1
|
Vats G, Sharma V, Noorani S, Rani A, Kaushik N, Kaushik A, Kala D, Nagraik R, Srivastava A, Gupta S, Singh B, Kaushal A, Walia Y, Dhir S. Apple stem grooving capillovirus
: pliant pathogen and its potential as a tool in functional genomics and effective disease management. ARCHIVES OF PHYTOPATHOLOGY AND PLANT PROTECTION 2024; 57:261-295. [DOI: 10.1080/03235408.2024.2359948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/21/2024] [Indexed: 01/02/2025]
Affiliation(s)
- Gourav Vats
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| | - Vasudha Sharma
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| | - Salik Noorani
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Asha Rani
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Naveen Kaushik
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Amit Kaushik
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
- Adjunct faculty, Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Deepak Kala
- NL-11 Centera Tetrahertz Laboratory, Institute of High-Pressure Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Rupak Nagraik
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan Himachal Pradesh, India
| | - Ashish Srivastava
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
- Department of Entomology and Plant Pathology, Division of Agriculture, University of AR System, Fayetteville, Arkansas, USA
| | - Shagun Gupta
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| | - Bharat Singh
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| | - Ankur Kaushal
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| | - Yashika Walia
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| | - Sunny Dhir
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, India
| |
Collapse
|
2
|
Jo Y, Choi H, Kim SM, Kim SL, Lee BC, Cho WK. Integrated analyses using RNA-Seq data reveal viral genomes, single nucleotide variations, the phylogenetic relationship, and recombination for Apple stem grooving virus. BMC Genomics 2016; 17:579. [PMID: 27507588 PMCID: PMC4977635 DOI: 10.1186/s12864-016-2994-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/03/2016] [Indexed: 02/08/2023] Open
Abstract
Background Next-generation sequencing (NGS) provides many possibilities for plant virology research. In this study, we performed integrated analyses using plant transcriptome data for plant virus identification using Apple stem grooving virus (ASGV) as an exemplar virus. We used 15 publicly available transcriptome libraries from three different studies, two mRNA-Seq studies and a small RNA-Seq study. Results We de novo assembled nearly complete genomes of ASGV isolates Fuji and Cuiguan from apple and pear transcriptomes, respectively, and identified single nucleotide variations (SNVs) of ASGV within the transcriptomes. We demonstrated the application of NGS raw data to confirm viral infections in the plant transcriptomes. In addition, we compared the usability of two de novo assemblers, Trinity and Velvet, for virus identification and genome assembly. A phylogenetic tree revealed that ASGV and Citrus tatter leaf virus (CTLV) are the same virus, which was divided into two clades. Recombination analyses identified six recombination events from 21 viral genomes. Conclusions Taken together, our in silico analyses using NGS data provide a successful application of plant transcriptomes to reveal extensive information associated with viral genome assembly, SNVs, phylogenetic relationships, and genetic recombination. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2994-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yeonhwa Jo
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Hoseong Choi
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Sang-Min Kim
- Crop Foundation Division, National Institute of Crop Science, RDA, Wanju, 55365, South Korea
| | - Sun-Lim Kim
- Crop Foundation Division, National Institute of Crop Science, RDA, Wanju, 55365, South Korea
| | - Bong Choon Lee
- Crop Foundation Division, National Institute of Crop Science, RDA, Wanju, 55365, South Korea
| | - Won Kyong Cho
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea. .,The Taejin Genome Institute, Gadam-gil 61, Hoeongseong, 25239, Republic of Korea.
| |
Collapse
|
3
|
Petrzik K, Přibylová J, Koloniuk I, Špak J. Molecular characterization of a novel capillovirus from red currant. Arch Virol 2016; 161:1083-6. [PMID: 26754736 DOI: 10.1007/s00705-016-2752-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/02/2016] [Indexed: 12/01/2022]
Abstract
The complete nucleotide sequence of a novel virus from red currant, provisionally named currant virus A (CuVA), was determined. The genome is 7925 nucleotides long and has a 3'-poly(A) tail. The genome organization with two overlapping open reading frames is similar to that of capilloviruses, but the CuVA genome is about 600 nucleotides longer than that of the longest known capillovirus, cherry virus A. The RNA is predicted to encode a polyprotein with domains of methyltransferase, 2OG-Fe(II) oxygenase, papain-like protease, RNA helicase, RdRp, and capsid protein. Phylogenetic analysis confirms that CuVA is a new and distinct member of the genus Capillovirus.
