1
|
Li S, Zhang F, Li J, Hu X, Zhao W, Zhang K, Li J. The role of the Epstein-Barr virus-encoded BARF1 gene expressed in human gastric epithelial cells. TURKISH JOURNAL OF GASTROENTEROLOGY 2021; 31:775-781. [PMID: 33361040 DOI: 10.5152/tjg.2020.18827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND/AIMS The study aimed to explore the effects of Epstein-Barr virus--encoded BARF1 in human gastric epithelial cells (GES-1). MATERIALS AND METHODS A eukaryotic expression vector carrying BARF1 gene (pcDNA3.1-BARF1) was constructed. The pcDNA3.1-BARF1 was transfected into GES-1 cells, and they were selected by G418. The GES-1 cells lines that expressed BARF1 (GES-1-BARF1) were obtained. The cycle of GES-1-pcDNA3.1 cells (GES-1 cells transfected with empty vector), GES-1-BARF1 cells (GES-1 cells transfected with BARF1), and TPA-GES-1-BARF1(GES-1-BARF1 cells stimulated by 12-O-tetradecanoylphorbol-13-acetate (TPA) were analyzed by flow cytometry. Colony formation in soft agar and tumorigenicity of the transfected cells in mice with severe combined immunodeficiency (SCID) were also observed. RESULTS The morphology of GES-1-BARF1 cells were changed from the original shuttle to round, the adhesion between the cells and bottle wall was weakened, and the cells showed overlapping growth. The proliferation rate of GES-1-BARF1 and TPA-GES-1-BARF1 cells were faster than GES-1 and GES-1-pcDNA3.1 cells; the S phase was significantly prolonged for GES-1-BARF1 and TPA-GES-1-BARF1. GES-1-BARF1 and TPA-GES-1-BARF1 cells formed colonies in soft agar, with a cloning rate of 24.2% (58/240) and 40.0% (96/240), respectively; GES-1 and GES-1-pcDNA3.1 cells did not form colonies in soft agar. Tumors were formed in mice with SCID after injecting TPA-GES-1-BARF1 cell groups. Tumor formation did not occur in mice with SCID after injecting GES-1 and GES-1-pcDNA3.1 cell groups, but nodules were formed in the mice with SCID after injecting GES-1-BARF1 cell groups. CONCLUSION GES-1-BARF1 cells malignant transformation was induced by transfected BARF1 gene and TPA stimulation. This result indicated that tumor formation not only require oncogenes, but also the stimulation of cancer-promoting substance.
Collapse
Affiliation(s)
- Shuying Li
- North China University of Science and Technology (Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases), Hebei Province, P.R. China
| | - Fang Zhang
- North China University of Science and Technology (Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases), Hebei Province, P.R. China
| | - Ji Li
- North China University of Science and Technology (Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases), Hebei Province, P.R. China
| | - Xuya Hu
- North China University of Science and Technology (Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases), Hebei Province, P.R. China
| | - Wei Zhao
- North China University of Science and Technology (Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases), Hebei Province, P.R. China
| | - Ke Zhang
- North China University of Science and Technology (Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases), Hebei Province, P.R. China
| | - Jintao Li
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, P.R. China
| |
Collapse
|
2
|
Blanco R, Aguayo F. Role of BamHI-A Rightward Frame 1 in Epstein-Barr Virus-Associated Epithelial Malignancies. BIOLOGY 2020; 9:biology9120461. [PMID: 33322292 PMCID: PMC7763232 DOI: 10.3390/biology9120461] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022]
Abstract
Simple Summary Epstein–Barr virus is a ubiquitous persistent virus, which is involved in the development of some human cancers. A licensed vaccine to prevent Epstein–Barr virus infection is lacking. BamHI-A rightward frame 1 is a viral protein specifically detected in both nasopharyngeal and Epstein–Barr virus-positive gastric cancers. It has been proposed that this viral protein confers cancer properties to infected epithelial cells and is involved in the escape of cancer cells from immune recognition. In this review, we summarize the properties of BamHI-A rightward frame 1 which confers cancer characteristics to infected epithelial cells. Thus, BamHI-A rightward frame 1 is a potential therapeutic target for the treatment of either Epstein–Barr virus (EBV)-positive nasopharyngeal or gastric cancers. Abstract Epstein–Barr virus (EBV) infection is associated with a subset of both lymphoid and epithelial malignancies. During the EBV latency program, some viral products involved in the malignant transformation of infected cells are expressed. Among them, the BamHI-A rightward frame 1 (BARF1) is consistently detected in nasopharyngeal carcinomas (NPC) and EBV-associated gastric carcinomas (EBVaGCs) but is practically undetectable in B-cells and lymphomas. Although BARF1 is an early lytic gene, it is expressed during epithelial EBV latency, mainly as a secreted protein (sBARF1). The capacity of sBARF1 to disrupt both innate and adaptive host antiviral immune responses contributes to the immune escape of infected cells. Additionally, BARF1 increases cell proliferation, shows anti-apoptotic effects, and promotes an increased hTERT activity and tumor formation in nude mice cooperating with other host proteins such as c-Myc and H-ras. These facts allow for the consideration of BARF1 as a key protein for promoting EBV-associated epithelial tumors. In this review, we focus on structural and functional aspects of BARF1, such as mechanisms involved in epithelial carcinogenesis and its capacity to modulate the host immune response.
