1
|
Crespo-Bellido A, Hoyer JS, Burgos-Amengual Y, Duffy S. Phylogeographic analysis of Begomovirus coat and replication-associated proteins. J Gen Virol 2024; 105:002037. [PMID: 39446128 PMCID: PMC11500754 DOI: 10.1099/jgv.0.002037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
Begomoviruses are globally distributed plant pathogens that significantly limit crop production. These viruses are traditionally described according to phylogeographic distribution and categorized into two groups: begomoviruses from the Africa, Asia, Europe and Oceania (AAEO) region and begomoviruses from the Americas. Monopartite begomoviruses are more common in the AAEO region, while bipartite viruses predominate in the Americas, where the begomoviruses lack the V2/AV2 gene involved in inter-cellular movement and RNA silencing suppression found in AAEO begomoviruses. While these features are generally accepted as lineage-defining, the number of known species has doubled due to sequence-based discovery since 2010. To re-evaluate the geographic groupings after the rapid expansion of the genus, we conducted phylogenetic analyses for begomovirus species representatives of the two longest and most conserved begomovirus proteins: the coat and replication-associated proteins. Both proteins still largely support the broad AAEO and Americas begomovirus groupings, except for sweet potato-infecting begomoviruses that form an independent, well-supported clade for their coat protein regardless of the region they were isolated from. Our analyses do not support more fine-scaled phylogeographic groupings. Monopartite and bipartite genome organizations are broadly interchanged throughout the phylogenies, and the absence of the V2/AV2 gene is highly reflective of the split between Americas and AAEO begomoviruses. We observe significant evidence of recombination within the Americas and within the AAEO region but rarely between the regions. We speculate that increased globalization of agricultural trade, the invasion of polyphagous whitefly vector biotypes and recombination will blur begomovirus phylogeographic delineations in the future.
Collapse
Affiliation(s)
- Alvin Crespo-Bellido
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - J. Steen Hoyer
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| | - Yeissette Burgos-Amengual
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
- Department of Biology, University of Puerto Rico at Mayagüez, Mayagüez, Puerto Rico
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
2
|
How To Be a Successful Monopartite Begomovirus in a Bipartite-Dominated World: Emergence and Spread of Tomato Mottle Leaf Curl Virus in Brazil. J Virol 2022; 96:e0072522. [PMID: 36043875 PMCID: PMC9517693 DOI: 10.1128/jvi.00725-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Begomoviruses are members of the family Geminiviridae, a large and diverse group of plant viruses characterized by a small circular single-stranded DNA genome encapsidated in twinned quasi-icosahedral virions. Cultivated tomato (Solanum lycopersicum L.) is particularly susceptible and is infected by >100 bipartite and monopartite begomoviruses worldwide. In Brazil, 25 tomato-infecting begomoviruses have been described, most of which are bipartite. Tomato mottle leaf curl virus (ToMoLCV) is one of the most important of these and was first described in the late 1990s but has not been fully characterized. Here, we show that ToMoLCV is a monopartite begomovirus with a genomic DNA similar in size and genome organization to those of DNA-A components of New World (NW) begomoviruses. Tomato plants agroinoculated with the cloned ToMoLCV genomic DNA developed typical tomato mottle leaf curl disease symptoms, thereby fulfilling Koch's postulates and confirming the monopartite nature of the ToMoLCV genome. We further show that ToMoLCV is transmitted by whiteflies, but not mechanically. Phylogenetic analyses placed ToMoLCV in a distinct and strongly supported clade with other begomoviruses from northeastern Brazil, designated the ToMoLCV lineage. Genetic analyses of the complete sequences of 87 ToMoLCV isolates revealed substantial genetic diversity, including five strain groups and seven subpopulations, consistent with a long evolutionary history. Phylogeographic models generated with partial or complete sequences predicted that the ToMoLCV emerged in northeastern Brazil >700 years ago, diversifying locally and then spreading widely in the country. Thus, ToMoLCV emerged well before the introduction of MEAM1 whiteflies, suggesting that the evolution of NW monopartite begomoviruses was facilitated by local whitefly populations and the highly susceptible tomato host. IMPORTANCE Worldwide, diseases of tomato caused by whitefly-transmitted geminiviruses (begomoviruses) cause substantial economic losses and a reliance on insecticides for management. Here, we describe the molecular and biological properties of tomato mottle leaf curl virus (ToMoLCV) from Brazil and establish that it is a NW monopartite begomovirus indigenous to northeastern Brazil. This answered a long-standing question regarding the genome of this virus, and it is part of an emerging group of these viruses in Latin America. This appears to be driven by widespread planting of the highly susceptible tomato and by local and exotic whiteflies. Our extensive phylogenetic studies placed ToMoLCV in a distinct strongly supported clade with other begomoviruses from northeastern Brazil and revealed new insights into the origin of Brazilian begomoviruses. The novel phylogeographic analysis indicated that ToMoLCV has had a long evolutionary history, emerging in northeastern Brazil >700 years ago. Finally, the tools used here (agroinoculation system and ToMoLCV-specific PCR test) and information on the biology of the virus (host range and whitefly transmission) will be useful in developing and implementing integrated pest management (IPM) programs targeting ToMoLCV.
Collapse
|
3
|
Guevara-Rivera EA, Rodríguez-Negrete EA, Aréchiga-Carvajal ET, Leyva-López NE, Méndez-Lozano J. From Metagenomics to Discovery of New Viral Species: Galium Leaf Distortion Virus, a Monopartite Begomovirus Endemic in Mexico. Front Microbiol 2022; 13:843035. [PMID: 35547137 PMCID: PMC9083202 DOI: 10.3389/fmicb.2022.843035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/28/2022] [Indexed: 12/02/2022] Open
Abstract
Begomoviruses (Family Geminiviridae) are a major group of emerging plant viruses worldwide. The knowledge of begomoviruses is mostly restricted to crop plant systems. Nevertheless, it has been described that non-cultivated plants are important reservoirs and vessels of viral evolution that leads to the emergence of new diseases. High-throughput sequencing (HTS) has provided a powerful tool for speeding up the understanding of molecular ecology and epidemiology of plant virome and for discovery of new viral species. In this study, by performing earlier metagenomics library data mining, followed by geminivirus-related signature single plant searching and RCA-based full-length viral genome cloning, and based on phylogenetic analysis, genomes of two isolates of a novel monopartite begomovirus species tentatively named Galium leaf distortion virus (GLDV), which infects non-cultivated endemic plant Galium mexicanum, were identified in Colima, Mexico. Analysis of the genetic structure of both isolates (GLDV-1 and GLDV-2) revealed that the GLDV genome displays a DNA-A-like structure shared with the new world (NW) bipartite begomoviruses. Nonetheless, phylogenetic analysis using representative members of the main begomovirus American clades for tree construction grouped both GLDV isolates in a clade of the monopartite NW begomovirus, Tomato leaf deformation virus (ToLDeV). A comparative analysis of viral replication regulatory elements showed that the GLDV-1 isolate possesses an array and sequence conservation of iterons typical of NW begomovirus infecting the Solanaceae and Fabaceae families. Interestingly, GLDV-2 showed iteron sequences described only in monopartite begomovirus from OW belonging to a sweepovirus clade that infects plants of the Convolvulaceae family. In addition, the rep iteron related-domain (IRD) of both isolates display FRVQ or FRIS amino acid sequences corresponding to NW and sweepobegomovirus clades for GMV-1 and GMV-2, respectively. Finally, the lack of the GLDV DNA-B segment (tested by molecular detection and biological assays using GLDV-1/2 infectious clones) confirmed the monopartite nature of GLDV. This is the first time that a monopartite begomovirus is described in Mexican ecosystems, and “in silico” geometagenomics analysis indicates that it is restricted to a specific region. These data revealed additional complexity in monopartite begomovirus genetics and geographic distribution and highlighted the importance of metagenomic approaches in understanding global virome ecology and evolution.
Collapse
Affiliation(s)
- Enrique A Guevara-Rivera
- Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Mexico
| | - Edgar A Rodríguez-Negrete
- Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Mexico
| | - Elva T Aréchiga-Carvajal
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Microbiología e Inmunología-Unidad de Manipulación Genética, San Nicolás de los Garza, Mexico
| | - Norma E Leyva-López
- Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Mexico
| | - Jesús Méndez-Lozano
- Instituto Politécnico Nacional, CIIDIR-Unidad Sinaloa, Departamento de Biotecnología Agrícola, Guasave, Mexico
| |
Collapse
|
4
|
Revealing the Complexity of Sweepovirus-Deltasatellite-Plant Host Interactions: Expanded Natural and Experimental Helper Virus Range and Effect Dependence on Virus-Host Combination. Microorganisms 2021; 9:microorganisms9051018. [PMID: 34068583 PMCID: PMC8150397 DOI: 10.3390/microorganisms9051018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
Sweepoviruses are begomoviruses (genus Begomovirus, family Geminiviridae) with ssDNA genomes infecting sweet potato and other species of the family Convolvulaceae. Deltasatellites (genus Deltasatellite, family Tolecusatellitidae) are small-size non-coding DNA satellites associated with begomoviruses. In this study, the genetic diversity of deltasatellites associated with sweepoviruses infecting Ipomoea indica plants was analyzed by further sampling the populations where the deltasatellite sweet potato leaf curl deltasatellite 1 (SPLCD1) was initially found, expanding the search to other geographical areas in southern continental Spain and the Canary Islands. The sweepoviruses present in the samples coinfected with deltasatellites were also fully characterized by sequencing in order to define the range of viruses that could act as helper viruses in nature. Additionally, experiments were performed to assess the ability of a number of geminivirids (the monopartite tomato leaf deformation virus and the bipartite NW begomovirus Sida golden yellow vein virus, the bipartite OW begomovirus tomato leaf curl New Delhi virus, and the curtovirus beet curly top virus) to transreplicate SPLCD1 in their natural plant hosts or the experimental host Nicotiana benthamiana. The results show that SPLCD1 can be transreplicated by all the geminivirids assayed in N. benthamiana and by tomato leaf curl New Delhi virus in zucchini. The presence of SPLCD1 did not affect the symptomatology caused by the helper viruses, and its effect on viral DNA accumulation depended on the helper virus-host plant combination.
