1
|
Bonnamy M, Blanc S, Michalakis Y. Replication mechanisms of circular ssDNA plant viruses and their potential implication in viral gene expression regulation. mBio 2023; 14:e0169223. [PMID: 37695133 PMCID: PMC10653810 DOI: 10.1128/mbio.01692-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
The replication of members of the two circular single-stranded DNA (ssDNA) virus families Geminiviridae and Nanoviridae, the only ssDNA viruses infecting plants, is believed to be processed by rolling-circle replication (RCR) and recombination-dependent replication (RDR) mechanisms. RCR is a ubiquitous replication mode for circular ssDNA viruses and involves a virus-encoded Replication-associated protein (Rep) which fulfills multiple functions in the replication mechanism. Two key genomic elements have been identified for RCR in Geminiviridae and Nanoviridae: (i) short iterative sequences called iterons which determine the specific recognition of the viral DNA by the Rep and (ii) a sequence enabling the formation of a stem-loop structure which contains a conserved motif and constitutes the origin of replication. In addition, studies in Geminiviridae provided evidence for a second replication mode, RDR, which has also been documented in some double-stranded DNA viruses. Here, we provide a synthesis of the current understanding of the two presumed replication modes of Geminiviridae and Nanoviridae, and we identify knowledge gaps and discuss the possibility that these replication mechanisms could regulate viral gene expression through modulation of gene copy number.
Collapse
Affiliation(s)
- Mélia Bonnamy
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
- MIVEGEC, CNRS, IRD, Univ Montpellier, Montpellier, France
| | - Stéphane Blanc
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
| | | |
Collapse
|
2
|
Happle A, Jeske H, Kleinow T. Dynamic subcellular distribution of begomoviral nuclear shuttle and movement proteins. Virology 2021; 562:158-175. [PMID: 34339930 DOI: 10.1016/j.virol.2021.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 11/30/2022]
Abstract
The Abutilon mosaic virus (AbMV) encodes a nuclear shuttle protein (NSP), and a movement protein (MP) which cooperatively accomplish viral DNA transport through the plant. Subcellular distribution patterns of fluorescent protein-tagged NSP and MP were tracked in Nicotiana benthamiana leaves in presence or absence of an AbMV infection using light microscopy. NSP was located within the nucleus and associated with early endosomes in the presence of MP. MP appeared at the plasma membrane, plasmodesmata and in motile vesicles, trafficking along the endoplasmic reticulum in an actin-dependent manner. MP and NSP did not co-localize and employed separate cellular pathways. Correspondingly, Förster resonance energy transfer analysis did not support physical interaction between NSP and MP. Time lapse movies illustrate the cellular dynamics of both proteins on their way around the nucleus and to the cell periphery and provide a first hint for the nuclear egress of NSP complexes.
Collapse
Affiliation(s)
- Andrea Happle
- Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Holger Jeske
- Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany
| | - Tatjana Kleinow
- Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
3
|
Insights into the roles of histone chaperones in nucleosome assembly and disassembly in virus infection. Virus Res 2021; 297:198395. [PMID: 33737155 DOI: 10.1016/j.virusres.2021.198395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/23/2022]
Abstract
Nucleosomes are assembled or disassembled with the aid of histone chaperones in a cell. Viruses can exist either as minichromosomes/episomes or can integrate into the host genome and in both the cases the viral proteins interact and manipulate the cellular nucleosome assembly machinery to ensure their survival and propagation. Recent studies have provided insight into the mechanism and role of histone chaperones in nucleosome assembly and disassembly on the virus genome. Further, the interactions between viral proteins and histone chaperones have been implicated in the integration of the virus genome into the host genome. This review highlights the recent progress and future challenges in understanding the role of histone chaperones in viruses with DNA or RNA genome and their role in governing viral pathogenesis.
