1
|
Kyrychenko AN, Shcherbatenko IS, Kovalenko AG. Viruses of Wild Plants and Current Metagenomic Methods for Their Investigation. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721030038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2
|
Identification, molecular and biological characterization of two novel secovirids in wild grass species in Belgium. Virus Res 2021; 298:198397. [PMID: 33744338 DOI: 10.1016/j.virusres.2021.198397] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/10/2021] [Accepted: 03/13/2021] [Indexed: 12/17/2022]
Abstract
High throughput sequencing was performed on virion-associated nucleic acids (VANA) from a pool of fifty asymptomatic rough bluegrasses (Poa trivialis L.) collected in a Belgian grazed pasture. Bioinformatics analyses produced some contigs presenting similarities with secovirid genomes, in particular nepoviruses and waikaviruses. Three distinct positive-sense single-stranded RNAs including 5' and 3' UTR were reconstructed and they represented two novel viruses infecting rough bluegrass, for which the provisional names poaceae Liege nepovirus A (PoLNVA, 7298 nt for RNA1 and 4263 nt for RNA2) and poaceae Liege virus 1 (PoLV1, 11,623 nt) were proposed. Compared to other Secoviridae members, the highest amino acid identity reached 90.7 % and 66.7 % between PoLNVA and nepoviruses for the Pro-Pol and CP regions respectively, while PoLV1 presented the highest amino acid identity with waikaviruses but with lower identities, i.e. 41.2 % for Pro-Pol and 25.8 % for CP regions, far below the ICTV demarcation criteria for novel secovirid. Based on sequence identity and phylogenetic analyses, PoLNVA was proposed to belong to the genus Nepovirus and PoLV1 as an unclassified secovirids. Detection of the two novel viruses was confirmed in high prevalence in rough bluegrass and ten other wild Poaceae species (Agropyron repens, Agrostis capillaris, Apera spica-venti, Anthoxanthum odoratum, Cynosorus cristatus, Festuca rubra, Holcus lanatus, Lolium perenne, Phleum bertolini and Phleum pratense) by RT-PCR and Sanger sequencing, revealing a diverse host range within Poaceae for these novel secovirids. Seed transmission was evaluated and confirmed for PoLNVA.
Collapse
|
3
|
Shates TM, Sun P, Malmstrom CM, Dominguez C, Mauck KE. Addressing Research Needs in the Field of Plant Virus Ecology by Defining Knowledge Gaps and Developing Wild Dicot Study Systems. Front Microbiol 2019; 9:3305. [PMID: 30687284 PMCID: PMC6333650 DOI: 10.3389/fmicb.2018.03305] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/19/2018] [Indexed: 11/30/2022] Open
Abstract
Viruses are ubiquitous within all habitats that support cellular life and represent the most important emerging infectious diseases of plants. Despite this, it is only recently that we have begun to describe the ecological roles of plant viruses in unmanaged systems and the influence of ecosystem properties on virus evolution. We now know that wild plants frequently harbor infections by diverse virus species, but much remains to be learned about how viruses influence host traits and how hosts influence virus evolution and vector interactions. To identify knowledge gaps and suggest avenues for alleviating research deficits, we performed a quantitative synthesis of a representative sample of virus ecology literature, developed criteria for expanding the suite of pathosystems serving as models, and applied these criteria through a case study. We found significant gaps in the types of ecological systems studied, which merit more attention. In particular, there is a strong need for a greater diversity of logistically tractable, wild dicot perennial study systems suitable for experimental manipulations of infection status. Based on criteria developed from our quantitative synthesis, we evaluated three California native dicot perennials typically found in Mediterranean-climate plant communities as candidate models: Cucurbita foetidissima (buffalo gourd), Cucurbita palmata (coyote gourd), and Datura wrightii (sacred thorn-apple). We used Illumina sequencing and network analyses to characterize viromes and viral links among species, using samples taken from multiple individuals at two different reserves. We also compared our Illumina workflow with targeted RT-PCR detection assays of varying costs. To make this process accessible to ecologists looking to incorporate virology into existing studies, we describe our approach in detail and discuss advantages and challenges of different protocols. We also provide a bioinformatics workflow based on open-access tools with graphical user interfaces. Our study provides evidence that dicot perennials in xeric habitats support multiple, asymptomatic infections by viruses known to be pathogenic in related crop hosts. Quantifying the impacts of these interactions on plant performance and virus epidemiology in our logistically tractable host systems will provide fundamental information about plant virus ecology outside of crop environments.