Collapse
|
5
|
Chiumenti M, Greco C, De Stradis A, Loconsole G, Cavalieri V, Altamura G, Zicca S, Saldarelli P, Saponari M. Olea Europaea Geminivirus: A Novel Bipartite Geminivirid Infecting Olive Trees. Viruses 2021; 13:v13030481. [PMID: 33804134 PMCID: PMC8000510 DOI: 10.3390/v13030481] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 12/29/2022] Open
Abstract
In 2014, high-throughput sequencing of libraries of total DNA from olive trees allowed the identification of two geminivirus-like contigs. After conventional resequencing of the two genomic DNAs, their analysis revealed they belonged to the same viral entity, for which the provisional name of Olea europaea geminivirus (OEGV) was proposed. Although DNA-A showed a genome organization similar to that of New World begomoviruses, DNA-B had a peculiar ORF arrangement, consisting of a movement protein (MP) in the virion sense and a protein with unknown function on the complementary sense. Phylogenetic analysis performed either on full-length genome or on coat protein, replication associated protein (Rep), and MP sequences did not endorse the inclusion of this virus in any of the established genera in the family Geminiviridae. A survey of 55 plants revealed that the virus is widespread in Apulia (Italy) with 91% of the samples testing positive, although no correlation of OEGV with a disease or specific symptoms was encountered. Southern blot assay suggested that the virus is not integrated in the olive genome. The study of OEGV-derived siRNA obtained from small RNA libraries of leaves and fruits of three different cultivars, showed that the accumulation of the two genomic components is influenced by the plant genotype while virus-derived-siRNA profile is in line with other geminivirids reported in literature. Single-nucleotide polymorphism (SNP) analysis unveiled a low intra-specific variability.
Collapse
Affiliation(s)
- Michela Chiumenti
- Institute for Sustainable Plant Protection, CNR, Via Amendola 122/D, 70126 Bari, Italy; (C.G.); (A.D.S.); (V.C.); (G.A.); (S.Z.); (P.S.); (M.S.)
- Correspondence: (M.C.); (G.L.)
| | - Claudia Greco
- Institute for Sustainable Plant Protection, CNR, Via Amendola 122/D, 70126 Bari, Italy; (C.G.); (A.D.S.); (V.C.); (G.A.); (S.Z.); (P.S.); (M.S.)
- Dipartimento di Scienze del suolo, della Pianta e degli Alimenti, University of Bari “Aldo Moro”, Via Amendola, 165/A, 70126 Bari, Italy
| | - Angelo De Stradis
- Institute for Sustainable Plant Protection, CNR, Via Amendola 122/D, 70126 Bari, Italy; (C.G.); (A.D.S.); (V.C.); (G.A.); (S.Z.); (P.S.); (M.S.)
| | - Giuliana Loconsole
- Institute for Sustainable Plant Protection, CNR, Via Amendola 122/D, 70126 Bari, Italy; (C.G.); (A.D.S.); (V.C.); (G.A.); (S.Z.); (P.S.); (M.S.)
- Correspondence: (M.C.); (G.L.)
| | - Vincenzo Cavalieri
- Institute for Sustainable Plant Protection, CNR, Via Amendola 122/D, 70126 Bari, Italy; (C.G.); (A.D.S.); (V.C.); (G.A.); (S.Z.); (P.S.); (M.S.)
| | - Giuseppe Altamura
- Institute for Sustainable Plant Protection, CNR, Via Amendola 122/D, 70126 Bari, Italy; (C.G.); (A.D.S.); (V.C.); (G.A.); (S.Z.); (P.S.); (M.S.)
| | - Stefania Zicca
- Institute for Sustainable Plant Protection, CNR, Via Amendola 122/D, 70126 Bari, Italy; (C.G.); (A.D.S.); (V.C.); (G.A.); (S.Z.); (P.S.); (M.S.)
| | - Pasquale Saldarelli
- Institute for Sustainable Plant Protection, CNR, Via Amendola 122/D, 70126 Bari, Italy; (C.G.); (A.D.S.); (V.C.); (G.A.); (S.Z.); (P.S.); (M.S.)
| | - Maria Saponari
- Institute for Sustainable Plant Protection, CNR, Via Amendola 122/D, 70126 Bari, Italy; (C.G.); (A.D.S.); (V.C.); (G.A.); (S.Z.); (P.S.); (M.S.)
| |
Collapse
|
6
|
Krause-Sakate R, Watanabe LFM, Gorayeb ES, da Silva FB, Alvarez DDL, Bello VH, Nogueira AM, de Marchi BR, Vicentin E, Ribeiro-Junior MR, Marubayashi JM, Rojas-Bertini CA, Muller C, Bueno RCODF, Rosales M, Ghanim M, Pavan MA. Population Dynamics of Whiteflies and Associated Viruses in South America: Research Progress and Perspectives. INSECTS 2020; 11:insects11120847. [PMID: 33260578 PMCID: PMC7760982 DOI: 10.3390/insects11120847] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/30/2020] [Accepted: 11/26/2020] [Indexed: 11/16/2022]
Abstract
Simple Summary Whiteflies are one of the most important and widespread pests in the world. In South America, the currently most important species occurring are Bemisia afer,Trialeurodes vaporariorum, and the cryptic species Middle East-Asia Minor 1, Mediterranean, and New World, from Bemisia tabaci complex. The present review compiles information from several studies conducted in South America regarding these insects, providing data related to the dynamics and distribution of whiteflies, the associated viruses, and the management strategies to keep whiteflies under the economic damage threshold. Abstract By having an extensive territory and suitable climate conditions, South America is one of the most important agricultural regions in the world, providing different kinds of vegetable products to different regions of the world. However, such favorable conditions for plant production also allow the development of several pests, increasing production costs. Among them, whiteflies (Hemiptera: Aleyrodidae) stand out for their potential for infesting several crops and for being resistant to insecticides, having high rates of reproduction and dispersal, besides their efficient activity as virus vectors. Currently, the most important species occurring in South America are Bemisia afer, Trialeurodes vaporariorum, and the cryptic species Middle East-Asia Minor 1, Mediterranean, and New World, from Bemisia tabaci complex. In this review, a series of studies performed in South America were compiled in an attempt to unify the advances that have been developed in whitefly management in this continent. At first, a background of the current whitefly distribution in South American countries as well as factors affecting them are shown, followed by a background of the whitefly transmitted viruses in South America, addressing their location and association with whiteflies in each country. Afterwards, a series of management strategies are proposed to be implemented in South American fields, including cultural practices and biological and chemical control, finalizing with a section containing future perspectives and directions for further research.
Collapse
Affiliation(s)
- Renate Krause-Sakate
- Department of Plant Protection, Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Botucatu 18610-034, Brazil; (L.F.M.W.); (E.S.G.); (F.B.d.S.); (D.d.L.A.); (V.H.B.); (A.M.N.); (E.V.); (M.R.R.-J.); (J.M.M.); (R.C.O.d.F.B.); (M.A.P.)
- Correspondence: ; Tel.: +55-14-3880-7487
| | - Luís Fernando Maranho Watanabe
- Department of Plant Protection, Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Botucatu 18610-034, Brazil; (L.F.M.W.); (E.S.G.); (F.B.d.S.); (D.d.L.A.); (V.H.B.); (A.M.N.); (E.V.); (M.R.R.-J.); (J.M.M.); (R.C.O.d.F.B.); (M.A.P.)
| | - Eduardo Silva Gorayeb
- Department of Plant Protection, Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Botucatu 18610-034, Brazil; (L.F.M.W.); (E.S.G.); (F.B.d.S.); (D.d.L.A.); (V.H.B.); (A.M.N.); (E.V.); (M.R.R.-J.); (J.M.M.); (R.C.O.d.F.B.); (M.A.P.)
- Facultad de Agronomía e Ingeniería, Pontificia Universidad Católica de Chile, Forestal, Vicuña Mackena, 4860, Macul, Santiago 7820436, Chile; (C.A.R.-B.); (M.R.)
| | - Felipe Barreto da Silva
- Department of Plant Protection, Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Botucatu 18610-034, Brazil; (L.F.M.W.); (E.S.G.); (F.B.d.S.); (D.d.L.A.); (V.H.B.); (A.M.N.); (E.V.); (M.R.R.-J.); (J.M.M.); (R.C.O.d.F.B.); (M.A.P.)
| | - Daniel de Lima Alvarez
- Department of Plant Protection, Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Botucatu 18610-034, Brazil; (L.F.M.W.); (E.S.G.); (F.B.d.S.); (D.d.L.A.); (V.H.B.); (A.M.N.); (E.V.); (M.R.R.-J.); (J.M.M.); (R.C.O.d.F.B.); (M.A.P.)
| | - Vinicius Henrique Bello
- Department of Plant Protection, Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Botucatu 18610-034, Brazil; (L.F.M.W.); (E.S.G.); (F.B.d.S.); (D.d.L.A.); (V.H.B.); (A.M.N.); (E.V.); (M.R.R.-J.); (J.M.M.); (R.C.O.d.F.B.); (M.A.P.)
| | - Angélica Maria Nogueira
- Department of Plant Protection, Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Botucatu 18610-034, Brazil; (L.F.M.W.); (E.S.G.); (F.B.d.S.); (D.d.L.A.); (V.H.B.); (A.M.N.); (E.V.); (M.R.R.-J.); (J.M.M.); (R.C.O.d.F.B.); (M.A.P.)
| | | | - Eduardo Vicentin
- Department of Plant Protection, Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Botucatu 18610-034, Brazil; (L.F.M.W.); (E.S.G.); (F.B.d.S.); (D.d.L.A.); (V.H.B.); (A.M.N.); (E.V.); (M.R.R.-J.); (J.M.M.); (R.C.O.d.F.B.); (M.A.P.)
| | - Marcos Roberto Ribeiro-Junior
- Department of Plant Protection, Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Botucatu 18610-034, Brazil; (L.F.M.W.); (E.S.G.); (F.B.d.S.); (D.d.L.A.); (V.H.B.); (A.M.N.); (E.V.); (M.R.R.-J.); (J.M.M.); (R.C.O.d.F.B.); (M.A.P.)