Collapse
Affiliation(s)
- Rancés Blanco
- Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile;
| | - Francisco Aguayo
- Universidad de Tarapacá, Arica 1000000, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Correspondence:
| |
Collapse
|
3
|
The Therapeutic Potential of Targeting BARF1 in EBV-Associated Malignancies. Cancers (Basel) 2020; 12:cancers12071940. [PMID: 32708965 PMCID: PMC7409022 DOI: 10.3390/cancers12071940] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) is closely linked to the development of a number of human cancers. EBV-associated malignancies are characterized by a restricted pattern of viral latent protein expression which is sufficient for the virus to both initiate and sustain cell growth and to protect virus-infected cells from immune attack. Expression of these EBV proteins in malignant cells provides an attractive target for therapeutic intervention. Among the viral proteins expressed in the EBV-associated epithelial malignancies, the protein encoded by the BamHI-A rightward frame 1 (BARF1) is of particular interest. BARF1 is a viral oncoprotein selectively expressed in latently infected epithelial cancers, nasopharyngeal carcinoma (NPC) and EBV-positive gastric cancer (EBV-GC). Here, we review the roles of BARF1 in oncogenesis and immunomodulation. We also discuss potential strategies for targeting the BARF1 protein as a novel therapy for EBV-driven epithelial cancers.
Collapse
|
4
|
Liu J, Ji X, Shen Z, Wang PhD Y, Luo PhD B. Sequence variations of Epstein-Barr virus-encoded BARF1 gene in nasopharyngeal carcinomas and healthy donors from southern and northern China. J Med Virol 2018; 90:1629-1635. [PMID: 29797589 DOI: 10.1002/jmv.25233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/10/2018] [Indexed: 12/17/2022]
Abstract
The BamHI A rightward frame 1 (BARF1) gene of the Epstein-Barr virus (EBV) is involved in carcinogenesis and immunomodulation of EBV-associated malignancies. The geographical distributions and the disease associations of BARF1 variants remain unclear. In the current study, the BARF1 variants in nasopharyngeal carcinoma (NPC) cases and healthy donors from southern and northern China, the NPC endemic and non-endemic areas, as well as in 153 sequenced EBV genomes from diseased and normal people from around the world, were determined and compared among areas and populations. Only 1 consistent coding change, V29A, and several consistent silent mutations were identified. Two BARF1 types (B95-8 and V29A) and 2 B95-8 subtypes (B95-8t165545c and B95-8P ) were classified. For Chinese isolates, the B95-8 type was dominant in both southern and northern China, but the isolates from southern China showed a higher frequency of the B95-8t165545c subtype than the isolates from northern China (76.0%, 38/50 NPC cases and 50.7%, 37/73 healthy donors vs 26.4%, 24/91 NPC cases and 7.6%, 6/79 healthy donors, P < .0001). Furthermore, the B95-8t165545c subtype was more frequent in NPC cases than healthy donors in both southern China (P = .005) and northern China (P = .001). For EBV genomes, the B95-8P subtype was dominant in northern China, Europe, America, and Australia, while V29A was dominant in Africa. The B95-8t165545c subtype was only identified in Asia and demonstrated high frequency (81.2%, 26/32) in genomes from NPC cases in southern China. These results further reveal conservation and possibly geographically spread variations of BARF1 and may also indicate the preference of EBV strains with the B95-8t165545c subtype in NPC cases, without biological or pathogenic implications.
