1
|
Deng Y, Pan J, Yang X, Yang S, Chi H, Yang X, Qu X, Sun S, You L, Hou C. Dual roles of nanocrystalline cellulose extracted from jute ( Corchorus olitorius L.) leaves in resisting antibiotics and protecting probiotics. NANOSCALE ADVANCES 2023; 5:6435-6448. [PMID: 38024324 PMCID: PMC10662138 DOI: 10.1039/d3na00345k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/14/2023] [Indexed: 12/01/2023]
Abstract
Antibiotics can cure diseases caused by bacterial infections, but their widespread use can have some side effects, such as probiotic reduction. There is an urgent need for such agents that can not only alleviate the damage caused by antibiotics, but also maintain the balance of the gut microbiota. In this study, we first characterized the nanocrystalline cellulose (NCC) extracted from plant jute (Corchorus olitorius L.) leaves. Next, we evaluated the protective effect of jute NCC and cellulose on human model gut bacteria (Lacticaseibacillus rhamnosus and Escherichia coli) under antibiotic stress by measuring bacterial growth and colony forming units. We found that NCC is more effective than cellulose in adsorbing antibiotics and defending the gut bacteria E. coli. Interestingly, the low-dose jute NCC clearly maintained the balance of key gut bacteria like Snodgrassella alvi and Lactobacillus Firm-4 in bees treated with tetracycline and reduced the toxicity caused by antibiotics. It also showed a more significant protective effect on human gut bacteria, especially L. rhamnosus, than cellulose. This study first demonstrated that low-dose NCC performed satisfactorily as a specific probiotic to mitigate the adverse effects of antibiotics on gut bacteria.
Collapse
Affiliation(s)
- Yanchun Deng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences Changsha 410205 P. R. China
| | - Jiangpeng Pan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences Changsha 410205 P. R. China
| | - Xiai Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences Changsha 410205 P. R. China
| | - Sa Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences Beijing 100093 P. R. China
- Graduate School of Chinese Academy of Agricultural Sciences Beijing 100081 P. R. China
| | - Haiyang Chi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences Changsha 410205 P. R. China
| | - Xiushi Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences Changsha 410205 P. R. China
| | - Xiaoxin Qu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences Changsha 410205 P. R. China
| | - Shitao Sun
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences Changsha 410205 P. R. China
| | - Linfeng You
- Department of Food and Biotechnology Engineering, Chongqing Technology and Business University Chongqing 400067 P. R. China
| | - Chunsheng Hou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences Changsha 410205 P. R. China
| |
Collapse
|
2
|
Zhao D, Yang J, Han K, Liu Q, Wang H, Liu Y, Huang X, Zhang L, Li Y. The unfolded protein response induced by Tembusu virus infection. BMC Vet Res 2019; 15:34. [PMID: 30670030 PMCID: PMC6343269 DOI: 10.1186/s12917-019-1781-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/14/2019] [Indexed: 12/30/2022] Open
Abstract
Background Tembusu virus (TMUV), classified in the genus Flavivirus, causes reduced egg production and neurological problems in poultry. Flavivirus replication depends on the host endoplasmic reticulum (ER) and induces ER stress that leads to activation of the cellular unfolded protein response (UPR), an important signalling pathway that regulates many biological functions involved in viral pathogenesis and innate immunity. However, the mechanism of TMUV-induced UPR activation remains unclear. Results In this study, we systematically investigated the three UPR pathways in TMUV-infected BHK-21 cells. Our results showed that expression of glucose-related protein 78 (GRP78) and GRP94 was upregulated during the course of TMUV infection. We then demonstrated that TMUV activated the PERK pathway in the early stage of infection, resulting in upregulation of ATF4, GADD34 and CHOP, with CHOP induction leading to caspase-3 activation. We also found the IRE1 pathway to be activated, leading to splicing of X box binding protein 1 (XBP1) mRNA and enhanced expression of p58IPK. Finally, we observed increased expression of ATF6 and activity of ER stress-response elements, suggesting stimulation of the ATF6 pathway. In addition, ATF6 pathway activation correlated with the induction of downstream chaperones calnexin, calreticulin, ERp57 and PDI. UPR activity was also observed by the marked elevation in GRP78 and sXBP1 levels in TMUV-infected DF-1 cells. Conclusions This is the first report that TMUV infection-induced ER stress activates three branches of the UPR, and these results lay the foundation for elucidating the pathogenesis of TMUV and understanding the inherent mechanism of TMUV infection as well as the host response.