| | - Julio Massaharu Marubayashi
- Department of Plant Protection, Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Botucatu 18610-034, Brazil; (L.F.M.W.); (E.S.G.); (F.B.d.S.); (D.d.L.A.); (V.H.B.); (A.M.N.); (E.V.); (M.R.R.-J.); (J.M.M.); (R.C.O.d.F.B.); (M.A.P.)
| | - Claudia Andrea Rojas-Bertini
- Facultad de Agronomía e Ingeniería, Pontificia Universidad Católica de Chile, Forestal, Vicuña Mackena, 4860, Macul, Santiago 7820436, Chile; (C.A.R.-B.); (M.R.)
| | | | - Regiane Cristina Oliveira de Freitas Bueno
- Department of Plant Protection, Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Botucatu 18610-034, Brazil; (L.F.M.W.); (E.S.G.); (F.B.d.S.); (D.d.L.A.); (V.H.B.); (A.M.N.); (E.V.); (M.R.R.-J.); (J.M.M.); (R.C.O.d.F.B.); (M.A.P.)
| | - Marlene Rosales
- Facultad de Agronomía e Ingeniería, Pontificia Universidad Católica de Chile, Forestal, Vicuña Mackena, 4860, Macul, Santiago 7820436, Chile; (C.A.R.-B.); (M.R.)
| | - Murad Ghanim
- Department of Entomology, Institute of Plant Protection, The Volcani Center, Rishon LeZion 7505101, Israel;
| | - Marcelo Agenor Pavan
- Department of Plant Protection, Universidade Estadual Paulista “Julio de Mesquita Filho” (UNESP), Botucatu 18610-034, Brazil; (L.F.M.W.); (E.S.G.); (F.B.d.S.); (D.d.L.A.); (V.H.B.); (A.M.N.); (E.V.); (M.R.R.-J.); (J.M.M.); (R.C.O.d.F.B.); (M.A.P.)
| |
Collapse
|
7
|
Fan X, Zhang Z, Ren F, Hu G, Li C, Zhang B, Dong Y. Development of a Full-Length Infectious cDNA Clone of the Grapevine Berry Inner Necrosis Virus. PLANTS 2020; 9:plants9101340. [PMID: 33050558 PMCID: PMC7601338 DOI: 10.3390/plants9101340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 11/30/2022]
Abstract
Grapevine berry inner necrosis virus (GINV) belongs to the genus Trichovirus in the family Betaflexiviridae. The GINV isolate LN_BETA_RS was obtained from a “Beta” grapevine (Vitis riparia × Vitis labrusca) exhibiting chlorotic mottling and ring spot in Xingcheng, Liaoning Province, China. To verify the correlation between GINV and grapevine chlorotic mottling and ring spot disease, we constructed an infectious cDNA clone of GINV isolate LN_BETA_RS using the seamless assembly approach. Applied treatments of agroinfiltration infectious cDNA confirmed systemic GINV infection of the Nicotianaoccidentalis 37B by reverse transcription polymerase chain reaction (RT-PCR) and transmission electron microscopy, exhibiting chlorotic mottling symptoms on leaves. Infectious cDNA was also transmitted to new healthy N. occidentalis plants through rub-inoculation. Moreover, the cDNA clone was agroinfiltrated into “Beta” and “Thompson Seedless” grapevine plantlets, and the inoculated grapevines exhibited leaf chlorotic mottling and ringspot during the two years of observation. GINV-inoculated “Beta” grapevines had serious leaf chlorotic mottling and ringspot symptoms on the whole plant, while relatively few symptoms were observed on the leaves of agroinoculated “Thompson Seedless” grapevines in early spring and only weak ring spot gradually appeared later in the top young leaves. Our experiments fulfilled Koch’s postulates and revealed the causative role of GINV in grapevine chlorotic mottling and ring spot disease.
Collapse
|
8
|
Fiallo-Olivé E, Navas-Castillo J. Molecular and Biological Characterization of a New World Mono-/Bipartite Begomovirus/Deltasatellite Complex Infecting Corchorus siliquosus. Front Microbiol 2020; 11:1755. [PMID: 32793176 PMCID: PMC7390960 DOI: 10.3389/fmicb.2020.01755] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/06/2020] [Indexed: 12/02/2022] Open
Abstract
The genus Begomovirus (family Geminiviridae) is the largest genus in the entire virosphere, with more than 400 species recognized. Begomoviruses are single-stranded DNA plant viruses transmitted by whiteflies of the Bemisia tabaci complex and are considered one of the most important groups of emerging plant viruses in tropical and subtropical regions. Several types of DNA satellites have been described to be associated with begomoviruses: betasatellites, alphasatellites, and deltasatellites. Recently, a family of single-stranded DNA satellites associated with begomoviruses has been created, Tolecusatellitidae, including the genera Betasatellite and Deltasatellite. In this work, we analyzed the population of begomoviruses and associated DNA satellites present in Corchorus siliquosus, a malvaceous plant growing wild in Central America, southeastern North America and the Caribbean, collected in Cuba. The genomes of isolates of two New World begomoviruses [(Desmodium leaf distortion virus (DesLDV) and Corchorus yellow vein Cuba virus (CoYVCUV)] and two deltasatellites [tomato yellow leaf distortion deltasatellite 2 (TYLDD2) and Desmodium leaf distortion deltasatellite (DesLDD)] have been cloned and sequenced from plants showing yellow vein symptoms. Isolates of one of the begomoviruses, CoYVCUV, and one of the deltasatellites, DesLDD, represent novel species. Experiments with infectious clones showed the monopartite nature of CoYVCUV and that DesLDD utilizes the bipartite DesLDV as helper virus, but not the monopartite CoYVCUV. Also, CoYVCUV was shown to infect common bean in addition to Nicotiana benthamiana. This is the first time that (i) a monopartite New World begomovirus is found in a host other than tomato and (ii) deltasatellites have been found in C. siliquosus, thus extending the host and helper virus ranges of this recently recognized class of DNA satellites.
Collapse
Affiliation(s)
- Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Cient ficas - Universidad de Málaga (IHSM-CSIC-UMA), Málaga, Spain
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Consejo Superior de Investigaciones Cient ficas - Universidad de Málaga (IHSM-CSIC-UMA), Málaga, Spain
| |
Collapse
|
9
|
Reconstruction and Characterization of Full-Length Begomovirus and Alphasatellite Genomes Infecting Pepper through Metagenomics. Viruses 2020; 12:v12020202. [PMID: 32054104 PMCID: PMC7077291 DOI: 10.3390/v12020202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/10/2020] [Accepted: 01/16/2020] [Indexed: 01/18/2023] Open
Abstract
In northwestern Argentina (NWA), pepper crops are threatened by the emergence of begomoviruses due to the spread of its vector, Bemisia tabaci (Gennadius). The genus Begomovirus includes pathogens that can have a monopartite or bipartite genome and are occasionally associated with sub-viral particles called satellites. This study characterized the diversity of begomovirus and alphasatellite species infecting pepper in NWA using a metagenomic approach. Using RCA-NGS (rolling circle amplification-next generation sequencing), 19 full-length begomovirus genomes (DNA-A and DNA-B) and one alphasatellite were assembled. This ecogenomic approach revealed six begomoviruses in single infections: soybean blistering mosaic virus (SbBMV), tomato yellow spot virus (ToYSV), tomato yellow vein streak virus (ToYVSV), tomato dwarf leaf virus (ToDfLV), sida golden mosaic Brazil virus (SiGMBRV), and a new proposed species, named pepper blistering leaf virus (PepBLV). SbBMV was the most frequently detected species, followed by ToYSV. Moreover, a new alphasatellite associated with ToYSV, named tomato yellow spot alphasatellite 2 (ToYSA-2), was reported for the first time in Argentina. For the Americas, this was the first report of an alphasatellite found in a crop (pepper) and in a weed (Leonurus japonicus). We also detected intra-species and inter-species recombination.
Collapse
|
10
|
Frequent occurrence of Mungbean yellow mosaic India virus in tomato leaf curl disease affected tomato in Oman. Sci Rep 2019; 9:16634. [PMID: 31719590 PMCID: PMC6851148 DOI: 10.1038/s41598-019-53106-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 10/23/2019] [Indexed: 11/20/2022] Open
Abstract
Next generation sequencing (NGS) of DNAs amplified by rolling circle amplification from 6 tomato (Solanum lycopersicum) plants with leaf curl symptoms identified a number of monopartite begomoviruses, including Tomato yellow leaf curl virus (TYLCV), and a betasatellite (Tomato leaf curl betasatellite [ToLCB]). Both TYLCV and ToLCB have previously been identified infecting tomato in Oman. Surprisingly the NGS results also suggested the presence of the bipartite, legume-adapted begomovirus Mungbean yellow mosaic Indian virus (MYMIV). The presence of MYMIV was confirmed by cloning and Sanger sequencing from four of the six plants. A wider analysis by PCR showed MYMIV infection of tomato in Oman to be widespread. Inoculation of plants with full-length clones showed the host range of MYMIV not to extend to Nicotiana benthamiana or tomato. Inoculation to N. benthamiana showed TYLCV to be capable of maintaining MYMIV in both the presence and absence of the betasatellite. In tomato MYMIV was only maintained by TYLCV in the presence of the betasatellite and then only at low titre and efficiency. This is the first identification of TYLCV with ToLCB and the legume adapted bipartite begomovirus MYMIV co-infecting tomato. This finding has far reaching implications. TYLCV has spread around the World from its origins in the Mediterranean/Middle East, in some instances, in live tomato planting material. The results here may suggest that begomoviruses which do not commonly infect tomato, such as MYMIV, could be spread as a passenger of TYLCV in tomato.