Collapse
Affiliation(s)
- Tessa M. Shates
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | - Penglin Sun
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | - Carolyn M. Malmstrom
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
- Graduate Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, United States
| | - Chrysalyn Dominguez
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| | - Kerry E. Mauck
- Department of Entomology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
4
|
Abstract
Viruses are an important but sequence-diverse and often understudied component of the phytobiome. We succinctly review current information on how plant viruses directly affect plant health and physiology and consequently have the capacity to modulate plant interactions with their biotic and abiotic environments. Virus interactions with other biota in the phytobiome, including arthropods, fungi, and nematodes, may also impact plant health. For example, viruses interact with and modulate the interface between plants and insects. This has been extensively studied for insect-vectored plant viruses, some of which also infect their vectors. Other viruses have been shown to alter the impacts of plant-interacting phytopathogenic and nonpathogenic fungi and bacteria. Viruses that infect nematodes have also recently been discovered, but the impact of these and phage infecting soil bacteria on plant health remain largely unexplored.
Collapse
Affiliation(s)
- James E Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Lucy R Stewart
- Corn, Soybean and Wheat Quality Research Unit, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Wooster, Ohio 44691, USA;
| |
Collapse
|
5
|
Palanga E, Filloux D, Martin DP, Fernandez E, Gargani D, Ferdinand R, Zabré J, Bouda Z, Neya JB, Sawadogo M, Traore O, Peterschmitt M, Roumagnac P. Metagenomic-Based Screening and Molecular Characterization of Cowpea-Infecting Viruses in Burkina Faso. PLoS One 2016; 11:e0165188. [PMID: 27764211 PMCID: PMC5072566 DOI: 10.1371/journal.pone.0165188] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/08/2016] [Indexed: 12/16/2022] Open
Abstract
Cowpea, (Vigna unguiculata L. (Walp)) is an annual tropical grain legume. Often referred to as "poor man's meat", cowpea is one of the most important subsistence legumes cultivated in West Africa due to the high protein content of its seeds. However, African cowpea production can be seriously constrained by viral diseases that reduce yields. While twelve cowpea-infecting viruses have been reported from Africa, only three of these have so-far been reported from Burkina Faso. Here we use a virion-associated nucleic acids (VANA)-based metagenomics method to screen for the presence of cowpea viruses from plants collected from the three agro-climatic zones of Burkina Faso. Besides the three cowpea-infecting virus species which have previously been reported from Burkina Faso (Cowpea aphid borne mosaic virus [Family Potyviridae], the Blackeye cowpea mosaic virus-a strain of Bean common mosaic virus-[Family Potyviridae] and Cowpea mottle virus [Family Tombusviridae]) five additional viruses were identified: Southern cowpea mosaic virus (Sobemovirus genus), two previously uncharacterised polerovirus-like species (Family Luteoviridae), a previously uncharacterised tombusvirus-like species (Family Tombusviridae) and a previously uncharacterised mycotymovirus-like species (Family Tymoviridae). Overall, potyviruses were the most prevalent cowpea viruses (detected in 65.5% of samples) and the Southern Sudan zone of Burkina Faso was found to harbour the greatest degrees of viral diversity and viral prevalence. Partial genome sequences of the two novel polerovirus-like and tombusvirus-like species were determined and RT-PCR primers were designed for use in Burkina Faso to routinely detect all of these cowpea-associated viruses.