Collapse
Affiliation(s)
- Jincheng Liu
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, China
| | - Xinqiang Ji
- Modern Educational Technology Center, Qingdao University, Qingdao, China
| | - Zhichao Shen
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, China.,Department of Clinical Laboratory, The People's Liberation Army 107 Hospital, Yantai, China
| | - Yun Wang PhD
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, China
| | - Bing Luo PhD
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, China
| |
Collapse
|
5
|
Sun L, Che K, Zhao Z, Liu S, Xing X, Luo B. Sequence analysis of Epstein-Barr virus (EBV) early genes BARF1 and BHRF1 in NK/T cell lymphoma from Northern China. Virol J 2015; 12:135. [PMID: 26337172 PMCID: PMC4558833 DOI: 10.1186/s12985-015-0368-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 08/27/2015] [Indexed: 12/12/2022] Open
Abstract
Background NK/T cell lymphoma is an aggressive lymphoma almost always associated with EBV. BamHI-A rightward open reading frame 1 (BARF1) and BamHI-H rightward open reading frame 1 (BHRF1) are two EBV early genes, which may be involved in the oncogenicity of EBV. It has been found that V29A strains, a BARF1 mutant subtype, showed higher prevalence in NPC, which may suggest the association between this variation and nasopharyngeal carcinoma (NPC). To characterize the sequence variation patterns of the Epstein-Barr virus (EBV) early genes and to elucidate their association with NK/T cell lymphoma, we analyzed the sequences of BARF1 and BHRF1 in EBV-positive NK/T cell lymphoma samples from Northern China. Methods In situ hybridization (ISH) performed for EBV-encoded small RNA1 (EBER1) with specific digoxigenin-labeled probes was used to select the EBV positive lymphoma samples. Nested-polymerase chain reaction (nested-PCR) and DNA sequence analysis technique were used to obtain the sequences of BARF1 and BHRF1. The polymorphisms of these two genes were classified according to the signature changes and compared with the known corresponding EBV gene variation data. Results Two major subtypes of BARF1 gene, designated as B95-8 and V29A subtype, were identified. B95-8 subtype was the dominant subtype. The V29A subtype had one consistent amino acid change at amino acid residue 29 (V → A). Compared with B95-8, AA change at 88 (L → V) of BHRF1 was found in the majority of the isolates, and AA79 (V → L) mutation in a few isolates. Functional domains of BARF1 and BHRF1 were highly conserved. The distributions of BARF1 and BHRF1 subtypes had no significant differences among different EBV-associated malignancies and healthy donors. Conclusion The sequences of BARF1 and BHRF1 are highly conserved which may contribute to maintain the biological function of these two genes. There is no evidence that particular EBV substrains of BARF1 or BHRF1 is region-restricted or disease-specific.
Collapse
Affiliation(s)
- Lingling Sun
- Department of Pathology, Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China. .,Department of Medical Microbiology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, China.
| | - Kui Che
- Department of Clinical Laboratory, Affiliated Hospital of Qingdao University, 1677 Wutaishan Road, Qingdao, 266555, China.
| | - Zhenzhen Zhao
- Department of Medical Microbiology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, China.
| | - Song Liu
- Department of Medical Microbiology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, China.
| | - Xiaoming Xing
- Department of Pathology, Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China.
| | - Bing Luo
- Department of Medical Microbiology, Qingdao University Medical College, 38 Dengzhou Road, Qingdao, 266021, China.
| |
Collapse
|
6
|
Shen ZC, Luo B, Chen JN, Chao Y, Shao CK, Liu QQ, Wang Y. High prevalence of the EBER variant EB-8m in endemic nasopharyngeal carcinomas. PLoS One 2015; 10:e0121420. [PMID: 25807550 PMCID: PMC4373760 DOI: 10.1371/journal.pone.0121420] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 02/01/2015] [Indexed: 01/26/2023] Open
Abstract
Epstein-Barr virus (EBV)-encoded small RNAs (EBERs) are the most highly expressed transcripts in all EBV-associated tumors and are involved in both lymphoid and epithelioid carcinogenesis. Our previous study on Chinese isolates from non-endemic area of nasopharyngeal carcinoma (NPC) identified new EBER variants (EB-8m and EB-10m) which were less common but relatively more frequent in NPC cases than healthy donors. In the present study, we determined the EBER variants in NPC cases and healthy donors from endemic and non-endemic areas of NPC within China and compared the EBER variants, in relation to the genotypes at BamHI F region (prototype F and f variant), between population groups and between two areas. According to the phylogenetic tree, four EBER variants (EB-6m, EB-8m, EB-10m and B95-8) were identified. EB-6m was dominant in all population groups except for endemic NPC group, in which EB-8m was dominant. EB-8m was more common in endemic NPC cases (82.0%, 41/50) than non-endemic NPC cases (33.7%, 32/95) (p<0.0001), and it was also more frequent in healthy donors from endemic area (32.4%, 24/74) than healthy donors from non-endemic area (1.1%, 1/92) (p<0.0001). More importantly, the EB-8m was more prevalent in NPC cases than healthy donors in both areas (p<0.0001). The f variant, which has been suggested to associate with endemic NPC, demonstrated preferential linkage with EB-8m in endemic isolates, however, the EB-8m variant seemed to be more specific to NPC isolates than f variant. These results reveal high prevalence of EBER EB-8m variant in endemic NPC cases, suggesting an association between NPC development and EBV isolates carrying EB-8m variant. Our finding identified a small healthy population group that shares the same viral strain which predominates in NPC cases. It could be interesting to carry extensive cohort studies following these individuals to evaluate the risk to develop NPC.