Collapse
|
11
|
Melgarejo TA, Rojas MR, Gilbertson RL. A Bipartite Begomovirus Infecting Boerhavia erecta (Family Nyctaginaceae) in the Dominican Republic Represents a Distinct Phylogenetic Lineage and has a High Degree of Host Specificity. PHYTOPATHOLOGY 2019; 109:1464-1474. [PMID: 30995160 DOI: 10.1094/phyto-02-19-0061-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Boerhavia erecta plants in and around agricultural fields in the Azua Valley of the southeastern Dominican Republic often show striking golden mosaic symptoms. Leaf samples from B. erecta plants showing these symptoms were collected in 2012 and 2013, and PCR tests with degenerate primers revealed begomovirus DNA-A and DNA-B components. The complete sequences of the DNA-A and DNA-B components of four isolates show a high degree of sequence identity (>96%) and a genome organization typical of New World (NW) bipartite begomoviruses. Sequence comparisons and phylogenetic analyses revealed that these isolates composed a new phylogenetic lineage of NW bipartite begomoviruses. The most closely related begomovirus is Merremia mosaic virus, a weed-infecting species from Puerto Rico. Because DNA-A sequence identities are well below the 91% threshold, these isolates represent a new begomovirus species, for which the name Boerhavia golden mosaic virus (BoGMV) is proposed. Infectious cloned BoGMV DNA-A and DNA-B components induced golden mosaic symptoms in agroinoculated B. erecta plants, thereby fulfilling Koch's postulates for this disease. Agroinoculation and mechanical transmission experiments revealed that BoGMV has an unusually narrow host range, limited to members of the family Nyctaginaceae and not including the permissive host Nicotiana benthamiana. The inability of BoGMV to infect N. benthamiana was due to a deficiency in cell-to-cell movement but not to a unique amino acid residue in the movement protein.
Collapse
Affiliation(s)
- Tomas A Melgarejo
- 1Department of Plant Pathology, University of California, Davis, One Shield Ave., CA 95616, U.S.A
- 2Departamento de Fitopatologia, Universidad Nacional Agraria La Molina, Av. La Molina s/n La Molina, Lima, Peru
| | - Maria R Rojas
- 1Department of Plant Pathology, University of California, Davis, One Shield Ave., CA 95616, U.S.A
| | - Robert L Gilbertson
- 1Department of Plant Pathology, University of California, Davis, One Shield Ave., CA 95616, U.S.A
| |
Collapse
|
12
|
Molecular characterization and phylogenetic analysis of tomato leaf curl Palampur virus, a bipartite begomovirus, associated with Cucumis sativus L. in Pakistan. 3 Biotech 2019; 9:204. [PMID: 31139535 DOI: 10.1007/s13205-019-1727-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 04/24/2019] [Indexed: 12/28/2022] Open
Abstract
Leaf samples of Cucumis Sativus L. (C. sativus) (Family; Cucurbitaceae) showing vein thickening, mild leaf curling and leaf enations were collected from the farmer's field. Amplification of the full-length viral molecules was performed through rolling circle amplification (RCA). Cloning of the full-length viral molecules was done through standard cloning procedure followed by sequencing. Sequence similarity analysis and phylogenetic studies showed that the virus associated with leaf curling and enations in C. sativus was a bipartite begomovirus, where DNA-A and DNA-B showed highest nucleotide sequence homology of 98% and 97% to tomato leaf curl Palampur virus (ToLCPMV) from India. Attempts to isolate betasatellites and alphasatellites through PCR using RCA product as template, did not result in any amplification. A maximum likelihood phylogenetic tree grouped DNA-A and B components with other isolates from India. SDT was used to find the pairwise identity scores of different sequences of ToLCPMV present in the database. Phylogenetic analysis showed that sequences of ToLCPMV DNA-A and B components in this study share high degree of homology with existing viruses and are isolates of ToLCPMV-India. Infectious molecules of both components (Accessions, MG252783 and MG252784, respectively) were constructed for infectivity analysis to fulfill the Koch's postulate. Infectivity analysis revealed that ToLCPMV DNA-A is infectious to model host plant Nicotiana benthamiana and viral accumulation was confirmed through Southern blot analysis. Accumulation of DNA-B was confirmed through PCR. Infectivity analysis was also conducted using the original host, C. sativus, but plants were unable to survive the agroinoculation. To our knowledge this is the first report of ToLCPMV associated with C. sativus L. in Pakistan.
Collapse
|
13
|
Mondal D, Mandal S, Shil S, Sahana N, Pandit GK, Choudhury A. Genome wide molecular evolution analysis of begomoviruses reveals unique diversification pattern in coat protein gene of Old World and New World viruses. Virusdisease 2019; 30:74-83. [PMID: 31143834 DOI: 10.1007/s13337-019-00524-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 03/15/2019] [Indexed: 11/30/2022] Open
Abstract
Begomoviruses (Family-Geminiviridae) are plant infecting single stranded DNA viruses known to evolve very fast. Here, we have analysed the DNA-A sequences of 302 begomoviruses reported as 'type isolates' from different countries following the list of International Committee on Taxonomy of Viruses till 2017. Phylogenetic analysis was performed which revealed two major evolutionarily distinct groups namely Old World (OW) and New World (NW) viruses. Our work present evidence that cp gene has varied degree of diversification among the viruses reported from NW and OW. The NW viruses are more conserved in their cp gene sequences than that of OW viruses irrespective of host plant families. Further analysis reveals that cp gene differs in its recombination pattern among OW and NW viruses whereas rep gene is highly recombination prone in both OW and NW viruses. The sequence conservation in cp gene in NW viruses is a result of meagre recombination and subsequent low substitution rate in comparison to OW viruses. Our results demonstrated that the cp gene in NW viruses is less likely to possess nuclear localisation sequences than OW cp gene. Further we present evidence that the NW-cp is under the influence of strong purifying selection. We propose that the precoat protein (pcp) gene present exclusively in the 5' of cp gene in OW viruses is highly diversified and strong positive selection working on pcp gene might be attributing largely to the diversity of OW-cp gene.
Collapse
Affiliation(s)
- Debayan Mondal
- 1Department of Biochemistry, Uttar Banga Krishi Viswavidyalaya, Coochbehar, West Bengal India
| | - Somnath Mandal
- 1Department of Biochemistry, Uttar Banga Krishi Viswavidyalaya, Coochbehar, West Bengal India
| | - Sandip Shil
- Regional Research Centre, ICAR-CPCRI, Mohitnagar, Jalpaiguri, West Bengal 735102 India
| | - Nandita Sahana
- 1Department of Biochemistry, Uttar Banga Krishi Viswavidyalaya, Coochbehar, West Bengal India
| | - Goutam Kumar Pandit
- 1Department of Biochemistry, Uttar Banga Krishi Viswavidyalaya, Coochbehar, West Bengal India
| | - Ashok Choudhury
- 3Soil Microbiology Laboratory, Regional Research Station, Terai Zone, Uttar Banga Krishi Viswavidyalaya, Coochbehar, West Bengal India
| |
Collapse
|
14
|
Romay G, Geraud-Pouey F, Chirinos DT, Mahillon M, Gillis A, Mahillon J, Bragard C. Tomato Twisted Leaf Virus: A Novel Indigenous New World Monopartite Begomovirus Infecting Tomato in Venezuela. Viruses 2019; 11:E327. [PMID: 30987360 PMCID: PMC6521247 DOI: 10.3390/v11040327] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/22/2019] [Accepted: 04/02/2019] [Indexed: 11/17/2022] Open
Abstract
Begomoviruses are one of the major groups of plant viruses with an important economic impact on crop production in tropical and subtropical regions. The global spread of its polyphagous vector, the whitefly Bemisia tabaci, has contributed to the emergence and diversification of species within this genus. In this study, we found a putative novel begomovirus infecting tomato plants in Venezuela without a cognate DNA-B component. This begomovirus was genetically characterized and compared with related species. Furthermore, its infectivity was demonstrated by agroinoculation of infectious clones in tomato (Solanum lycopersicum) and Nicotiana benthamiana plants. The name Tomato twisted leaf virus (ToTLV) is proposed. ToTLV showed the typical genome organization of the DNA-A component of New World bipartite begomoviruses. However, the single DNA component of ToTLV was able to develop systemic infection in tomato and N. benthamiana plants, suggesting a monopartite nature of its genome. Interestingly, an additional open reading frame ORF was observed in ToTLV encompassing the intergenic region and the coat protein gene, which is not present in other closely related begomoviruses. A putative transcript from this region was amplified by strand-specific reverse transcription-PCR. Along with recent studies, our results showed that the diversity of monopartite begomoviruses from the New World is greater than previously thought.
Collapse
Affiliation(s)
- Gustavo Romay
- UCLouvain, Earth and Life Institute, Applied Microbiology-Phytopathology, Croix du Sud 2-L07.05.03, 1348 Louvain-la-Neuve, Belgium.
| | - Francis Geraud-Pouey
- La Universidad del Zulia (LUZ), Unidad Técnica Fitosanitaria, Maracaibo 4005, Estado Zulia, Venezuela.
| | - Dorys T Chirinos
- Facultad de Ingeniería Agronómica, Universidad Técnica de Manabí, Manabí 130105, Ecuador.
| | - Mathieu Mahillon
- UCLouvain, Earth and Life Institute, Applied Microbiology-Phytopathology, Croix du Sud 2-L07.05.03, 1348 Louvain-la-Neuve, Belgium.
| | - Annika Gillis
- UCLouvain, Earth and Life Institute, Applied Microbiology-Laboratory of Food and Environmental Microbiology, Croix du Sud 2-L7.05.12, 1348 Louvain-la-Neuve, Belgium.
| | - Jacques Mahillon
- UCLouvain, Earth and Life Institute, Applied Microbiology-Laboratory of Food and Environmental Microbiology, Croix du Sud 2-L7.05.12, 1348 Louvain-la-Neuve, Belgium.
| | - Claude Bragard
- UCLouvain, Earth and Life Institute, Applied Microbiology-Phytopathology, Croix du Sud 2-L07.05.03, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
15
|
Idris AM, Al-Saleh MA, M Zakri A, Brown JK. Minimal genomic variability in Merremia mosaic virus isolates endemic in Merremia spp and cultivated tomato in Puerto Rico. Virusdisease 2019; 30:84-94. [PMID: 31143835 PMCID: PMC6517463 DOI: 10.1007/s13337-017-0412-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 11/15/2017] [Indexed: 11/24/2022] Open
Abstract
Merremia mosaic virus (MerMV), a bipartite begomovirus, was identified for the first time as a pathogen of commercial tomato plantings. Infection of tomato by MerMV caused mild leaf curling and yellow foliar mosaic symptoms. Herein, the MerMV was identified in symptomatic Merremia quinquefolia and M. aegyptia (Convolvulaceae) plants exhibiting bright yellow or yellow-green foliar mosaic symptoms, respectively. The full-length begomoviral components were amplified from total DNA isolated from two wild species of Merremia and commercial tomato plants during 1991-1998. The DNA was subjected to rolling circle amplification, restriction digestion, and DNA sequencing. The resultant 19 and 26 apparently full-length DNA-A and DNA-B components were ~ 2557 and ~ 2492 bases, respectively. The 140-base common region was 97.9% identical between DNA-A and -B components, a predictive evidence for cognate DNA-A and -B components. Although the DNA-A components were highly conserved at 96-100%, the DNA-B components diverged at ~ 89 to 100%, respectively. The overall clonal genomic features strongly suggested that MerMV lineage has been under host-selection for some time, and only recently, has undergone a host-shift, putatively, from wild convolvulaceous species to tomato (Solanaceae). Phylogenetically, MerMV grouped with other bipartite begomoviruses indigenous to the Caribbean region, with MerMV DNA-A components forming three clusters, and the DNA-B components grouped in one clade. Both clades contained only one closet relative, an isolate of MerMV from Venezuela, MerMV-VE. Biolistic inoculation of M. quinquefolia and tomato seedlings with the DNA-A and -B components of PR68 and PR80 resulted in development of symptoms like those observed in naturally-infected species, respectively.