Collapse
Affiliation(s)
- Dongmin Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, 210014, People's Republic of China. .,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, People's Republic of China.
| | - Jing Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, 210014, People's Republic of China.,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, People's Republic of China
| | - Kaikai Han
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, 210014, People's Republic of China.,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, People's Republic of China
| | - Qingtao Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, 210014, People's Republic of China.,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, People's Republic of China
| | - Huili Wang
- Institute of Animal Sciences, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, People's Republic of China
| | - Yuzhuo Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, 210014, People's Republic of China.,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, People's Republic of China
| | - Xinmei Huang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, 210014, People's Republic of China.,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, People's Republic of China
| | - Lijiao Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, 210014, People's Republic of China.,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, People's Republic of China
| | - Yin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Jiangsu Province, 210014, People's Republic of China. .,Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, Jiangsu Province, People's Republic of China.
| |
Collapse
|
3
|
Metz GE, Abeyá MM, Serena MS, Panei CJ, Echeverría MG. Evaluation of apoptosis markers in different cell lines infected with equine arteritis virus. Biotech Histochem 2018; 94:115-125. [PMID: 30350720 DOI: 10.1080/10520295.2018.1521989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Equine arteritis virus (EAV) induces apoptosis in infected cells. Cell death caused by EAV has been studied mainly using three cell lines, BHK-21, RK-13 and Vero cells. The mechanism of apoptosis varies among cell lines and results cannot be correlated owing to differences in EAV strains used. We evaluated different markers for apoptosis in BHK-21, RK-13 and Vero cell lines using the Bucyrus EAV reference strain. Acridine orange/ethidium bromide staining revealed morphological changes in infected cells, while flow cytometry indicated the extent of apoptosis. We also observed DNA fragmentation, but the DNA ladder was detected at different times post-infection depending on the cell line, i.e., 48, 72 and 96 h post-infection in RK-13, Vero and BHK-21 cells, respectively. Measurement of viral titers obtained with each cell line indicated that apoptosis causes interference with viral replication and therefore decreased viral titers. As an unequivocal marker of apoptosis, we measured the expression of caspase-3 and caspases-8 and -9 as extrinsic and intrinsic markers of apoptosis pathways, respectively. Caspase-8 in BHK-21 cells was the only protease that was not detected at any of the times assayed. We found that Bucyrus EAV strain exhibited a distinctive apoptosis pathway depending on the cell line.
Collapse
Affiliation(s)
- G E Metz
- a Department of Virology, Faculty of Veterinary Sciences , National University of La Plata , La Plata , Argentina
| | - M M Abeyá
- a Department of Virology, Faculty of Veterinary Sciences , National University of La Plata , La Plata , Argentina
| | - M S Serena
- a Department of Virology, Faculty of Veterinary Sciences , National University of La Plata , La Plata , Argentina
| | - C J Panei
- a Department of Virology, Faculty of Veterinary Sciences , National University of La Plata , La Plata , Argentina
| | - M G Echeverría
- a Department of Virology, Faculty of Veterinary Sciences , National University of La Plata , La Plata , Argentina
| |
Collapse
|
4
|
Intrinsic, extrinsic and endoplasmic reticulum stress-induced apoptosis in RK13 cells infected with equine arteritis virus. Virus Res 2016; 213:219-223. [PMID: 26732484 DOI: 10.1016/j.virusres.2015.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/10/2015] [Accepted: 12/16/2015] [Indexed: 11/21/2022]
Abstract
The modulation of the expression of caspases by viruses influences the cell survival of different cell types. Equine arteritis virus (EAV) induces apoptosis of BHK21 and Vero cell lines, but it is not known whether EAV induces apoptosis in RK13 cells, a common cell line routinely used in EAV diagnosis and research. In this study, we determined that caspase-3 expression was triggered after infection of RK13 cells with EAV in a time- and dose-dependent manner. We also detected caspase-8 and caspase-9 activation, indicating the stimulation of both extrinsic and intrinsic apoptosis pathways. Finally, we found caspase-12 activation, an indicator of endoplasmic reticulum stress-induced apoptosis. The variability observed in the apoptotic response in the different cell lines demonstrates that apoptosis depends on the distinctive sensitivity of each cell line used for investigation.