Collapse
Affiliation(s)
- Zhi-chao Shen
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, People’s Republic of China
| | - Bing Luo
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, People’s Republic of China
| | - Jian-ning Chen
- Department of Pathology, The Third Affiliated Hospitals of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yan Chao
- Department of Clinical Laboratory, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, People’s Republic of China
| | - Chun-kui Shao
- Department of Pathology, The Third Affiliated Hospitals of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Qian-qian Liu
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, People’s Republic of China
| | - Yun Wang
- Department of Medical Microbiology, Qingdao University Medical College, Qingdao, People’s Republic of China
- * E-mail:
| |
Collapse
|
7
|
Abstract
What is wild-type Epstein-Barr virus and are there genetic differences in EBV strains that contribute to some of the EBV-associated diseases? Recent progress in DNA sequencing has resulted in many new Epstein-Barr virus (EBV) genome sequences becoming available. EBV isolates worldwide can be grouped into type 1 and type 2, a classification based on the EBNA2 gene sequence. Type 1 transforms human B cells into lymphoblastoid cell lines much more efficiently than type 2 EBV and molecular mechanisms that may account for this difference in cell transformation are now becoming understood. Study of geographic variation of EBV strains independent of the type 1/type 2 classification and systematic investigation of the relationship between viral strains, infection and disease are now becoming possible. So we should consider more directly whether viral sequence variation might play a role in the incidence of some EBV-associated diseases.
Collapse
Affiliation(s)
- Paul J Farrell
- Section of Virology, Department of Medicine, Imperial College, St Mary's Campus, Norfolk Place, London, W2 1PG, UK.
| |
Collapse
|
8
|
Atypical Epstein-Barr viral genomic structure in lymphoma tissue and lymphoid cell lines. ACTA ACUST UNITED AC 2014; 22:91-101. [PMID: 23628820 DOI: 10.1097/pdm.0b013e318273fb43] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epstein-Barr virus (EBV) DNA is found within the malignant cells of some subtypes of lymphoma, and viral presence is being exploited for improved diagnosis, monitoring, and management of affected patients. Recent work suggests that viral genomic polymorphism, such as partial deletion of the viral genome, could interfere with virus detection in tumor tissues. To test for atypical forms of the EBV genome, 98 lymphomas and 6 infected cell lines were studied using a battery of 6 quantitative polymerase chain reaction assays targeting disparate sections of EBV DNA. Fifty of the lymphomas (51%) had no amplifiable EBV DNA, and 38 lymphomas (39%) had low-level EBV infection that was deemed incidental based on EBV-encoded RNA (EBER) in situ hybridization results. The remaining 10 lymphomas (10%) had high EBV loads and EBER localization to malignant cells by EBER in situ hybridization. All 10 represented lymphoma subtypes were previously associated with EBV (Burkitt, diffuse large B-cell, or T-cell type), whereas no remnants of EBV were detected in other lymphoma subtypes (follicular, small lymphocytic, mantle cell, or marginal zone type). Interestingly, 4 of the 10 infected lymphomas had evidence of atypical viral genomes, including 3 of 4 infected T-cell lymphomas with aberrant loss of LMP2 amplicons, and a single diffuse large B-cell lymphoma lacking the central part of the viral genome spanning BamH1W, BZLF1, and EBNA1 gene segments. A reasonable screening strategy for infected malignancy involves applying EBER1 and LMP1 quantitative polymerase chain reaction assays and confirming that values exceeding 2000 copies of EBV per 100,000 cells have EBER localization to malignant cells.