Collapse
Affiliation(s)
- Ali M. Idris
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721 USA
| | - M. A. Al-Saleh
- Plant Protection Department, King Saud University, Riyadh, Saudi Arabia
| | - A. M Zakri
- Plant Protection Department, King Saud University, Riyadh, Saudi Arabia
| | - J. K. Brown
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721 USA
| |
Collapse
|
16
|
Mubin M, Briddon RW, Mansoor S. The V2 protein encoded by a monopartite begomovirus is a suppressor of both post-transcriptional and transcriptional gene silencing activity. Gene 2019; 686:43-48. [PMID: 30399424 DOI: 10.1016/j.gene.2018.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/08/2018] [Accepted: 11/01/2018] [Indexed: 11/23/2022]
Abstract
Papaya leaf curl virus (PaLCuV) is a begomovirus (genus Begomovirus; family Geminiviridae) with a monopartite genome that is usually associated with beta- and alphasatellites in plants. Geminiviruses are DNA viruses with small circular genomes that occur as minichromosomes in the nucleus and are susceptible to post-transcriptional gene silencing (PTGS) and transcriptional gene silencing (TGS). Transient expression of the PaLCuV V2 (PV2) protein together with the green fluorescent protein (GFP) in Nicotiana benthamiana resulted in enhanced levels of GFP fluorescence and GFP mRNA, indicative of suppression of PTGS. Expression of PV2 from a Potato virus X vector restored GFP expression in N. benthamiana plants harbouring a transcriptionally silenced GFP transgene, indicative of suppression of TGS. The results show that the PV2 protein encoded by PaLCuV has both suppressor of PTGS and TGS activity and is an important factor in overcoming host RNA-silencing based defenses.
Collapse
Affiliation(s)
- Muhammad Mubin
- Virology Lab, Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad 38000, Pakistan; Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan.
| | - Rob W Briddon
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan
| |
Collapse
|
17
|
Iqbal Z, Shafiq M, Ali I, Mansoor S, Briddon RW. Maintenance of Cotton Leaf Curl Multan Betasatellite by Tomato Leaf Curl New Delhi Virus-Analysis by Mutation. FRONTIERS IN PLANT SCIENCE 2017; 8:2208. [PMID: 29312431 PMCID: PMC5744040 DOI: 10.3389/fpls.2017.02208] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 12/15/2017] [Indexed: 06/07/2023]
Abstract
Viruses of the genus Begomovirus (family Geminiviridae) are economically important phytopathogens that are transmitted plant-to-plant by the whitefly Bemisia tabaci. Most Old World (OW) begomoviruses are monopartite and many of these interact with symptoms and host range determining betasatellites. Tomato leaf curl New Delhi virus (ToLCNDV) is one of only a few OW begomoviruses with a bipartite genome (components known as DNA A and DNA B). Four genes [AV2, coat protein (CP), transcriptional-activator protein (TrAP), and AC4] of ToLCNDV were mutated and the effects of the mutations on infectivity, symptoms and the ability to maintain Cotton leaf curl Multan betasatellite (CLCuMuB) were investigated. Infectivity and virus/betasatellite DNA titer were assessed by Southern blot hybridization, PCR, and quantitative PCR. The results showed TrAP of ToLCNDV to be essential for maintenance of CLCuMuB and AV2 to be important only in the presence of the DNA B. AC4 was found to be important for the maintenance of CLCuMuB in the presence of, but indispensable in the absence of, the DNA B. Rather than being required for maintenance, the CP was shown to possibly interfere with maintenance of the betasatellite. The findings show that the interaction between a bipartite begomovirus and a betasatellite is more complex than just trans-replication. Clearly, multiple levels of interactions are present and such associations can cause additional significant losses to crops although the interaction may not be stable.
Collapse
Affiliation(s)
- Zafar Iqbal
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Muhammad Shafiq
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences, Nilore, Pakistan
| | - Irfan Ali
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Rob W. Briddon
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| |
Collapse
|
18
|
Characterization of tomato leaf curl purple vein virus, a new monopartite New World begomovirus infecting tomato in Northeast Brazil. Arch Virol 2017; 163:737-743. [PMID: 29224131 DOI: 10.1007/s00705-017-3662-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/20/2017] [Indexed: 10/18/2022]
Abstract
A new begomovirus species was identified from tomato plants with upward leaf curling and purple vein symptoms, which was first identified in the Piaui state of Northeast (NE) Brazil in 2014. Tomato leaf samples were collected in 2014 and 2016, and PCR with degenerate primers revealed begomovirus infection. Rolling circle amplification and restriction enzyme digestion indicated a single genomic DNA of ~ 2.6 kb. Cloning and sequencing revealed a genome organization similar to DNA-A components of New World (NW) bipartite begomoviruses, with no DNA-B. The complete nucleotide sequence had the highest identity (80%) with the DNA-A of Macroptilium yellow spot virus (MacYSV), and phylogenetic analyses showed it is a NW begomovirus that clusters with MacYSV and Blainvillea yellow spot virus, also from NE Brazil. Tomato plants agroinoculated with a dimeric clone of this genomic DNA developed upward leaf curling and purple vein symptoms, indistinguishable from those observed in the field. Based on agroinoculation, this virus has a narrow host range, mainly within the family Solanaceae. Co-inoculation experiments with tomato severe rugose virus and tomato mottle leaf curl virus, the two predominant begomoviruses infecting tomato in Brazil, revealed a synergistic interaction among these begomoviruses. The name Tomato leaf curl purple vein virus (ToLCPVV) is proposed for this new begomovirus.
Collapse
|
19
|
Abbas Q, Amin I, Mansoor S, Shafiq M, Wassenegger M, Briddon RW. The Rep proteins encoded by alphasatellites restore expression of a transcriptionally silenced green fluorescent protein transgene in Nicotiana benthamiana. Virusdisease 2017; 30:101-105. [PMID: 31143837 DOI: 10.1007/s13337-017-0413-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 11/15/2017] [Indexed: 10/18/2022] Open
Abstract
Alphasatellites are non-essential satellite-like components associated with geminiviruses. The precise selective advantage to a geminivirus infection of an alphasatellite remains unclear. The ability of the cotton leaf curl Multan alphasatellite (CLCuMuA)-encoded replication-associated protein (Rep) to suppress TGS was investigated by using Nicotiana benthamiana line 16-TGS (16-TGS) harbouring a transcriptionally silenced green fluorescent protein (GFP) transgene. Inoculation of 16-TGS plants with a recombinant Potato virus X (PVX) vector carrying CLCuMuA Rep resulted in restoration of GFP expression. Northern blot analysis confirmed that the observed GFP fluorescence was associated with GFP mRNA accumulation. Inoculation with PVX vectors harbouring a further six Rep proteins, encoded by genetically distinct alphasatellites, were similarly shown to result in 16-TGS plants with restored GFP expression. These results indicate that the alphasatellite-encoded Rep can restore the expression of a transcriptionally silenced GFP transgene in N. benthamiana, indicating that alphasatellites are involved in overcoming host defence.
Collapse
Affiliation(s)
- Qamar Abbas
- 1National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan.,RLP-Agroscience, AlPlanta - Institute for Plant Research, Neustadt, Germany
| | - Imran Amin
- 1National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan
| | - Shahid Mansoor
- 1National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan
| | - Muhammad Shafiq
- 1National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan.,RLP-Agroscience, AlPlanta - Institute for Plant Research, Neustadt, Germany.,3Present Address: Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | | | - Rob W Briddon
- 1National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan
| |
Collapse
|
20
|
Tang YF, He ZF, Brown JK, She XM, Lan GB. Molecular characterization of a novel bipartite begomovirus isolated from Lycianthes biflora in China. Arch Virol 2017; 162:2473-2476. [PMID: 28444537 DOI: 10.1007/s00705-017-3333-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 02/21/2017] [Indexed: 10/19/2022]
Abstract
A bipartite begomovirus isolate GD was isolated from Lycianthes biflora plants showing yellow mosaic symptoms in Nanxiong, Guangdong Province, China. The apparently full-length DNA-A and DNA-B viral components were cloned after enrichment of circular DNA by rolling circle amplification, restriction digestion, cloning, and DNA sequencing. The DNA-A component (2752nt, KT582302) shares highest (80.2%) nucleotide (nt) sequence identity with tomato leaf curl Sulawesi virus [Indonesia-Sulawesi-Langowan F101-2006] (ToLCSuV- [ID-Sul -LanF09-06], FJ237618), reported in Indonesia as causing yellow leaf curl disease of chilli pepper. The DNA-B component (2704nt, KT582303) shares highest (76.3%) nt sequence identity with pepper yellow leaf curl Indonesia virus-[Indonesia-tomato2-2005] (PepYLCIV-[ID-Tom2-05 AB213599) reported in Indonesia, and associated with yellow leaf curl disease in tomato. Based on the ICTV guidelines for begomoviral species demarcation, the virus is a new, previously undescribed bipartite begomovirus species for which the name "Lycianthes yellow mosaic virus" is proposed.
