1
|
Guček T, Jakše J, Radišek S. Optimization and Validation of Singleplex and Multiplex RT-qPCR for Detection of Citrus bark cracking viroid (CBCVd), Hop latent viroid (HLVd), and Hop stunt viroid (HSVd) in Hops ( Humulus lupulus). PLANT DISEASE 2023; 107:3592-3601. [PMID: 37261880 DOI: 10.1094/pdis-11-22-2606-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Direct crop losses due to plant diseases and the measures used to control them have significant agricultural and economic impacts. The shift from diverse small-scale to large-scale genetically uniform monoculture production, along with agricultural intensification and climate change, has led to several known epidemics in man-made agroecosystems that have been rendered more vulnerable to pathogens. One such example is hop growing, which is threatened by highly aggressive hop viroids. Since 2007, almost one-third (about 500 ha) of Slovenian hop gardens have been affected by severe hop stunt disease caused by Citrus bark cracking viroid (CBCVd), which continues to spread despite strict prevention measures. We have developed and validated a multiplex RT-qPCR (mRT-qPCR) for the sensitive detection of CBCVd, Hop latent viroid (HLVd), and Hop stunt viroid (HSVd). Singleplex RT-qPCR assays were designed individually and subsequently combined in a one-step mRT-qPCR assay. Hop-specific mRNA170 and mRNA1192 internal controls were also developed to detect possible PCR inhibition. Analytical specificity was tested on 35 samples from different hosts, geographic regions, and combinations of viroids. Method validation showed that mRT-qPCR had lower sensitivity than singleplex RT-qPCR, while specificity, selectivity, repeatability, and reproducibility remained unchanged. The newly developed assays were found to be robust, reliable, and suitable for large-scale screening of hop viroids.
Collapse
Affiliation(s)
- Tanja Guček
- Slovenian Institute of Hop Research and Brewing, Žalec 3310, Slovenia
| | - Jernej Jakše
- Biotechnical Faculty, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Sebastjan Radišek
- Slovenian Institute of Hop Research and Brewing, Žalec 3310, Slovenia
| |
Collapse
|
2
|
Han Z, Liu J, Kong L, He Y, Wu H, Xu W. A special satellite-like RNA of a novel hypovirus from Pestalotiopsis fici broadens the definition of fungal satellite. PLoS Pathog 2023; 19:e1010889. [PMID: 37285391 DOI: 10.1371/journal.ppat.1010889] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/23/2023] [Indexed: 06/09/2023] Open
Abstract
Satellites associated with plant or animal viruses have been largely detected and characterized, while those from mycoviruses together with their roles remain far less determined. Three dsRNA segments (dsRNA 1 to 3 termed according to their decreasing sizes) were identified in a strain of phytopathogenic fungus Pestalotiopsis fici AH1-1 isolated from a tea leaf. The complete sequences of dsRNAs 1 to 3, with the sizes of 10316, 5511, and 631 bp, were determined by random cloning together with a RACE protocol. Sequence analyses support that dsRNA1 is a genome of a novel hypovirus belonging to genus Alphahypovirus of the family Hypoviridae, tentatively named Pestalotiopsis fici hypovirus 1 (PfHV1); dsRNA2 is a defective RNA (D-RNA) generating from dsRNA1 with septal deletions; and dsRNA3 is the satellite component of PfHV1 since it could be co-precipitated with other dsRNA components in the same sucrose fraction by ultra-centrifuge, suggesting that it is encapsulated together with PfHV1 genomic dsRNAs. Moreover, dsRNA3 shares an identical stretch (170 bp) with dsRNAs 1 and 2 at their 5' termini and the remaining are heterogenous, which is distinct from a typical satellite that generally has very little or no sequence similarity with helper viruses. More importantly, dsRNA3 lacks a substantial open reading frame (ORF) and a poly (A) tail, which is unlike the known satellite RNAs of hypoviruses, as well as unlike those in association with Totiviridae and Partitiviridae since the latters are encapsidated in coat proteins. As up-regulated expression of RNA3, dsRNA1 was significantly down-regulated, suggesting that dsRNA3 negatively regulates the expression of dsRNA1, whereas dsRNAs 1 to 3 have no obvious impact on the biological traits of the host fungus including morphologies and virulence. This study indicates that PfHV1 dsRNA3 is a special type of satellite-like nucleic acid that has substantial sequence homology with the host viral genome without encapsidation in a coat protein, which broadens the definition of fungal satellite.