Collapse
Affiliation(s)
- Karel Petrzik
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, v.v.i., Branišovská 31, 370 05, České Budějovice, Czech Republic.
| | - Jaroslava Přibylová
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, v.v.i., Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Igor Koloniuk
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, v.v.i., Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Josef Špak
- Department of Plant Virology, Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, v.v.i., Branišovská 31, 370 05, České Budějovice, Czech Republic
| |
Collapse
|
4
|
Different patterns of codon usage in the overlapping polymerase and surface genes of hepatitis B virus suggest a de novo origin by modular evolution. J Gen Virol 2015; 96:3577-3586. [DOI: 10.1099/jgv.0.000307] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The polymerase (P) and surface (S) genes of hepatitis B virus (HBV) show the longest gene overlap in animal viruses. Gene overlaps originate by the overprinting of a novel frame onto an ancestral pre-existing frame. Identifying which frame is ancestral and which frame is de novo (the genealogy of the overlap) is an appealing topic. However, the P/S overlap of HBV is an intriguing paradox, because both genes are indispensable for virus survival. Thus, the hypothesis of a primordial virus without the surface protein or without the polymerase makes no biological sense. With the aim to determine the genealogy of the overlap, the codon usage of the overlapping frames P and S was compared to that of the non-overlapping region. It was found that the overlap of human HBV had two patterns of codon usage. One was localized in the 5′ one-third of the overlap and the other in the 3′ two-thirds. By extending the analysis to non-human HBVs, it was found that this feature occurred in all hepadnaviruses. Under the assumption that the ancestral frame has a codon usage significantly closer to that of the non-overlapping region than the de novo frame, the ancestral frames in the 5′ and 3′ region of the overlap could be predicted. They were, respectively, frame S and frame P. These results suggest that the spacer domain of the polymerase and the S domain of the surface protein originated de novo by overprinting. They support a modular evolution hypothesis for the origin of the overlap.
Collapse
|
5
|
Wylie SJ, Li H, Dixon KW, Richards H, Jones MG. Exotic and indigenous viruses infect wild populations and captive collections of temperate terrestrial orchids (Diuris species) in Australia. Virus Res 2013; 171:22-32. [DOI: 10.1016/j.virusres.2012.10.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 10/02/2012] [Accepted: 10/03/2012] [Indexed: 01/01/2023]
|
6
|
Molecular evolution of the genomic RNA of Apple stem grooving capillovirus. J Mol Evol 2012; 75:92-101. [PMID: 23149596 DOI: 10.1007/s00239-012-9518-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 09/19/2012] [Indexed: 10/27/2022]
Abstract
The complete genome of the German isolate AC of Apple stem grooving virus (ASGV) was sequenced. It encodes two overlapping open reading frames (ORFs), similarly to previously described ASGV isolates. Two regions of high variability were detected between the ASGV isolates, variable region 1 (V1, from amino acids (aa) 532 to 570), and variable region 2 (V2, from aa 1,583 to 1,868). The phylogenetic analysis of the V1 and V2 regions suggested that the ASGV diversity was structured by host plant species rather than geographical origin. The dN/dS ratio between nonsynonymous and synonymous nucleotide substitution rates varied greatly along the ASGV genome. Most of ORF1 showed predominant negative selection except for the two regions V1 and V2. V1 showed an elevated dN and an average dS when compared to the ORF1 background but no significant positive selection was detected. The V2 region of ORF1 showed an elevated dN and a low dS when compared to the ORF1 background with an average dN/dS ≈ 3.0 indicative of positive selection. However, the V2 area includes overlapping ORFs, making the dN/dS estimate biased. Joint estimates of the selection intensity in the different ORFs by a recent method indicated that this region of ORF1 was in fact evolving close to neutrality. This was convergent with previous results showing that introduction of stop codons in this region of ORF1 did not impair plant infection. These data suggest that the elimination of a stop codon caused the overprinting of a novel coding region over the ancestral ORF.
Collapse
|
7
|
Komatsu K, Hirata H, Fukagawa T, Yamaji Y, Okano Y, Ishikawa K, Adachi T, Maejima K, Hashimoto M, Namba S. Infection of capilloviruses requires subgenomic RNAs whose transcription is controlled by promoter-like sequences conserved among flexiviruses. Virus Res 2012; 167:8-15. [DOI: 10.1016/j.virusres.2012.02.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 02/18/2012] [Accepted: 02/20/2012] [Indexed: 11/16/2022]
|
8
|
Wylie S, Jones M. Hardenbergia virus A, a novel member of the family Betaflexiviridae from a wild legume in Southwest Australia. Arch Virol 2011; 156:1245-50. [DOI: 10.1007/s00705-011-0963-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 02/26/2011] [Indexed: 10/18/2022]
|