Collapse
|
5
|
Langellotti C, Cesar G, Soria I, Quattrocchi V, Jancic C, Zamorano P, Vermeulen M. Foot-and-mouth disease virus infection of dendritic cells triggers phosphorylation of ERK1/2 inducing class I presentation and apoptosis. Vaccine 2015. [PMID: 26212005 DOI: 10.1016/j.vaccine.2015.07.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Foot-and-mouth disease (FMD) is a highly contagious viral disease of cloven-hoofed animals. This pathology is caused by foot-and-mouth disease virus (FMDV). Over time, the development of vaccines to prevent the spread of this illness became essential. Vaccines currently used contain the inactivated form of the virus. However, vaccination generates an immune response different to that induced by the infection. We investigated whether these differences are related to intracellular mechanisms on dendritic cells (DCs). As a result, we demonstrated that the internalization of infective virus triggered the phosphorylation of ERK1/2, which was involved in the activation of caspase-9, the intrinsic pathway of apoptosis and the delivery of viral peptides on MHC class I molecules. While, inactivated virus (iFMDV) did not affect this pathway or any function mediated by its activation. As described, infectious virus in DCs was also associated to autophagy LC3 protein and was associated to lysosomal protein Lamp-2; contrary to observe for the iFMDV. Strikingly, the processing of viral antigens to accommodate in class I molecules does not appear to involve the proteasome. Finally, this increased presentation promotes a specific cytotoxic response against infectious virus.
Collapse
Affiliation(s)
- Cecilia Langellotti
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias, Instituto Nacional de Tecnología Agropecuaria (INTA)-Castelar, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Gonzalo Cesar
- Laboratorio de Inmunología, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Ivana Soria
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias, Instituto Nacional de Tecnología Agropecuaria (INTA)-Castelar, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Valeria Quattrocchi
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias, Instituto Nacional de Tecnología Agropecuaria (INTA)-Castelar, Buenos Aires, Argentina
| | - Carolina Jancic
- Laboratorio de Inmunología, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Patricia Zamorano
- Instituto de Virología, Centro de Investigaciones en Ciencias Veterinarias, Instituto Nacional de Tecnología Agropecuaria (INTA)-Castelar, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mónica Vermeulen
- Laboratorio de Inmunología, Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
6
|
Metz GE, Serena MS, Abeyá MM, Dulbecco AB, Massone A, Díaz S, Echeverría MG. Equine arteritis virus gP5 protein induces apoptosis in cultured insect cells. Virus Res 2014; 183:81-4. [PMID: 24518298 DOI: 10.1016/j.virusres.2014.01.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/29/2014] [Accepted: 01/30/2014] [Indexed: 02/05/2023]
Abstract
Equine Arteritis Virus (EAV) has been shown to induce apoptosis in vitro but the induction of this mechanism has not been previously associated with any viral gene product. In this work, we found a cytotoxicity effect of the EAV gP5 protein on baculovirus-insect cells and a low yield of protein recovery. Besides, different morphological features by electron transmission microscopy, DNA fragmentation in agarose gel, TUNEL analysis and caspase 3 activity were found. All these findings indicate that the EAV gP5 protein induces apoptosis in insect cells.
Collapse
Affiliation(s)
- Germán Ernesto Metz
- Virology, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina; Members of CONICET (CCT-La Plata), Argentina
| | - María Soledad Serena
- Virology, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina; Members of CONICET (CCT-La Plata), Argentina
| | | | - Andrea Belén Dulbecco
- Virology, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina
| | - Adriana Massone
- Laboratorio de Patología Especial, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - Silvina Díaz
- Members of CONICET (CCT-La Plata), Argentina; IGEVET-CCT-La Plata, Argentina
| | - María Gabriela Echeverría
- Virology, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina; Members of CONICET (CCT-La Plata), Argentina; IGEVET-CCT-La Plata, Argentina.
| |
Collapse
|
7
|
Balasuriya UBR, Go YY, MacLachlan NJ. Equine arteritis virus. Vet Microbiol 2013; 167:93-122. [PMID: 23891306 PMCID: PMC7126873 DOI: 10.1016/j.vetmic.2013.06.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 06/22/2013] [Accepted: 06/25/2013] [Indexed: 11/13/2022]
Abstract
Equine arteritis virus (EAV) is the causative agent of equine viral arteritis (EVA), a respiratory and reproductive disease of equids. There has been significant recent progress in understanding the molecular biology of EAV and the pathogenesis of its infection in horses. In particular, the use of contemporary genomic techniques, along with the development and reverse genetic manipulation of infectious cDNA clones of several strains of EAV, has generated significant novel information regarding the basic molecular biology of the virus. Therefore, the objective of this review is to summarize current understanding of EAV virion architecture, replication, evolution, molecular epidemiology and genetic variation, pathogenesis including the influence of host genetics on disease susceptibility, host immune response, and potential vaccination and treatment strategies.
Collapse
Affiliation(s)
- Udeni B R Balasuriya
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA.
| | | | | |
Collapse
|