Collapse
Affiliation(s)
- Zhenhao Han
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Jiwen Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Linghong Kong
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Yunqiang He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| | - Hongqu Wu
- Key Laboratory of Microbial Pesticides, Ministry of Agriculture and Rural Affairs; Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wenxing Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, China
| |
Collapse
|
3
|
Navarro B, Ambrós S, Serio FD, Hernández C. On the early identification and characterization of pear blister canker viroid, apple dimple fruit viroid, peach latent mosaic viroid and chrysanthemum chlorotic mottle viroid. Virus Res 2023; 323:199012. [PMID: 36436691 PMCID: PMC10194241 DOI: 10.1016/j.virusres.2022.199012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
In the 90's, pear blister canker viroid (PBCVd), apple dimple fruit viroid (ADFVd), peach latent mosaic viroid (PLMVd) and chrysanthemum chlorotic mottle viroid (CChMVd) were identified and characterized in the Ricardo Flores' laboratory. In these studies, the autonomous replication of these infectious RNAs and their involvement in the elicitation of diseases in their natural hosts were also shown. Their discovery was achieved by classical approaches based on the physical purification of the viroid RNAs from polyacrylamide gels followed by the sequencing of their genomic RNAs and by bioassays to assess their autonomous replication and the fulfillment of Koch's postulates. The molecular characterization of these four viroids, including the study of their sequence variability, contributed to the establishment of the concept of quasispecies for viroids and to the development of reliable molecular diagnostic methods that have facilitated the control of the diseases they caused. Most importantly, some of these viroids became valuable experimental model systems that are still used nowadays to study structural-functional relationships in RNAs and to dissect evolutionary and pathogenic pathways underlying plant-viroid interaction. The differences between early viroid discovery strategies, relying on biological and pathogenic issues, and the current high-throughput sequencing-based approaches, that frequently allow the discovery of new viroids and viroid-like RNAs in symptomless hosts, is also discussed, clarifying why the traditional molecular and biological studies mentioned above are still required to conclusively define the nature of any novel viroid-like RNA.
Collapse
Affiliation(s)
- Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Amendola 122/D, Bari 70126, Italy.
| | - Silvia Ambrós
- Instituto de Biología Integrativa de Sistemas I2SysBio, Consejo Superior de Investigaciones Científicas-Universitat de Valencia, C/Catedrático Agustín Escardino 9, Parque Científico, Paterna 46980, Valencia, Spain
| | - Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Amendola 122/D, Bari 70126, Italy
| | - Carmen Hernández
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Avda, Ingeniero Fausto Elio s/n, Valencia 46011, Spain.
| |
Collapse
|
4
|
Dong K, Xu C, Kotta‐Loizou I, Jiang J, Lv R, Kong L, Li S, Hong N, Wang G, Coutts RHA, Xu W. Novel Viroid-Like RNAs Naturally Infect a Filamentous Fungus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204308. [PMID: 36515275 PMCID: PMC9875651 DOI: 10.1002/advs.202204308] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/19/2022] [Indexed: 06/17/2023]
Abstract
To date, viroids have been found to naturally infect only plants, resulting in substantial losses for some crops. Whether viroids or viroid-like RNAs naturally infect non-plant hosts remains unknown. Here the existence of a set of exogenous, single-stranded circular RNAs, ranging in size from 157 to 450 nucleotides, isolated from the fungus Botryosphaeria dothidea and nominated B. dothidea RNAs (BdcRNAs) is reported. BdcRNAs replicate autonomously in the nucleus via a rolling-circle mechanism following a symmetric pathway. BdcRNA infection induces symptoms, because BdcRNAs can apparently modulate, to different degrees, specific biological traits (e.g., alter morphology, decrease growth rate, attenuate virulence, and increase or decrease tolerance to osmotic and oxidative stress) of the host fungus. Overall, BdcRNAs have genome characteristics similar to those of viroids and exhibit pathogenic effects on fungal hosts. It is proposed that these novel fungus infecting RNAs should be termed mycoviroids. BdcRNA(s) may be considered additional inhabitants at the frontier of life in terms of genomic complexity, and represent a new class of acellular entities endowed with regulatory functions, and novel epigenomic carriers of biological information.