Collapse
Affiliation(s)
- Y F Tang
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, China
| | - Z F He
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China. .,Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, China.
| | - J K Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ, 85721, USA
| | - X M She
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - G B Lan
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| |
Collapse
|
21
|
Fiallo-Olivé E, Tovar R, Navas-Castillo J. Deciphering the biology of deltasatellites from the New World: maintenance by New World begomoviruses and whitefly transmission. THE NEW PHYTOLOGIST 2016; 212:680-692. [PMID: 27400152 DOI: 10.1111/nph.14071] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 05/23/2016] [Indexed: 06/06/2023]
Abstract
Deltasatellites are small noncoding DNA satellites associated with begomoviruses. The study presented here has investigated the biology of two deltasatellites found in wild malvaceous plants in the New World (NW). Infectious clones of two NW deltasatellites (from Malvastrum coromandelianum and Sidastrum micranthum) and associated begomoviruses were constructed. Infectivity in Nicotiana benthamiana and their natural malvaceous hosts was assessed. The NW deltasatellites were not able to spread autonomously in planta, whereas they were maintained by the associated bipartite begomovirus. Furthermore, NW deltasatellites were transreplicated by a monopartite NW begomovirus, tomato leaf deformation virus. However, they were not maintained by begomoviruses from the Old World (tomato yellow leaf curl virus, tomato yellow leaf curl Sardinia virus and African cassava mosaic virus) or a curtovirus (beet curly top virus). NW deltasatellites did not affect the symptoms induced by the helper viruses but in some cases reduced their accumulation. Moreover, one NW deltasatellite was shown to be transmitted by the whitefly Bemisia tabaci, the vector of its helper begomoviruses. These results confirm that these molecules are true satellites. The availability of infectious clones and the observation that NW deltasatellites reduced virus accumulation paves the way for further studies of the effect on their helper begomoviruses.
Collapse
Affiliation(s)
- Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental 'La Mayora', 29750, Algarrobo-Costa, Málaga, Spain
| | - Remedios Tovar
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental 'La Mayora', 29750, Algarrobo-Costa, Málaga, Spain
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental 'La Mayora', 29750, Algarrobo-Costa, Málaga, Spain.
| |
Collapse
|
22
|
Zaidi SSEA, Shafiq M, Amin I, Scheffler BE, Scheffler JA, Briddon RW, Mansoor S. Frequent Occurrence of Tomato Leaf Curl New Delhi Virus in Cotton Leaf Curl Disease Affected Cotton in Pakistan. PLoS One 2016; 11:e0155520. [PMID: 27213535 PMCID: PMC4877078 DOI: 10.1371/journal.pone.0155520] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 04/29/2016] [Indexed: 11/18/2022] Open
Abstract
Cotton leaf curl disease (CLCuD) is the major biotic constraint to cotton production on the Indian subcontinent, and is caused by monopartite begomoviruses accompanied by a specific DNA satellite, Cotton leaf curl Multan betasatellite (CLCuMB). Since the breakdown of resistance against CLCuD in 2001/2002, only one virus, the "Burewala" strain of Cotton leaf curl Kokhran virus (CLCuKoV-Bur), and a recombinant form of CLCuMB have consistently been identified in cotton across the major cotton growing areas of Pakistan. Unusually a bipartite isolate of the begomovirus Tomato leaf curl virus was identified in CLCuD-affected cotton recently. In the study described here we isolated the bipartite begomovirus Tomato leaf curl New Delhi virus (ToLCNDV) from CLCuD-affected cotton. To assess the frequency and geographic occurrence of ToLCNDV in cotton, CLCuD-symptomatic cotton plants were collected from across the Punjab and Sindh provinces between 2013 and 2015. Analysis of the plants by diagnostic PCR showed the presence of CLCuKoV-Bur in all 31 plants examined and ToLCNDV in 20 of the samples. Additionally, a quantitative real-time PCR analysis of the levels of the two viruses in co-infected plants suggests that coinfection of ToLCNDV with the CLCuKoV-Bur/CLCuMB complex leads to an increase in the levels of CLCuMB, which encodes the major pathogenicity (symptom) determinant of the complex. The significance of these results are discussed.
Collapse
Affiliation(s)
- Syed Shan-e-Ali Zaidi
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, P O Box 577, Jhang Road, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Muhammad Shafiq
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, P O Box 577, Jhang Road, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, P O Box 577, Jhang Road, Faisalabad, Pakistan
| | - Brian E. Scheffler
- Genomics and Bioinformatics Research Unit, 141 Experiment Station Rd., Stoneville, Mississippi, 38776, United States of America
| | - Jodi A. Scheffler
- Crop Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Stoneville, Mississippi, United States of America
| | - Rob W. Briddon
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, P O Box 577, Jhang Road, Faisalabad, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, P O Box 577, Jhang Road, Faisalabad, Pakistan
| |
Collapse
|
23
|
Gilbertson RL, Batuman O, Webster CG, Adkins S. Role of the Insect SupervectorsBemisia tabaciandFrankliniella occidentalisin the Emergence and Global Spread of Plant Viruses. Annu Rev Virol 2015; 2:67-93. [DOI: 10.1146/annurev-virology-031413-085410] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Robert L. Gilbertson
- Department of Plant Pathology, University of California, Davis, California 95616; ,
| | - Ozgur Batuman
- Department of Plant Pathology, University of California, Davis, California 95616; ,
| | - Craig G. Webster
- US Horticultural Research Laboratory, Agricultural Research Service, US Department of Agriculture, Fort Pierce, Florida 34945; ,
| | - Scott Adkins
- US Horticultural Research Laboratory, Agricultural Research Service, US Department of Agriculture, Fort Pierce, Florida 34945; ,
| |
Collapse
|
24
|
Rosario K, Seah YM, Marr C, Varsani A, Kraberger S, Stainton D, Moriones E, Polston JE, Duffy S, Breitbart M. Vector-Enabled Metagenomic (VEM) Surveys Using Whiteflies (Aleyrodidae) Reveal Novel Begomovirus Species in the New and Old Worlds. Viruses 2015; 7:5553-70. [PMID: 26516898 PMCID: PMC4632403 DOI: 10.3390/v7102895] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 01/16/2023] Open
Abstract
Whitefly-transmitted viruses belonging to the genus Begomovirus (family Geminiviridae) represent a substantial threat to agricultural food production. The rapid evolutionary potential of these single-stranded DNA viruses combined with the polyphagous feeding behavior of their whitefly vector (Bemisia tabaci) can lead to the emergence of damaging viral strains. Therefore, it is crucial to characterize begomoviruses circulating in different regions and crops globally. This study utilized vector-enabled metagenomics (VEM) coupled with high-throughput sequencing to survey begomoviruses directly from whiteflies collected in various locations (California (USA), Guatemala, Israel, Puerto Rico, and Spain). Begomoviruses were detected in all locations, with the highest diversity identified in Guatemala where up to seven different species were identified in a single field. Both bipartite and monopartite viruses were detected, including seven new begomovirus species from Guatemala, Puerto Rico, and Spain. This begomovirus survey extends the known diversity of these highly damaging plant viruses. However, the new genomes described here and in the recent literature appear to reflect the outcome of interactions between closely-related species, often resulting from recombination, instead of unique, highly divergent species.
Collapse
Affiliation(s)
- Karyna Rosario
- College of Marine Science, University of South Florida, Saint Petersburg, FL 33701, USA.
| | - Yee Mey Seah
- Microbiology and Molecular Genetics, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Christian Marr
- College of Marine Science, University of South Florida, Saint Petersburg, FL 33701, USA.
| | - Arvind Varsani
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Ilam, Christchurch 8041, New Zealand.
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA.
- Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Rondebosch, Cape Town 7701, South Africa.
| | - Simona Kraberger
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Ilam, Christchurch 8041, New Zealand.
| | - Daisy Stainton
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Ilam, Christchurch 8041, New Zealand.
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora", Algarrobo-Costa, Málaga 29750, Spain.
| | - Jane E Polston
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA.
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, FL 33701, USA.
| |
Collapse
|
25
|
Revision of Begomovirus taxonomy based on pairwise sequence comparisons. Arch Virol 2015; 160:1593-619. [PMID: 25894478 DOI: 10.1007/s00705-015-2398-y] [Citation(s) in RCA: 311] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2015] [Indexed: 10/23/2022]
Abstract
Viruses of the genus Begomovirus (family Geminiviridae) are emergent pathogens of crops throughout the tropical and subtropical regions of the world. By virtue of having a small DNA genome that is easily cloned, and due to the recent innovations in cloning and low-cost sequencing, there has been a dramatic increase in the number of available begomovirus genome sequences. Even so, most of the available sequences have been obtained from cultivated plants and are likely a small and phylogenetically unrepresentative sample of begomovirus diversity, a factor constraining taxonomic decisions such as the establishment of operationally useful species demarcation criteria. In addition, problems in assigning new viruses to established species have highlighted shortcomings in the previously recommended mechanism of species demarcation. Based on the analysis of 3,123 full-length begomovirus genome (or DNA-A component) sequences available in public databases as of December 2012, a set of revised guidelines for the classification and nomenclature of begomoviruses are proposed. The guidelines primarily consider a) genus-level biological characteristics and b) results obtained using a standardized classification tool, Sequence Demarcation Tool, which performs pairwise sequence alignments and identity calculations. These guidelines are consistent with the recently published recommendations for the genera Mastrevirus and Curtovirus of the family Geminiviridae. Genome-wide pairwise identities of 91 % and 94 % are proposed as the demarcation threshold for begomoviruses belonging to different species and strains, respectively. Procedures and guidelines are outlined for resolving conflicts that may arise when assigning species and strains to categories wherever the pairwise identity falls on or very near the demarcation threshold value.