Collapse
|
4
|
Zarreen F, Chakraborty S. Epigenetic regulation of geminivirus pathogenesis: a case of relentless recalibration of defence responses in plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6890-6906. [PMID: 32869846 DOI: 10.1093/jxb/eraa406] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Geminiviruses constitute one of the largest families of plant viruses and they infect many economically important crops. The proteins encoded by the single-stranded DNA genome of these viruses interact with a wide range of host proteins to cause global dysregulation of cellular processes and help establish infection in the host. Geminiviruses have evolved numerous mechanisms to exploit host epigenetic processes to ensure the replication and survival of the viral genome. Here, we review our current knowledge of diverse epigenetic processes that have been implicated in the regulation of geminivirus pathogenesis, including DNA methylation, histone post-transcriptional modification, chromatin remodelling, and nucleosome repositioning. In addition, we discuss the currently limited evidence of host epigenetic defence responses that are aimed at counteracting geminivirus infection, and the potential for exploiting these responses for the generation of resistance against geminiviruses in crop species.
Collapse
Affiliation(s)
- Fauzia Zarreen
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
5
|
Gnanasekaran P, KishoreKumar R, Bhattacharyya D, Vinoth Kumar R, Chakraborty S. Multifaceted role of geminivirus associated betasatellite in pathogenesis. MOLECULAR PLANT PATHOLOGY 2019; 20:1019-1033. [PMID: 31210029 PMCID: PMC6589721 DOI: 10.1111/mpp.12800] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Begomoviruses have emerged as a group of plant pathogens that cause devastating diseases in a wide range of crops in tropical and subtropical regions of the world. Betasatellites, the circular single-stranded DNA molecules with the size of almost half of that of the associated helper begomoviruses, are often essential for the production of typical disease symptoms in several virus-host systems. Association of betasatellites with begomoviruses results in more severe symptoms in the plants and affects the yield of numerous crops leading to huge agroeconomic losses. βC1, the only protein encoded by betasatellites, plays a multifaceted role in the successful establishment of infection. This protein counteracts the innate defence mechanisms of the host, like RNA silencing, ubiquitin-proteasome system and defence responsive hormones. In the last two decades, the molecular aspect of betasatellite pathogenesis has attracted much attention from the researchers worldwide, and reports have shown that βC1 protein aggravates the helper begomovirus disease complex by modulating specific host factors. This review discusses the molecular aspects of the pathogenesis of betasatellites, including various βC1-host factor interactions and their effects on the suppression of defence responses of the plants.
Collapse
Affiliation(s)
- Prabu Gnanasekaran
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew Delhi110 067India
| | - Reddy KishoreKumar
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew Delhi110 067India
| | - Dhriti Bhattacharyya
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew Delhi110 067India
| | - R. Vinoth Kumar
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew Delhi110 067India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life SciencesJawaharlal Nehru UniversityNew Delhi110 067India
| |
Collapse
|
6
|
Coursey T, Regedanz E, Bisaro DM. Arabidopsis RNA Polymerase V Mediates Enhanced Compaction and Silencing of Geminivirus and Transposon Chromatin during Host Recovery from Infection. J Virol 2018. [PMID: 29321305 DOI: 10.1128/jvi.01320-1317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
Plants employ RNA-directed DNA methylation (RdDM) and dimethylation of histone 3 lysine 9 (H3K9me2) to silence geminiviruses and transposable elements (TEs). We previously showed that canonical RdDM (Pol IV-RdDM) involving RNA polymerases IV and V (Pol IV and Pol V) is required for Arabidopsis thaliana to recover from infection with Beet curly top virus lacking a suppressor protein that inhibits methylation (BCTV L2-). Recovery, which is characterized by reduced viral DNA levels and symptom remission, allows normal floral development. Here, we used formaldehyde-assisted isolation of regulatory elements (FAIRE) to confirm that >90% of BCTV L2- chromatin is highly compacted during recovery, and a micrococcal nuclease-chromatin immunoprecipitation assay showed that this is largely due to increased nucleosome occupancy. Physical compaction correlated with augmented cytosine and H3K9 methylation and with reduced viral gene expression. We additionally demonstrated that these phenomena are dependent on Pol V and by extension the Pol IV-RdDM pathway. BCTV L2- was also used to evaluate the impact of viral infection on host loci, including repressed retrotransposons Ta3 and Athila6A Remarkably, an unexpected Pol V-dependent hypersuppression of these TEs was observed, resulting in transcript levels even lower than those detected in uninfected plants. Hypersuppression is likely to be especially important for natural recovery from wild-type geminiviruses, as viral L2 and AL2 proteins cause ectopic TE expression. Thus, Pol IV-RdDM targets both viral and TE chromatin during recovery, simultaneously silencing the majority of viral genomes and maintaining host genome integrity by enforcing tighter control of TEs in future reproductive tissues.IMPORTANCE In plants, RdDM pathways use small RNAs to target cytosine and H3K9 methylation, thereby silencing DNA virus genomes and transposable elements (TEs). Further, Pol IV-RdDM involving Pol IV and Pol V is a key aspect of host defense that can lead to recovery from geminivirus infection. Recovery is characterized by reduced viral DNA levels and symptom remission and thus allows normal floral development. Studies described here demonstrate that the Pol V-dependent enhanced viral DNA and histone methylation observed during recovery result in increased chromatin compaction and suppressed gene expression. In addition, we show that TE-associated chromatin is also targeted for hypersuppression during recovery, such that TE transcripts are reduced below the already low levels seen in uninfected plants. Thus, Pol IV-RdDM at once silences the majority of viral genomes and enforces a tight control over TEs which might otherwise jeopardize genome integrity in future reproductive tissue.