Collapse
Affiliation(s)
- Kaili Dong
- Hubei Hongshan LaboratoryWuhanHubei430070P. R. China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of AgricultureWuhanHubei430070P. R. China
- Key Lab of Plant Pathology of Hubei ProvinceWuhanHubei430070P. R. China
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Chuan Xu
- Hubei Hongshan LaboratoryWuhanHubei430070P. R. China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of AgricultureWuhanHubei430070P. R. China
- Key Lab of Plant Pathology of Hubei ProvinceWuhanHubei430070P. R. China
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Ioly Kotta‐Loizou
- Department of Life SciencesFaculty of Natural SciencesImperial College LondonLondonSW7 2AZUK
- Department of ClinicalPharmaceutical and Biological ScienceSchool of Life and Medical SciencesUniversity of HertfordshireHatfieldAL10 9ABUK
| | - Jingjing Jiang
- Hubei Hongshan LaboratoryWuhanHubei430070P. R. China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of AgricultureWuhanHubei430070P. R. China
- Key Lab of Plant Pathology of Hubei ProvinceWuhanHubei430070P. R. China
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Ruiying Lv
- Hubei Hongshan LaboratoryWuhanHubei430070P. R. China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of AgricultureWuhanHubei430070P. R. China
- Key Lab of Plant Pathology of Hubei ProvinceWuhanHubei430070P. R. China
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Linghong Kong
- Hubei Hongshan LaboratoryWuhanHubei430070P. R. China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of AgricultureWuhanHubei430070P. R. China
- Key Lab of Plant Pathology of Hubei ProvinceWuhanHubei430070P. R. China
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Shifang Li
- Environment and Plant Protection InstituteChinese Academy of Tropical Agricultural SciencesXueyuan Road, Longhua DistrictHaikouHainan571101P. R. China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijing100193P. R. China
| | - Ni Hong
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of AgricultureWuhanHubei430070P. R. China
- Key Lab of Plant Pathology of Hubei ProvinceWuhanHubei430070P. R. China
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Guoping Wang
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of AgricultureWuhanHubei430070P. R. China
- Key Lab of Plant Pathology of Hubei ProvinceWuhanHubei430070P. R. China
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Robert H. A. Coutts
- Department of ClinicalPharmaceutical and Biological ScienceSchool of Life and Medical SciencesUniversity of HertfordshireHatfieldAL10 9ABUK
| | - Wenxing Xu
- Hubei Hongshan LaboratoryWuhanHubei430070P. R. China
- Key Laboratory of Horticultural Crop (Fruit Trees) Biology and Germplasm Creation of the Ministry of AgricultureWuhanHubei430070P. R. China
- Key Lab of Plant Pathology of Hubei ProvinceWuhanHubei430070P. R. China
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| |
Collapse
|
5
|
Delgado S, Navarro B, Serra P, Gentit P, Cambra MÁ, Chiumenti M, De Stradis A, Di Serio F, Flores R. How sequence variants of a plastid-replicating viroid with one single nucleotide change initiate disease in its natural host. RNA Biol 2019; 16:906-917. [PMID: 30990352 DOI: 10.1080/15476286.2019.1600396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Understanding how viruses and subviral agents initiate disease is central to plant pathology. Whether RNA silencing mediates the primary lesion triggered by viroids (small non-protein-coding RNAs), or just intermediate-late steps of a signaling cascade, remains unsolved. While most variants of the plastid-replicating peach latent mosaic viroid (PLMVd) are asymptomatic, some incite peach mosaics or albinism (peach calico, PC). We have previously shown that two 21-nt small RNAs (PLMVd-sRNAs) containing a 12-13-nt PC-associated insertion guide cleavage, via RNA silencing, of the mRNA encoding a heat-shock protein involved in chloroplast biogenesis. To gain evidence supporting that such event is the initial lesion, and more specifically, that different chloroses have different primary causes, here we focused on a PLMVd-induced peach yellow mosaic (PYM) expressed in leaf sectors interspersed with others green. First, sequencing PLMVd-cDNAs from both sectors and bioassays mapped the PYM determinant at one nucleotide, a notion further sustained by the phenotype incited by other natural and artificial PLMVd variants. And second, sRNA deep-sequencing and RNA ligase-mediated RACE identified one PLMVd-sRNA with the PYM-associated change that guides cleavage, as predicted by RNA silencing, of the mRNA encoding a thylakoid translocase subunit required for chloroplast development. RT-qPCR showed lower accumulation of this mRNA in PYM-expressing tissues. Remarkably, PLMVd-sRNAs triggering PYM and PC have 5'-terminal Us, involving Argonaute 1 in what likely are the initial alterations eliciting distinct chloroses.