Collapse
Affiliation(s)
- Essowè Palanga
- Laboratoire de Génétique et Biotechnologies Végétales, Université de Ouagadougou, 03 BP 7021, Ouagadougou, Burkina Faso
- Laboratoire de Virologie et de Biotechnologies Végétales, INERA, 01 BP 476, Ouagadougou, Burkina Faso
- LMI Patho-Bios, 01 BP 476, Ouagadougou, Burkina Faso
| | - Denis Filloux
- CIRAD-INRA-SupAgro, UMR BGPI, F-34398, Montpellier, France
| | - Darren P. Martin
- Computational Biology Group, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | | | - Daniel Gargani
- CIRAD-INRA-SupAgro, UMR BGPI, F-34398, Montpellier, France
| | | | - Jean Zabré
- Laboratoire de Virologie et de Biotechnologies Végétales, INERA, 01 BP 476, Ouagadougou, Burkina Faso
- LMI Patho-Bios, 01 BP 476, Ouagadougou, Burkina Faso
| | - Zakaria Bouda
- Laboratoire de Virologie et de Biotechnologies Végétales, INERA, 01 BP 476, Ouagadougou, Burkina Faso
- LMI Patho-Bios, 01 BP 476, Ouagadougou, Burkina Faso
| | - James Bouma Neya
- Laboratoire de Virologie et de Biotechnologies Végétales, INERA, 01 BP 476, Ouagadougou, Burkina Faso
- LMI Patho-Bios, 01 BP 476, Ouagadougou, Burkina Faso
| | - Mahamadou Sawadogo
- Laboratoire de Virologie et de Biotechnologies Végétales, INERA, 01 BP 476, Ouagadougou, Burkina Faso
| | - Oumar Traore
- Laboratoire de Virologie et de Biotechnologies Végétales, INERA, 01 BP 476, Ouagadougou, Burkina Faso
- LMI Patho-Bios, 01 BP 476, Ouagadougou, Burkina Faso
| | | | | |
Collapse
|
6
|
Blouin AG, Ross HA, Hobson-Peters J, O'Brien CA, Warren B, MacDiarmid R. A new virus discovered by immunocapture of double-stranded RNA, a rapid method for virus enrichment in metagenomic studies. Mol Ecol Resour 2016; 16:1255-63. [PMID: 26990372 DOI: 10.1111/1755-0998.12525] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 11/30/2022]
Abstract
Next-generation sequencing technologies enable the rapid identification of viral infection of diseased organisms. However, despite a consistent decrease in sequencing costs, it is difficult to justify their use in large-scale surveys without a virus sequence enrichment technique. As the majority of plant viruses have an RNA genome, a common approach is to extract the double-stranded RNA (dsRNA) replicative form, to enrich the replicating virus genetic material over the host background. The traditional dsRNA extraction is time-consuming and labour-intensive. We present an alternative method to enrich dsRNA from plant extracts using anti-dsRNA monoclonal antibodies in a pull-down assay. The extracted dsRNA can be amplified by reverse transcriptase-polymerase chain reaction and sequenced by next-generation sequencing. In our study, we have selected three distinct plant hosts: Māori potato (Solanum tuberosum), rengarenga (Arthropodium cirratum) and broadleaved dock (Rumex obtusifolius) representing a cultivated crop, a New Zealand-native ornamental plant and a weed, respectively. Of the sequence data obtained, 31-74% of the reads were of viral origin, and we identified five viruses including Potato virus Y and Potato virus S in potato; Turnip mosaic virus in rengarenga (a new host record); and in the dock sample Cherry leaf roll virus and a novel virus belonging to the genus Macluravirus. We believe that this new assay represents a significant opportunity to upscale virus ecology studies from environmental, primary industry and/or medical samples.
Collapse
Affiliation(s)
- Arnaud G Blouin
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand.,School of Biological Sciences, University of Auckland, P.O. Box 92019, Auckland, New Zealand
| | - Howard A Ross
- School of Biological Sciences, University of Auckland, P.O. Box 92019, Auckland, New Zealand
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Qld, 4072, Australia
| | - Caitlin A O'Brien
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Qld, 4072, Australia
| | - Ben Warren
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| | - Robin MacDiarmid
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand.,School of Biological Sciences, University of Auckland, P.O. Box 92019, Auckland, New Zealand
| |
Collapse
|
7
|
Thapa V, McGlinn DJ, Melcher U, Palmer MW, Roossinck MJ. Determinants of taxonomic composition of plant viruses at the Nature Conservancy's Tallgrass Prairie Preserve, Oklahoma. Virus Evol 2015; 1:vev007. [PMID: 27774279 PMCID: PMC5014475 DOI: 10.1093/ve/vev007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The role of biotic and abiotic factors in shaping the diversity and composition of communities of plant viruses remain understudied, particularly in natural settings. In this study, we test the effects of host identity, location, and sampling year on the taxonomic composition of plant viruses in six native plant species [Ambrosia psilostachya (Asteraceae), Vernonia baldwinii (Asteraceae), Asclepias viridis (Asclepiadaceae), Ruellia humilis (Acanthaceae), Panicum virgatum (Poaceae) and Sorghastrum nutans (Poaceae)] from the Nature Conservancy's Tallgrass Prairie Preserve in northeastern Oklahoma. We sampled over 400 specimens of the target host plants from twenty sites (plots) in the Tallgrass Prairie Preserve over 4 years and tested them for the presence of plant viruses applying virus-like particle and double-stranded RNA enrichment methods. Many of the viral sequences identified could not be readily assigned to species, either due to their novelty or the shortness of the sequence. We thus grouped our putative viruses into operational viral taxonomic units for further analysis. Partial canonical correspondence analysis revealed that the taxonomic composition of plant viruses in the target species had a significant relationship with host species (P value: 0.001) but no clear relation with sampling site or year. Variation partitioning further showed that host identity explained about 2-5 per cent of the variation in plant virus composition. We could not interpret the significant relationship between virus composition and host plants with respect to host taxonomy or ecology. Only six operational viral taxonomic units had over 5 per cent incidence over a 4-year period, while the remainder exhibited sporadic infection of the target hosts. This study is the first of its kind to document the dynamics of the entire range of viruses in multiple plant species in a natural setting.