Collapse
Affiliation(s)
- Tami Coursey
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
- Graduate Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, Ohio, USA
| | - Elizabeth Regedanz
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - David M Bisaro
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
- Graduate Program in Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
7
|
Arabidopsis RNA Polymerase V Mediates Enhanced Compaction and Silencing of Geminivirus and Transposon Chromatin during Host Recovery from Infection. J Virol 2018; 92:JVI.01320-17. [PMID: 29321305 DOI: 10.1128/jvi.01320-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/21/2017] [Indexed: 01/17/2023] Open
Abstract
Plants employ RNA-directed DNA methylation (RdDM) and dimethylation of histone 3 lysine 9 (H3K9me2) to silence geminiviruses and transposable elements (TEs). We previously showed that canonical RdDM (Pol IV-RdDM) involving RNA polymerases IV and V (Pol IV and Pol V) is required for Arabidopsis thaliana to recover from infection with Beet curly top virus lacking a suppressor protein that inhibits methylation (BCTV L2-). Recovery, which is characterized by reduced viral DNA levels and symptom remission, allows normal floral development. Here, we used formaldehyde-assisted isolation of regulatory elements (FAIRE) to confirm that >90% of BCTV L2- chromatin is highly compacted during recovery, and a micrococcal nuclease-chromatin immunoprecipitation assay showed that this is largely due to increased nucleosome occupancy. Physical compaction correlated with augmented cytosine and H3K9 methylation and with reduced viral gene expression. We additionally demonstrated that these phenomena are dependent on Pol V and by extension the Pol IV-RdDM pathway. BCTV L2- was also used to evaluate the impact of viral infection on host loci, including repressed retrotransposons Ta3 and Athila6A Remarkably, an unexpected Pol V-dependent hypersuppression of these TEs was observed, resulting in transcript levels even lower than those detected in uninfected plants. Hypersuppression is likely to be especially important for natural recovery from wild-type geminiviruses, as viral L2 and AL2 proteins cause ectopic TE expression. Thus, Pol IV-RdDM targets both viral and TE chromatin during recovery, simultaneously silencing the majority of viral genomes and maintaining host genome integrity by enforcing tighter control of TEs in future reproductive tissues.IMPORTANCE In plants, RdDM pathways use small RNAs to target cytosine and H3K9 methylation, thereby silencing DNA virus genomes and transposable elements (TEs). Further, Pol IV-RdDM involving Pol IV and Pol V is a key aspect of host defense that can lead to recovery from geminivirus infection. Recovery is characterized by reduced viral DNA levels and symptom remission and thus allows normal floral development. Studies described here demonstrate that the Pol V-dependent enhanced viral DNA and histone methylation observed during recovery result in increased chromatin compaction and suppressed gene expression. In addition, we show that TE-associated chromatin is also targeted for hypersuppression during recovery, such that TE transcripts are reduced below the already low levels seen in uninfected plants. Thus, Pol IV-RdDM at once silences the majority of viral genomes and enforces a tight control over TEs which might otherwise jeopardize genome integrity in future reproductive tissue.