Collapse
Affiliation(s)
- Sonia Delgado
- a Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV) , Valencia , Spain
| | - Beatriz Navarro
- b Istituto per la Protezione Sostenibile delle Piante (CNR) , Bari , Italy
| | - Pedro Serra
- a Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV) , Valencia , Spain
| | - Pascal Gentit
- c Plant Health Laboratory (ANSES-PHL) , Angers , France
| | | | - Michela Chiumenti
- b Istituto per la Protezione Sostenibile delle Piante (CNR) , Bari , Italy
| | - Angelo De Stradis
- b Istituto per la Protezione Sostenibile delle Piante (CNR) , Bari , Italy
| | - Francesco Di Serio
- b Istituto per la Protezione Sostenibile delle Piante (CNR) , Bari , Italy
| | - Ricardo Flores
- a Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV) , Valencia , Spain
| |
Collapse
|
6
|
Di Serio F, Ambrós S, Sano T, Flores R, Navarro B. Viroid Diseases in Pome and Stone Fruit Trees and Koch's Postulates: A Critical Assessment. Viruses 2018; 10:E612. [PMID: 30405008 PMCID: PMC6265958 DOI: 10.3390/v10110612] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 11/17/2022] Open
Abstract
Composed of a naked circular non-protein-coding genomic RNA, counting only a few hundred nucleotides, viroids-the smallest infectious agents known so far-are able to replicate and move systemically in herbaceous and woody host plants, which concomitantly may develop specific diseases or remain symptomless. Several viroids have been reported to naturally infect pome and stone fruit trees, showing symptoms on leaves, fruits and/or bark. However, Koch's postulates required for establishing on firm grounds the viroid etiology of these diseases, have not been met in all instances. Here, pome and stone fruit tree diseases, conclusively proven to be caused by viroids, are reviewed, and the need to pay closer attention to fulfilling Koch's postulates is emphasized.
Collapse
Affiliation(s)
- Francesco Di Serio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy.
| | - Silvia Ambrós
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain.
| | - Teruo Sano
- Department of Applied Biology and Food Sciences, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan.
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain.
| | - Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy.
| |
Collapse
|
7
|
Serra P, Bertolini E, Martínez MC, Cambra M, Flores R. Interference between variants of peach latent mosaic viroid reveals novel features of its fitness landscape: implications for detection. Sci Rep 2017; 7:42825. [PMID: 28211491 PMCID: PMC5314366 DOI: 10.1038/srep42825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/13/2017] [Indexed: 12/05/2022] Open
Abstract
Natural populations of peach latent mosaic viroid (PLMVd) are complex mixtures of variants. During routine testing, TaqMan rtRT-PCR and RNA gel-blot hybridization produced discordant results with some PLMVd isolates. Analysis of the corresponding populations showed that they were exclusively composed of variants (of class II) with a structural domain different from that of the reference and many other variants (of class I) targeted by the TaqMan rtRT-PCR probe. Bioassays in peach revealed that a representative PLMVd variant of class II replicated without symptoms, generated a progeny with low nucleotide diversity, and, intriguingly, outcompeted a representative symptomatic variant of class I when co-inoculated in equimolecular amounts. A number of informative positions associated with the higher fitness of variants of class II have been identified, and novel sets of primers and probes for universal or specific TaqMan rtRT-PCR detection of PLMVd variants have been designed and tested.
