and protein level analyses showed that TFV ORF080L was a late viral gene. Localization in the virons also showed that TFV VP080L was a viral structural protein. Immunofluorescence staining showed that TFV ORF080L was predominantly colocalized with plasma membrane and partly distributed with the late endosome in infected HepG2 cells. SiRNA-mediated TFV ORF080L silencing decreased viral reproduction. Moreover, TFV ORF080L interacted with human/zebrafish LITAF and impaired EGF-induced EGFR degradation, thereby indicating that TFV ORF080L played a role in endosome-to-lysosome trafficking. These findings suggested that TFV ORF080L might negate the function of cellular LITAF to impair endosomal sorting and trafficking. Results provide a clue to the link between the dysregulated endosomal trafficking and iridovirus pathogenesis.
Collapse
Affiliation(s)
- Yong-Shun Chen
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Nan-Nan Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Xiao-Wei Qin
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Shu Mi
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Jian He
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Yi-Fan Lin
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Ming-Shi Gao
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Shao-Ping Weng
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Chang-Jun Guo
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China.
| | - Jian-Guo He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| |
Collapse
|
7
|
He J, Zheng YW, Lin YF, Mi S, Qin XW, Weng SP, He JG, Guo CJ. Caveolae Restrict Tiger Frog Virus Release in HepG2 cells and Caveolae-Associated Proteins Incorporated into Virus Particles. Sci Rep 2016; 6:21663. [PMID: 26887868 PMCID: PMC4757878 DOI: 10.1038/srep21663] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/21/2016] [Indexed: 12/26/2022] Open
Abstract
Caveolae are flask-shaped invaginations of the plasma membrane. Caveolae play important roles in the process of viruses entry into host cells, but the roles of caveolae at the late stage of virus infection were not completely understood. Tiger frog virus (TFV) has been isolated from the diseased tadpoles of the frog, Rana tigrina rugulosa, and causes high mortality of tiger frog tadpoles cultured in Southern China. In the present study, the roles of caveolae at the late stage of TFV infection were investigated. We showed that TFV virions were localized with the caveolae at the late stage of infection in HepG2 cells. Disruption of caveolae by methyl-β-cyclodextrin/nystatin or knockdown of caveolin-1 significantly increase the release of TFV. Moreover, the interaction between caveolin-1 and TFV major capsid protein was detected by co-immunoprecipitation. Those results suggested that caveolae restricted TFV release from the HepG2 cells. Caveolae-associated proteins (caveolin-1, caveolin-2, cavin-1, and cavin-2) were selectively incorporated into TFV virions. Different combinations of proteolytic and/or detergent treatments with virions showed that caveolae-associated proteins were located in viral capsid of TFV virons. Taken together, caveolae might be a restriction factor that affects virus release and caveolae-associated proteins were incorporated in TFV virions.
Collapse
Affiliation(s)
- Jian He
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China.,MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Yi-Wen Zheng
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Yi-Fan Lin
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Shu Mi
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Xiao-Wei Qin
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Shao-Ping Weng
- Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Jian-Guo He
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China.,MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Chang-Jun Guo
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China.,MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China.,Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| |
Collapse
|
8
|
Xie JF, Lai YX, Huang LJ, Huang RQ, Yang SW, Shi Y, Weng SP, Zhang Y, He JG. Genome-wide analyses of proliferation-important genes of Iridovirus-tiger frog virus by RNAi. Virus Res 2014; 189:214-25. [DOI: 10.1016/j.virusres.2014.05.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/21/2014] [Accepted: 05/21/2014] [Indexed: 01/09/2023]
|
9
|
He LB, Ke F, Wang J, Gao XC, Zhang QY. Rana grylio virus (RGV) envelope protein 2L: subcellular localization and essential roles in virus infectivity revealed by conditional lethal mutant. J Gen Virol 2014; 95:679-690. [DOI: 10.1099/vir.0.058776-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Rana grylio virus (RGV) is a pathogenic iridovirus that has resulted in high mortality in cultured frog. Here, an envelope protein gene, 2L, was identified from RGV and its possible role in virus infection was investigated. Database searches found that RGV 2L had homologues in all sequenced iridoviruses and is a core gene of iridoviruses. Western blotting detection of purified RGV virions confirmed that 2L protein was associated with virion membrane. Fluorescence localization revealed that 2L protein co-localized with viral factories in RGV infected cells. In co-transfected cells, 2L protein co-localized with two other viral envelope proteins, 22R and 53R. However, 2L protein did not co-localize with the major capsid protein of RGV in co-transfected cells. Meanwhile, fluorescence observation showed that 2L protein co-localized with endoplasmic reticulum, but did not co-localize with mitochondria and Golgi apparatus. Moreover, a conditional lethal mutant virus containing the lac repressor/operator system was constructed to investigate the role of RGV 2L in virus infection. The ability to form plaques and the virus titres were strongly reduced when expression of 2L was repressed. Therefore, the current data showed that 2L protein is essential for virus infection. Our study is the first report, to our knowledge, of co-localization between envelope proteins in iridovirus and provides new insights into the understanding of envelope proteins in iridovirus.