Collapse
|
8
|
Kushwaha NK, Bhardwaj M, Chakraborty S. The replication initiator protein of a geminivirus interacts with host monoubiquitination machinery and stimulates transcription of the viral genome. PLoS Pathog 2017; 13:e1006587. [PMID: 28859169 PMCID: PMC5597257 DOI: 10.1371/journal.ppat.1006587] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 09/13/2017] [Accepted: 08/16/2017] [Indexed: 12/13/2022] Open
Abstract
Geminiviruses constitute a group of plant viruses, with a ssDNA genome, whose replication in the nucleus of an infected cell requires the function of geminivirus-encoded replication initiator protein (Rep). Our results suggest that monoubiquitinated histone 2B (H2B-ub) promotes tri-methylation of histone 3 at lysine 4 (H3-K4me3) on the promoter of Chilli leaf curl virus (ChiLCV). We isolated homologues of two major components of the monoubiquitination machinery: UBIQUITIN-CONJUGATING ENZYME2 (NbUBC2) and HISTONE MONOUBIQUITINATION1 (NbHUB1) from N. benthamiana. ChiLCV failed to cause disease in NbUBC2-, and NbHUB1-silenced plants, at the same time, H2B-ub and H3-K4me3 modifications were decreased, and the occupancy of RNA polymerase II on the viral promoter was reduced as well. In further investigations, Rep protein of ChiLCV was found to re-localize NbUBC2 from the cytoplasm to the nucleoplasm, like NbHUB1, the cognate partner of NbUBC2. Rep was observed to interact and co-localize with NbHUB1 and NbUBC2 in the nuclei of the infected cells. In summary, the current study reveals that the ChiLCV Rep protein binds the viral genome and interacts with NbUBC2 and NbHUB1 for the monoubiquitination of histone 2B that subsequently promotes trimethylation of histone 3 at lysine 4 on ChiLCV mini-chromosomes and enhances transcription of the viral genes.
Collapse
Affiliation(s)
- Nirbhay Kumar Kushwaha
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Mansi Bhardwaj
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
9
|
Deuschle K, Kepp G, Jeske H. Differential methylation of the circular DNA in geminiviral minichromosomes. Virology 2016; 499:243-258. [PMID: 27716464 DOI: 10.1016/j.virol.2016.09.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/22/2016] [Accepted: 09/24/2016] [Indexed: 10/20/2022]
Abstract
Geminiviral minichromosomes were purified to explore epigenetic modifications. The levels of methylation in their covalently closed circular DNA were examined with the help of methylation-dependent restriction (MdR). DNA with 12 superhelical turns was preferentially modified, indicating minichromosomes with 12 nucleosomes leaving an open gap. MdR digestion yielded a specific product of genomic length, which was cloned and Sanger-sequenced, or amplified following ligation-mediated rolling circle amplification and deep-sequenced (circomics). The conventional approach revealed a single cleavage product indicating specific methylations at the borders of the common region. The circomics approach identified considerably more MdR sites in a preferential distance to each other of ~200 nts, which is the DNA length in a nucleosome. They accumulated in regions of nucleosome-free gaps, but scattered also along the genomic components. These results may hint at a function in specific gene regulation, as well as in virus resistance.
Collapse
Affiliation(s)
- Kathrin Deuschle
- Institut für Biomaterialien und biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
| | - Gabi Kepp
- Institut für Biomaterialien und biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
| | - Holger Jeske
- Institut für Biomaterialien und biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany.