Collapse
|
26
|
Melgarejo TA, Kon T, Gilbertson RL. Molecular and Biological Characterization of Distinct Strains of Jatropha mosaic virus from the Dominican Republic Reveal a Potential to Infect Crop Plants. PHYTOPATHOLOGY 2015; 105:141-53. [PMID: 25163012 DOI: 10.1094/phyto-05-14-0135-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In the Dominican Republic (DO), jatropha plants with yellow mosaic symptoms are commonly observed in and around fields of various crop plants. Complete nucleotide sequences of DNA-A and DNA-B components of four bipartite begomovirus isolates associated with symptomatic jatropha plants collected from three geographical locations in the DO were determined. Sequence comparisons revealed highest identities (91 to 92%) with the DNA-A component of an isolate of Jatropha mosaic virus (JMV) from Jamaica, indicating that the bipartite begomovirus isolates from the DO are strains of JMV. When introduced into jatropha seedlings by particle bombardment, the cloned components of the JMV strains from the DO induced stunting and yellow mosaic, indistinguishable from symptoms observed in the field, thereby fulfilling Koch's postulates for the disease. The JMV strains also induced disease symptoms in Nicotiana benthamiana, tobacco, and several cultivars of common bean from the Andean gene pool, including one locally grown in the DO. Asymmetry in the infectivity and symptomatology of pseudorecombinants provided further support for the strain designation of the JMV isolates from the DO. Thus, JMV in the DO is a complex of genetically distinct strains that have undergone local evolution and have the potential to cause disease in crop plants.
Collapse
|
27
|
Sohrab SS, Azhar EI, Kamal MA, Bhattacharya PS, Rana D. Genetic variability of Cotton leaf curl betasatellite in Northern India. Saudi J Biol Sci 2014; 21:626-31. [PMID: 25473373 DOI: 10.1016/j.sjbs.2014.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/02/2014] [Accepted: 11/03/2014] [Indexed: 11/20/2022] Open
Abstract
Cotton is an important crop and its production is affected by various disease pathogens. Monopartite begomovirus associated betasatellites cause Cotton leaf curl disease (CLCuD) in Northern India. In order to access the occurrence and genetic variability of Cotton leaf curl betasatellites, an extensive field survey was conducted in states of Rajasthan, Punjab and Haryana. We selected the betasatellite sequence for analysis as they are reported as important for disease severity and sequence variability. Based on the field observations, the disease incidence ranged from 30% to 80% during the survey. Full genome and DNA β were amplified from various samples while no amplicon was obtained in some samples. The nucleotide sequence homology ranged from 90.0% to 98.7% with Cotton leaf curl virus (CLCuV), 55.2-55.5% with Bhendi yellow vein mosaic virus, 55.8% with Okra leaf curl virus and 51.70% with Tomato leaf curl virus isolates. The lowest similarity (47.8%) was found in CLCuV-Sudan isolate. Phylogenetic analysis showed that analyzed isolates formed a close cluster with various CLCuV isolates reported earlier. The analysis results show sequence variation in Cotton leaf curl betasatellite which could be the result of recombination. The results obtained by genome amplification and sequence variability indicate that some new variants are circulating and causing leaf curl disease in Rajasthan, Punjab and Haryana.
Collapse
Affiliation(s)
- Sayed Sartaj Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Post Box No. 80216, Jeddah 21589, Saudi Arabia
| | - Esam I Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Post Box No. 80216, Jeddah 21589, Saudi Arabia
| | - Mohammad A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Post Box No. 80216, Jeddah 21589, Saudi Arabia
| | - P S Bhattacharya
- Division of Biotechnology, JK-AgriGenetics Ltd., Hyderabad, A.P., India
| | - D Rana
- Division of Biotechnology, JK-AgriGenetics Ltd., Hyderabad, A.P., India
| |
Collapse
|
28
|
Wyant P, Strohmeier S, Fischer A, Schäfer B, Briddon RW, Krenz B, Jeske H. Light-dependent segregation of begomoviruses in Asystasia gangetica leaves. Virus Res 2014; 195:225-35. [PMID: 25449572 DOI: 10.1016/j.virusres.2014.10.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/22/2014] [Accepted: 10/25/2014] [Indexed: 10/24/2022]
Abstract
Asystasia gangetica (Acanthaceae) from tropical Africa and Asia is used as source of food and for medical applications. Plants collected in West Africa in the 1980s with typical geminivirus symptoms showed an unusual symptom segregation that included vein yellowing, curling and mosaic, which were present simultaneously or separately on different leaves of the same plant or on different plants propagated as cuttings from a single plant. Rolling-circle amplification in combination with restriction fragment length polymorphism analysis followed by deep sequencing of the RCA products identified two geminiviruses in these plants. One with a bipartite genome, Asystasia begomovirus 1, and the other with a monopartite genome together with its defective DNA, Asystasia begomovirus 2. The relationship between leaf symptoms and virus distribution under different light regimes was investigated, and showed for the first time an unusual segregation of symptoms and viruses, either within a single plant, or even within a leaf.
Collapse
Affiliation(s)
- Patricia Wyant
- Biologisches Institut, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
| | - Stephan Strohmeier
- Biologisches Institut, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
| | - Alexander Fischer
- Biologisches Institut, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
| | - Benjamin Schäfer
- Biologisches Institut, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
| | - Rob W Briddon
- National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan
| | - Björn Krenz
- Lehrstuhl für Biochemie, Department Biologie, Staudtstr. 5, 91058 Erlangen, Germany
| | - Holger Jeske
- Biologisches Institut, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany.
| |
Collapse
|
29
|
Regional changes in the sequence of cotton leaf curl multan betasatellite. Viruses 2014; 6:2186-203. [PMID: 24859342 PMCID: PMC4036549 DOI: 10.3390/v6052186] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/02/2014] [Accepted: 05/12/2014] [Indexed: 11/23/2022] Open
Abstract
Cotton leaf curl disease (CLCuD) in Pakistan and northwestern India is caused by monopartite begomoviruses in association with an essential, disease-specific satellite, Cotton leaf curl Multan betasatellite (CLCuMB). Following a recent upsurge in CLCuD problems in Sindh province (southern Pakistan), sequences of clones of CLCuMB were obtained from Sindh and Punjab province (central Pakistan), where CLCuD has been a problem since the mid-1980s. The sequences were compared to all sequences of CLCuMB available in the databases. Analysis of the sequences shows extensive sequence variation in CLCuMB, most likely resulting from recombination. The range of sequence variants differ between Sindh, the Punjab and northwestern India. The possible significance of the findings with respect to movement of the CLCuD between the three regions is discussed. Additionally, the lack of sequence variation within the only coding sequence of CLCuMB suggests that the betasatellite is not involved in resistance breaking which became a problem after 2001 in the Punjab and subsequently also in northwestern India.
Collapse
|
30
|
A novel begomovirus isolated from sida contains putative cis- and trans-acting replication specificity determinants that have evolved independently in several geographical lineages. Arch Virol 2014; 159:2283-94. [PMID: 24737005 DOI: 10.1007/s00705-014-2073-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
Abstract
A novel begomovirus isolated from a Sida rhombifolia plant collected in Sinaloa, Mexico, was characterized. The genomic components of sida mosaic Sinaloa virus (SiMSinV) shared highest sequence identity with DNA-A and DNA-B components of chino del tomate virus (CdTV), suggesting a vertical evolutionary relationship between these viruses. However, recombination analysis indicated that a short segment of SiMSinV DNA-A encompassing the plus-strand replication origin and the 5´-proximal 43 codons of the Rep gene was derived from tomato mottle Taino virus (ToMoTV). Accordingly, the putative cis- and trans-acting replication specificity determinants of SiMSinV were identical to those of ToMoTV but differed from those of CdTV. Modeling of the SiMSinV and CdTV Rep proteins revealed significant differences in the region comprising the small β1/β5 sheet element, where five putative DNA-binding specificity determinants (SPDs) of Rep (i.e., amino acid residues 5, 8, 10, 69 and 71) were previously identified. Computer-assisted searches of public databases led to identification of 33 begomoviruses from three continents encoding proteins with SPDs identical to those of the Rep encoded by SiMSinV. Sequence analysis of the replication origins demonstrated that all 33 begomoviruses harbor potential Rep-binding sites identical to those of SiMSinV. These data support the hypothesis that the Rep β1/β5 sheet region determines specificity of this protein for DNA replication origin sequences.
Collapse
|
31
|
Paz-Carrasco LC, Castillo-Urquiza GP, Lima ATM, Xavier CAD, Vivas-Vivas LM, Mizubuti ESG, Zerbini FM. Begomovirus diversity in tomato crops and weeds in Ecuador and the detection of a recombinant isolate of rhynchosia golden mosaic Yucatan virus infecting tomato. Arch Virol 2014; 159:2127-32. [PMID: 24623091 DOI: 10.1007/s00705-014-2046-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/28/2014] [Indexed: 12/01/2022]
Abstract
Viral diseases caused by begomoviruses are of economic importance due to their adverse effects on the production of tropical and subtropical crops. In Ecuador, despite reports of significant infestations of Bemisia tabaci in the late 1990s, only very recently has a begomovirus, tomato leaf deformation virus (ToLDeV, also present in Peru), been reported in tomato. ToLDeV is the first monopartite begomovirus discovered that originated in the Americas, and its presence in Ecuador highlights the need for a wider survey of tomato-infecting begomoviruses in this country. Tomato and weed samples were collected in 2010 and 2011 in six provinces of Ecuador, and begomovirus genomes were cloned and sequenced using a rolling-circle-amplification-based approach. Most tomato samples from the provinces of Guayas, Loja, Manabi and Santa Elena were infected with tomato leaf deformation virus (ToLDeV). One sample from Manabi had a triple infection with ToLDeV, rhynchosia golden mosaic Yucatan virus (RhGMYuV) and an isolate that was a recombinant between the two. A new begomovirus was detected in another tomato sample from Manabi. Samples of Rhynchosia sp. from the provinces of Guayas and Manabi were infected by RhGMYuV. These results indicate not only the prevalence of ToLDeV in tomato in Ecuador but also the presence of other viruses, albeit at a much lower frequency.