Collapse
Affiliation(s)
- Li-Bo He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Fei Ke
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Jun Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Xiao-Chan Gao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
| |
Collapse
|
10
|
Huang X, Gong J, Huang Y, Ouyang Z, Wang S, Chen X, Qin Q. Characterization of an envelope gene VP19 from Singapore grouper iridovirus. Virol J 2013; 10:354. [PMID: 24341864 PMCID: PMC3878628 DOI: 10.1186/1743-422x-10-354] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 12/11/2013] [Indexed: 01/22/2023] Open
Abstract
Background Viral envelope proteins are always proposed to exert important function during virus infection and replication. Vertebrate iridoviruses are enveloped large DNA virus, which can cause great economic losses in aquaculture and ecological destruction. Although numerous iridovirus envelope proteins have been identified using bioinformatics and proteomic methods, their roles in virus infection remained largely unknown. Methods Using SMART and TMHMM programs, we investigated the structural characteristics of Singapore grouper iridovirus (SGIV) VP19. A specific antibody against VP19 was generated and the expression profile of VP19 was clarified. The subcellular localization of VP19 in the absence or presence of other viral products was determined via transfection and immune fluorescence assay. In addition, Western blot assay and electron microscopy examination were performed to demonstrate whether SGIV VP19 was an envelope protein or a capsid protein. Results Here, SGIV VP19 was cloned and characterized. Among all sequenced iridoviruses, VP19 and its orthologues shared common features, including 19 invariant cysteines, a proline-rich motif and a predicted transmembrane domain. Subsequently, the protein synthesis of VP19 was only detected at the late stage of SGIV infection and inhibited obviously by treating with AraC, confirming that VP19 was a late expressed protein. Ectopic expression of EGFP-VP19 in vitro displayed a punctate pattern in the cytoplasm. In SGIV infected cells, the newly synthesized VP19 protein was initially localized in the cytoplasm in a punctate pattern, and then aggregated into the virus assembly site at the late stage of SGIV infection, suggesting that other viral protein products were essential for VP19’s function during SGIV infection. In addition, Western blot assay and electron microscopy observation revealed that SGIV VP19 was associated with viral envelope, which was different from major capsid protein (MCP). Conclusion Taken together, the current data suggested that VP19 represented a conserved envelope protein in iridovirus, and might contribute greatly to virus assembly during virus infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiwei Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| |
Collapse
|
11
|
Entry of tiger frog virus (an Iridovirus) into HepG2 cells via a pH-dependent, atypical, caveola-mediated endocytosis pathway. J Virol 2011; 85:6416-26. [PMID: 21543502 DOI: 10.1128/jvi.01500-10] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tiger frog virus (TFV), in the genus Ranavirus of the family Iridoviridae, causes high mortality of cultured tiger frog tadpoles in China. To explore the cellular entry mechanism of TFV, HepG2 cells were treated with drugs that inhibit the main endocytic pathways. We observed that TFV entry was inhibited by NH(4)Cl, chloroquine, and bafilomycin, which can all elevate the pH of acidic organelles. In contrast, TFV entry was not influenced by chlorpromazine or overexpression of a dominant-negative form of Esp15, which inhibit the assembly of clathrin-coated pits. These results suggested that TFV entry was not associated with clathrin-mediated endocytosis, but was related to the pH of acidic organelles. Subsequently, we found that endocytosis of TFV was dependent on membrane cholesterol and was inhibited by the caveolin-1 scaffolding domain peptide. Dynamin and actin were also required for TFV entry. In addition, TFV virions colocalized with the cholera toxin subunit B, indicating that TFV enters as caveola-internalized cargo into the Golgi complex. Taken together, our results demonstrated that TFV entry occurs by caveola-mediated endocytosis with a pH-dependent step. This atypical caveola-mediated endocytosis is different from the clathrin-mediated endocytosis of frog virus 3 (FV3) by BHK cells, which has been recognized as a model for iridoviruses. Thus, our work may help further the understanding of the initial steps of iridovirus infection in lower vertebrates.
Collapse
|