Collapse
|
9
|
Senyuta N, Yakovleva L, Goncharova E, Scherback L, Diduk S, Smirnova K, Maksimovich D, Gurtsevitch V. Epstein-barr virus latent membrane protein 1 polymorphism in nasopharyngeal carcinoma and other oral cavity tumors in Russia. J Med Virol 2013; 86:290-300. [DOI: 10.1002/jmv.23729] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2013] [Indexed: 01/16/2023]
Affiliation(s)
- Natalia Senyuta
- Laboratory of Viral Carcinogenicity; N.N. Blokhin Cancer Research Center; Moscow Russia
| | - Larissa Yakovleva
- Laboratory of Viral Carcinogenicity; N.N. Blokhin Cancer Research Center; Moscow Russia
| | - Elena Goncharova
- Laboratory of Viral Carcinogenicity; N.N. Blokhin Cancer Research Center; Moscow Russia
| | - Liana Scherback
- Laboratory of Viral Carcinogenicity; N.N. Blokhin Cancer Research Center; Moscow Russia
| | - Sergey Diduk
- Laboratory of Viral Carcinogenicity; N.N. Blokhin Cancer Research Center; Moscow Russia
| | - Ksenia Smirnova
- Laboratory of Viral Carcinogenicity; N.N. Blokhin Cancer Research Center; Moscow Russia
| | - Dmitry Maksimovich
- Laboratory of Viral Carcinogenicity; N.N. Blokhin Cancer Research Center; Moscow Russia
| | - Vladimir Gurtsevitch
- Laboratory of Viral Carcinogenicity; N.N. Blokhin Cancer Research Center; Moscow Russia
| |
Collapse
|
10
|
Hoebe EK, Le Large TYS, Greijer AE, Middeldorp JM. BamHI-A rightward frame 1, an Epstein-Barr virus-encoded oncogene and immune modulator. Rev Med Virol 2013; 23:367-83. [PMID: 23996634 PMCID: PMC4272418 DOI: 10.1002/rmv.1758] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/25/2013] [Accepted: 07/26/2013] [Indexed: 12/19/2022]
Abstract
Epstein–Barr virus (EBV) causes several benign and malignant disorders of lymphoid and epithelial origin. EBV-related tumors display distinct patterns of viral latent gene expression, of which the BamHI-A rightward frame 1 (BARF1) is selectively expressed in carcinomas, regulated by cellular differentiation factors including ΔNp63α. BARF1 functions as a viral oncogene, immortalizing and transforming epithelial cells of different origin by acting as a mitogenic growth factor, inducing cyclin-D expression, and up-regulating antiapoptotic Bcl-2, stimulating host cell growth and survival. In addition, secreted hexameric BARF1 has immune evasive properties, functionally corrupting macrophage colony stimulating factor, as supported by recent functional and structural data. Therefore, BARF1, an intracellular and secreted protein, not only has multiple pathogenic functions but also can function as a target for immune responses. Deciphering the role of BARF1 in EBV biology will contribute to novel diagnostic and treatment options for EBV-driven carcinomas. Herein, we discuss recent insights on the regulation of BARF1 expression and aspects of structure-function relating to its oncogenic and immune suppressive properties. © 2013 The Authors. Reviews in Medical Virology published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Eveline K Hoebe
- VU University Medical Center, Department of Pathology, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
11
|
Epstein-barr virus sequence variation-biology and disease. Pathogens 2012; 1:156-74. [PMID: 25436768 PMCID: PMC4235690 DOI: 10.3390/pathogens1020156] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 10/16/2012] [Accepted: 10/30/2012] [Indexed: 12/12/2022] Open
Abstract
Some key questions in Epstein-Barr virus (EBV) biology center on whether naturally occurring sequence differences in the virus affect infection or EBV associated diseases. Understanding the pattern of EBV sequence variation is also important for possible development of EBV vaccines. At present EBV isolates worldwide can be grouped into Type 1 and Type 2, a classification based on the EBNA2 gene sequence. Type 1 EBV is the most prevalent worldwide but Type 2 is common in parts of Africa. Type 1 transforms human B cells into lymphoblastoid cell lines much more efficiently than Type 2 EBV. Molecular mechanisms that may account for this difference in cell transformation are now becoming clearer. Advances in sequencing technology will greatly increase the amount of whole EBV genome data for EBV isolated from different parts of the world. Study of regional variation of EBV strains independent of the Type 1/Type 2 classification and systematic investigation of the relationship between viral strains, infection and disease will become possible. The recent discovery that specific mutation of the EBV EBNA3B gene may be linked to development of diffuse large B cell lymphoma illustrates the importance that mutations in the virus genome may have in infection and human disease.
Collapse
|