Collapse
Affiliation(s)
- Lenin C Paz-Carrasco
- Departamento de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | | | | | | | | | | |
Collapse
|
32
|
Khan AJ, Akhtar S, Singh AK, Al-Shehi AA, Al-Matrushi AM, Ammara U, Briddon RW. Recent evolution of a novel begomovirus causing tomato leaf curl disease in the Al-Batinah region of Oman. Arch Virol 2014; 159:445-55. [PMID: 24052149 DOI: 10.1007/s00705-013-1853-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/08/2013] [Indexed: 10/26/2022]
Abstract
For last two decades, begomoviruses (family Geminiviridae) have been a major constraint for tomato production in Oman, particularly in the Al-Batinah region, the major agricultural area of Oman. Farms in the Al-Batinah region were surveyed during January-March and November-December in 2012 and January-February in 2013. Leaf samples of tomato plants showing typical leaf curl disease symptoms were collected and analyzed for begomoviruses. Out of fifteen begomovirus clones sequenced, seven were shown to be tomato yellow leaf curl virus strain Oman (TYLCV-OM); three, chili leaf curl virus strain Oman (ChLCV-OM); and one, tomato leaf curl Oman virus (ToLCOMV) - viruses that have previously been shown to occur in Oman. Four sequences were shown to have relatively low percent identity values to known begomoviruses, with the highest (86 %) to isolates of pepper leaf curl Lahore virus, indicating that these should be included in a new species, for which the name "Tomato leaf curl Al Batinah virus" (ToLCABV) is proposed. Although the betasatellite tomato leaf curl betasatellite (ToLCB; 7 full-length sequences isolated) was identified with some isolates of ChLCV-OM, TYLCV-OM and ToLCOMV, it was not identified in association with any of the ToLCABV isolates. Analysis of the sequences of the TYLCV-OM and ToLCOMV isolates characterized here did not show them to differ significantly from previously characterized isolates of these viruses. The three isolates of ChLCV-OM characterized were shown to have a recombination pattern distinct from earlier characterized isolates. ToLCABV was shown to have resulted from recombination between ChLCV-OM and ToLCOMV. A clone of ToLCABV was infectious by Agrobacterium-mediated inoculation to Nicotiana benthamiana and tomato, inducing symptoms typical of those seen in tomato in the field. Additionally, ToLCABV was shown to be able to interact in planta with ToLCB, resulting in a change in symptom phenotype, although the betasatellite did not appear to affect viral DNA levels.
Collapse
Affiliation(s)
- Akhtar J Khan
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khod 123, Muscat, Sultanate of Oman,
| | | | | | | | | | | | | |
Collapse
|
33
|
Association of an alphasatellite with tomato yellow leaf curl virus and ageratum yellow vein virus in Japan is suggestive of a recent introduction. Viruses 2014; 6:189-200. [PMID: 24424499 PMCID: PMC3917438 DOI: 10.3390/v6010189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/04/2013] [Accepted: 12/17/2013] [Indexed: 11/22/2022] Open
Abstract
Samples were collected in 2011 from tomato plants exhibiting typical tomato leaf curl disease symptoms in the vicinity of Komae, Japan. PCR mediated amplification, cloning and sequencing of all begomovirus components from two plants from different fields showed the plants to be infected by Tomatoyellowleafcurlvirus (TYLCV) and Ageratumyellowveinvirus (AYVV). Both viruses have previously been shown to be present in Japan, although this is the first identification of AYVV on mainland Japan; the virus previously having been shown to be present on the Okinawa Islands. The plant harboring AYVV was also shown to contain the betasatellite Tomato leaf curl Java betasatellite (ToLCJaB), a satellite not previously shown to be present in Japan. No betasatellite was associated with the TYLCV infected tomato plants analyzed here, consistent with earlier findings for this virus in Japan. Surprisingly both plants were also found to harbor an alphasatellite; no alphasatellites having previously been reported from Japan. The alphasatellite associated with both viruses was shown to be Sida yellow vein China alphasatellite which has previously only been identified in the Yunnan Province of China and Nepal. The results suggest that further begomoviruses, and their associated satellites, are being introduced to Japan. The significance of these findings is discussed.
Collapse
|
34
|
Ranjan P, Singh AK, Kumar RV, Basu S, Chakraborty S. Host-specific adaptation of diverse betasatellites associated with distinct Indian tomato-infecting begomoviruses. Virus Genes 2014; 48:334-42. [DOI: 10.1007/s11262-013-1031-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 12/21/2013] [Indexed: 10/25/2022]
|
35
|
Identification of a disease complex involving a novel monopartite begomovirus with beta- and alphasatellites associated with okra leaf curl disease in Oman. Arch Virol 2013; 159:1199-205. [PMID: 24287711 DOI: 10.1007/s00705-013-1926-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/13/2013] [Indexed: 10/26/2022]
Abstract
Okra leaf curl disease (OLCD) is an important viral disease of okra in tropical and subtropical areas. The disease is caused by begomovirus-satellite complexes. A begomovirus and associated betasatellite and alphasatellite were identified in symptomatic okra plants from Barka, in the Al-Batinah region of Oman. Analysis of the begomovirus sequences showed them to represent a new begomovirus most closely related to cotton leaf curl Gezira virus (CLCuGeV), a begomovirus of African origin. The sequences showed less than 85 % nucleotide sequence identity to CLCuGeV isolates. The name okra leaf curl Oman virus (OLCOMV) is proposed for the new virus. Further analysis revealed that the OLCOMV is a recombinant begomovirus that evolved by the recombination of CLCuGeV isolates with tomato yellow leaf curl virus-Oman (TYLCV-OM). An alpha- and a betasatellite were also identified from the same plant sample, which were also unique when compared to sequences available in the databases. However, although the betasatellite appeared to be of African origin, the alphasatellite was most closely related to alphasatellites originating from South Asia. This is the first report of a begomovirus-satellite complex infecting okra in Oman.
Collapse
|
36
|
Khan AJ, Akhtar S, Singh AK, Briddon RW. A Distinct Strain of Tomato leaf curl Sudan virus Causes Tomato Leaf Curl Disease in Oman. PLANT DISEASE 2013; 97:1396-1402. [PMID: 30708466 DOI: 10.1094/pdis-02-13-0210-re] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tomato leaf curl disease (ToLCD) is a significant constraint for tomato production in the Sultanate of Oman. The disease in the north of the country has previously been shown to be caused by the monopartite begomoviruses (family Geminiviridae) Tomato yellow leaf curl virus and Tomato leaf curl Oman virus. Many tomato plants infected with these two viruses were also found to harbor a symptom enhancing betasatellite. Here an analysis of a virus isolated from tomato exhibiting ToLCD symptoms originating from south and central Oman is reported. Three clones of a monopartite begomovirus were obtained. One of the clones was shown to be infectious to tomato and Nicotiana benthamiana and to induce symptoms typical of ToLCD. Analysis of the cloned sequences show them to correspond to isolates of Tomato leaf curl Sudan virus (ToLCSDV), a virus that occurs in Sudan and Yemen. However, the sequences showed less than 93% nucleotide sequence identity to previously characterized ToLCSDV isolates, indicating that the viruses represent a distinct strain of the species, for which we propose the name "Oman" strain (ToLCSDV-OM). Closer analysis of the sequences showed them to differ from their closest relative, the "Tobacco" strain of ToLCSDV originating from Yemen, in three regions of the genome. This suggests that the divergence of the "Oman" and "Tobacco" strains has occurred due to recombination. Surprisingly, ToLCSDV-OM was not found to be associated with a betasatellite, even though the isolates of the other ToLCSDV strains have been shown to be. The significance of these findings and the possible reasons for the distinct geographic distributions of the tomato-infecting begomoviruses within Oman are discussed.
Collapse
Affiliation(s)
- A J Khan
- Department of Crop Sciences, College of Agricultural & Marine Sciences, Sultan Qaboos University, Al-Khod 123, Sultanate of Oman
| | - S Akhtar
- Department of Crop Sciences, College of Agricultural & Marine Sciences, Sultan Qaboos University, Al-Khod 123, Sultanate of Oman
| | - A K Singh
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - R W Briddon
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| |
Collapse
|
37
|
Khan AJ, Akhtar S, Al-Zaidi AM, Singh AK, Briddon RW. Genetic diversity and distribution of a distinct strain of Chili leaf curl virus and associated betasatellite infecting tomato and pepper in Oman. Virus Res 2013; 177:87-97. [PMID: 23911631 DOI: 10.1016/j.virusres.2013.07.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 07/12/2013] [Accepted: 07/20/2013] [Indexed: 11/28/2022]
Abstract
Tomato and pepper are widely grown in Oman for local consumption. A countrywide survey was conducted during 2010-2011 to collect samples and assess the diversity of begomoviruses associated with leaf curl disease of tomato and pepper. A virus previously only identified on the Indian subcontinent, chili leaf curl virus (ChLCV), was found associated with tomato and pepper diseases in all vegetable grown areas of Oman. Some of the infected plant samples were also found to contain a betasatellite. A total of 19 potentially full-length begomovirus and eight betasatellite clones were sequenced. The begomovirus clones showed >96% nucleotide sequence identity, showing them to represent a single species. Comparisons to sequences available in the databases showed the highest levels of nucleotide sequence identity (88.0-91.1%) to isolates of the "Pakistan" strain of ChLCV (ChLCV-PK), indicating the virus from Oman to be a distinct strain, for which the name Oman strain (ChLCV-OM) is proposed. An analysis for recombination showed ChLCV-OM likely to have originated by recombination between ChLCV-PK (the major parent), pepper leaf curl Lahore virus and a third strain of ChLCV. The betasatellite sequences obtained were shown to have high levels of identity to isolates of tomato leaf curl betasatellite (ToLCB) previous shown to be present in Oman. For the disease in tomato Koch's postulates were satisfied by Agrobacterium-mediated inoculation of virus and betasatellites clones. This showed the symptoms induced by the virus in the presence of the betasatellite to be enhanced, although viral DNA levels were not affected. ChLCV-OM is the fourth begomovirus identified in tomato in Oman and the first in Capsicum. The significance of these findings is discussed.
Collapse
Affiliation(s)
- Akhtar J Khan
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, P.O. Box-34, Al-Khod 123, Oman.
| | | | | | | | | |
Collapse
|