Collapse
Affiliation(s)
- Vaskar Thapa
- Department of Plant Pathology and Environmental Microbiology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Botany, Oklahoma State University, Stillwater, OK 74078, USA
| | - Daniel J. McGlinn
- Department of Botany, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ulrich Melcher
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Michael W. Palmer
- Department of Botany, Oklahoma State University, Stillwater, OK 74078, USA
| | - Marilyn J. Roossinck
- Department of Plant Pathology and Environmental Microbiology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
8
|
Roossinck MJ, Martin DP, Roumagnac P. Plant Virus Metagenomics: Advances in Virus Discovery. PHYTOPATHOLOGY 2015; 105:716-27. [PMID: 26056847 DOI: 10.1094/phyto-12-14-0356-rvw] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In recent years plant viruses have been detected from many environments, including domestic and wild plants and interfaces between these systems-aquatic sources, feces of various animals, and insects. A variety of methods have been employed to study plant virus biodiversity, including enrichment for virus-like particles or virus-specific RNA or DNA, or the extraction of total nucleic acids, followed by next-generation deep sequencing and bioinformatic analyses. All of the methods have some shortcomings, but taken together these studies reveal our surprising lack of knowledge about plant viruses and point to the need for more comprehensive studies. In addition, many new viruses have been discovered, with most virus infections in wild plants appearing asymptomatic, suggesting that virus disease may be a byproduct of domestication. For plant pathologists these studies are providing useful tools to detect viruses, and perhaps to predict future problems that could threaten cultivated plants.
Collapse
Affiliation(s)
- Marilyn J Roossinck
- First author: Department of Plant Pathology and Environmental Microbiology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802; second author: Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, 7925 South Africa; and third author: CIRAD, UMR BGPI, Campus International de Montferrier-Baillarguet, 34398 Montpellier Cedex-5, France
| | - Darren P Martin
- First author: Department of Plant Pathology and Environmental Microbiology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802; second author: Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, 7925 South Africa; and third author: CIRAD, UMR BGPI, Campus International de Montferrier-Baillarguet, 34398 Montpellier Cedex-5, France
| | - Philippe Roumagnac
- First author: Department of Plant Pathology and Environmental Microbiology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA 16802; second author: Computational Biology Group, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, 7925 South Africa; and third author: CIRAD, UMR BGPI, Campus International de Montferrier-Baillarguet, 34398 Montpellier Cedex-5, France
| |
Collapse
|
9
|
Stewart LR, Teplier R, Todd JC, Jones MW, Cassone BJ, Wijeratne S, Wijeratne A, Redinbaugh MG. Viruses in maize and Johnsongrass in southern Ohio. PHYTOPATHOLOGY 2014; 104:1360-9. [PMID: 24918609 DOI: 10.1094/phyto-08-13-0221-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The two major U.S. maize viruses, Maize dwarf mosaic virus (MDMV) and Maize chlorotic dwarf virus (MCDV), emerged in southern Ohio and surrounding regions in the 1960s and caused significant losses. Planting resistant varieties and changing cultural practices has dramatically reduced virus impact in subsequent decades. Current information on the distribution, diversity, and impact of known and potential U.S. maize disease-causing viruses is lacking. To assess the current reservoir of viruses present at the sites of past disease emergence, we used a combination of serological testing and next-generation RNA sequencing approaches. Here, we report enzyme-linked immunosorbent assay and RNA-Seq data from samples collected over 2 years to assess the presence of viruses in cultivated maize and an important weedy reservoir, Johnsongrass (Sorghum halepense). Results revealed a persistent reservoir of MDMV and two strains of MCDV in Ohio Johnsongrass. We identified sequences of several other grass-infecting viruses and confirmed the presence of Wheat mosaic virus in Ohio maize. Together, these results provide important data for managing virus disease in field corn and sweet corn maize crops, and identifying potential future virus threats.