Collapse
Affiliation(s)
- Pedro Serra
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Spain
| | - Edson Bertolini
- Instituto Valenciano de Investigaciones Agrarias, Moncada, Valencia, Spain
- Departamento de Fitossanidade, Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - M. Carmen Martínez
- Instituto Valenciano de Investigaciones Agrarias, Moncada, Valencia, Spain
| | - Mariano Cambra
- Instituto Valenciano de Investigaciones Agrarias, Moncada, Valencia, Spain
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Spain
| |
Collapse
|
8
|
Viroids, the simplest RNA replicons: How they manipulate their hosts for being propagated and how their hosts react for containing the infection. Virus Res 2015; 209:136-45. [PMID: 25738582 DOI: 10.1016/j.virusres.2015.02.027] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 12/31/2022]
Abstract
The discovery of viroids about 45 years ago heralded a revolution in Biology: small RNAs comprising around 350 nt were found to be able to replicate autonomously-and to incite diseases in certain plants-without encoding proteins, fundamental properties discriminating these infectious agents from viruses. The initial focus on the pathological effects usually accompanying infection by viroids soon shifted to their molecular features-they are circular molecules that fold upon themselves adopting compact secondary conformations-and then to how they manipulate their hosts to be propagated. Replication of viroids-in the nucleus or chloroplasts through a rolling-circle mechanism involving polymerization, cleavage and circularization of RNA strands-dealt three surprises: (i) certain RNA polymerases are redirected to accept RNA instead of their DNA templates, (ii) cleavage in chloroplastic viroids is not mediated by host enzymes but by hammerhead ribozymes, and (iii) circularization in nuclear viroids is catalyzed by a DNA ligase redirected to act upon RNA substrates. These enzymes (and ribozymes) are most probably assisted by host proteins, including transcription factors and RNA chaperones. Movement of viroids, first intracellularly and then to adjacent cells and distal plant parts, has turned out to be a tightly regulated process in which specific RNA structural motifs play a crucial role. More recently, the advent of RNA silencing has brought new views on how viroids may cause disease and on how their hosts react to contain the infection; additionally, viroid infection may be restricted by other mechanisms. Representing the lowest step on the biological size scale, viroids have also attracted considerable interest to get a tentative picture of the essential characteristics of the primitive replicons that populated the postulated RNA world.
Collapse
|
9
|
Giguère T, Adkar-Purushothama CR, Bolduc F, Perreault JP. Elucidation of the structures of all members of the Avsunviroidae family. MOLECULAR PLANT PATHOLOGY 2014; 15:767-79. [PMID: 25346967 PMCID: PMC6638799 DOI: 10.1111/mpp.12130] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Viroids are small single-stranded RNA pathogens which cause significant damage to plants. As their nucleic acids do not encode for any proteins, they are dependant solely on their structure for their propagation. The elucidation of the secondary structures of viroids has been limited because of the exhaustive and time consuming nature of classic approaches. Here, the method of high-throughput selective 2'-hydroxyl acylation analysed by primer extension (hSHAPE) has been adapted to probe the viroid structure. The data obtained using this method were then used as input for computer-assisted structure prediction using RNA structure software in order to determine the secondary structures of the RNA strands of both (+) and (–) polarities of all Avsunviroidae members, one of the two families of viroids. The resolution of the structures of all of the members of the family provides a global view of the complexity of these RNAs. The structural differences between the two polarities, and any plausible tertiary interactions, were also analysed. Interestingly, the structures of the (+) and (–) strands were found to be different for each viroid species. The structures of the recently isolated grapevine hammerhead viroid-like RNA strands were also solved. This species shares several structural features with the Avsunviroidae family, although its infectious potential remains to be determined.To our knowledge, this article represents the first report of the structural elucidation of a complete family of viroids.
Collapse
|
10
|
What has been happening with viroids? Virus Genes 2014; 49:175-84. [DOI: 10.1007/s11262-014-1110-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/18/2014] [Indexed: 12/18/2022]
|