Collapse
|
10
|
Massart S, Olmos A, Jijakli H, Candresse T. Current impact and future directions of high throughput sequencing in plant virus diagnostics. Virus Res 2014; 188:90-6. [PMID: 24717426 DOI: 10.1016/j.virusres.2014.03.029] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/27/2014] [Accepted: 03/28/2014] [Indexed: 12/17/2022]
Abstract
The ability to provide a fast, inexpensive and reliable diagnostic for any given viral infection is a key parameter in efforts to fight and control these ubiquitous pathogens. The recent developments of high-throughput sequencing (also called Next Generation Sequencing - NGS) technologies and bioinformatics have drastically changed the research on viral pathogens. It is now raising a growing interest for virus diagnostics. This review provides a snapshot vision on the current use and impact of high throughput sequencing approaches in plant virus characterization. More specifically, this review highlights the potential of these new technologies and their interplay with current protocols in the future of molecular diagnostic of plant viruses. The current limitations that will need to be addressed for a wider adoption of high-throughput sequencing in plant virus diagnostics are thoroughly discussed.
Collapse
Affiliation(s)
- Sebastien Massart
- Laboratory of Phytopathology, University of Liège, Gembloux Agro-BioTech, Passage des déportés, 2, 5030 Gembloux, Belgium.
| | - Antonio Olmos
- Centro de Protección Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Apartado Oficial, 46113 Moncada, Valencia, Spain
| | - Haissam Jijakli
- Laboratory of Phytopathology, University of Liège, Gembloux Agro-BioTech, Passage des déportés, 2, 5030 Gembloux, Belgium
| | - Thierry Candresse
- UMR 1332 de Biologie du fruit et Pathologie, INRA, CS20032, 33882 Villenave d'Ornon cedex, France; UMR 1332 de Biologie du fruit et Pathologie, Université de Bordeaux, CS20032, 33882 Villenave d'Ornon cedex, France
| |
Collapse
|
11
|
Dutta M, Sokhandan Bashir N, Palmer MW, Melcher U. Genomic characterization of Ambrosia asymptomatic virus 1 and evidence of other Tymovirales members in the Oklahoma tallgrass prairie revealed by sequence analysis. Arch Virol 2014; 159:1755-64. [PMID: 24519459 DOI: 10.1007/s00705-014-1985-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 01/11/2014] [Indexed: 12/31/2022]
Abstract
The Plant Virus Biodiversity and Ecology project was undertaken to better understand the nature of plant-viral interactions and the occurrence of non-pathogenic viruses. Plants from the Tallgrass Prairie Preserve (TPP), Osage County, Oklahoma, were surveyed from 2005 to 2008 for the presence of viruses, resulting in the detection, using a virus-like particle enrichment method, of the genome a novel virus, Ambrosia asymptomatic virus 1 (AAV1), from Ambrosia psilostachya DC (western ragweed). Here, we present the genomic organization and genetic variability of AAV1. The virus has a single-stranded RNA genome of about 7408 nt, which has six open reading frames (ORFs). Phylogenetic analysis of the replicase and coat protein ORFs of the virus indicates strongly that the virus should be placed in the genus Mandarivirus. No evidence of recombination was detected. We also report the detection in the TPP of two known viruses and seven other putative viruses, members of the order Tymovirales.
Collapse
Affiliation(s)
- Mukta Dutta
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | | | | | | |
Collapse
|
12
|
Scheets K. Infectious transcripts of an asymptomatic panicovirus identified from a metagenomic survey. Virus Res 2013; 176:161-8. [DOI: 10.1016/j.virusres.2013.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/05/2013] [Accepted: 06/07/2013] [Indexed: 12/15/2022]
|
13
|
Wylie SJ, Li H, Dixon KW, Richards H, Jones MG. Exotic and indigenous viruses infect wild populations and captive collections of temperate terrestrial orchids (Diuris species) in Australia. Virus Res 2013; 171:22-32. [DOI: 10.1016/j.virusres.2012.10.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 10/02/2012] [Accepted: 10/03/2012] [Indexed: 01/01/2023]
|