| |
Collapse
|
10
|
Ndunguru J, De León L, Doyle CD, Sseruwagi P, Plata G, Legg JP, Thompson G, Tohme J, Aveling T, Ascencio-Ibáñez JT, Hanley-Bowdoin L. Two Novel DNAs That Enhance Symptoms and Overcome CMD2 Resistance to Cassava Mosaic Disease. J Virol 2016; 90:4160-4173. [PMID: 26865712 PMCID: PMC4810563 DOI: 10.1128/jvi.02834-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/03/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Cassava mosaic begomoviruses (CMBs) cause cassava mosaic disease (CMD) across Africa and the Indian subcontinent. Like all members of the geminivirus family, CMBs have small, circular single-stranded DNA genomes. We report here the discovery of two novel DNA sequences, designated SEGS-1 and SEGS-2 (forsequencesenhancinggeminivirussymptoms), that enhance symptoms and break resistance to CMD. The SEGS are characterized by GC-rich regions and the absence of long open reading frames. Both SEGS enhanced CMD symptoms in cassava (Manihot esculentaCrantz) when coinoculated withAfrican cassava mosaic virus(ACMV),East African cassava mosaic Cameroon virus(EACMCV), orEast African cassava mosaic virus-Uganda(EACMV-UG). SEGS-1 also overcame resistance of a cassava landrace carrying the CMD2 resistance locus when coinoculated with EACMV-UG. Episomal forms of both SEGS were detected in CMB-infected cassava but not in healthy cassava. SEGS-2 episomes were also found in virions and whiteflies. SEGS-1 has no homology to geminiviruses or their associated satellites, but the cassava genome contains a sequence that is 99% identical to full-length SEGS-1. The cassava genome also includes three sequences with 84 to 89% identity to SEGS-2 that together encompass all of SEGS-2 except for a 52-bp region, which includes the episomal junction and a 26-bp sequence related to alphasatellite replication origins. These results suggest that SEGS-1 is derived from the cassava genome and facilitates CMB infection as an integrated copy and/or an episome, while SEGS-2 was originally from the cassava genome but now is encapsidated into virions and transmitted as an episome by whiteflies. IMPORTANCE Cassava is a major crop in the developing world, with its production in Africa being second only to maize. CMD is one of the most important diseases of cassava and a serious constraint to production across Africa. CMD2 is a major CMD resistance locus that has been deployed in many cassava cultivars through large-scale breeding programs. In recent years, severe, atypical CMD symptoms have been observed occasionally on resistant cultivars, some of which carry the CMD2 locus, in African fields. In this report, we identified and characterized two DNA sequences, SEGS-1 and SEGS-2, which produce similar symptoms when coinoculated with cassava mosaic begomoviruses onto a susceptible cultivar or a CMD2-resistant landrace. The ability of SEGS-1 to overcome CMD2 resistance and the transmission of SEGS-2 by whiteflies has major implications for the long-term durability of CMD2 resistance and underscore the need for alternative sources of resistance in cassava.
Collapse
Affiliation(s)
- Joseph Ndunguru
- Mikocheni Agricultural Research Institute, Dar es Salaam, Tanzania
| | - Leandro De León
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Catherine D Doyle
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Peter Sseruwagi
- Mikocheni Agricultural Research Institute, Dar es Salaam, Tanzania
| | - German Plata
- Center for Computational Biology and Bioinformatics, Columbia University, New York, New York, USA
| | - James P Legg
- International Institute of Tropical Agriculture-Tanzania, Dar es Salaam, Tanzania
| | - Graham Thompson
- ARC-Institute for Industrial Crops, Rusternburg, South Africa
| | - Joe Tohme
- International Center for Tropical Agriculture, Cali, Colombia
| | - Theresa Aveling
- University of Pretoria, Department of Microbiology and Plant Pathology, Pretoria, South Africa
| | - Jose T Ascencio-Ibáñez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
11
|
Ceniceros-Ojeda EA, Rodríguez-Negrete EA, Rivera-Bustamante RF. Two Populations of Viral Minichromosomes Are Present in a Geminivirus-Infected Plant Showing Symptom Remission (Recovery). J Virol 2016. [PMID: 26792752 DOI: 10.1128/jvi.02385-2315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
UNLABELLED Geminiviruses are important plant pathogens characterized by circular, single-stranded DNA (ssDNA) genomes. However, in the nuclei of infected cells, viral double-stranded DNA (dsDNA) associates with host histones to form a minichromosome. In phloem-limited geminiviruses, the characterization of viral minichromosomes is hindered by the low concentration of recovered complexes due to the small number of infected cells. Nevertheless, geminiviruses are both inducers and targets of the host posttranscriptional gene silencing (PTGS) and transcriptional gene silencing (TGS) machinery. We have previously characterized a "recovery" phenomenon observed in pepper plants infected with pepper golden mosaic virus (PepGMV) that is associated with a reduction of viral DNA and RNA levels, the presence of virus-related siRNAs, and an increase in the levels of viral DNA methylation. Initial micrococcal nuclease-based assays pinpointed the presence of different viral chromatin complexes in symptomatic and recovered tissues. Using the pepper-PepGMV system, we developed a methodology to obtain a viral minichromosome-enriched fraction that does not disturb the basic chromatin structural integrity, as evaluated by the detection of core histones. Using this procedure, we have further characterized two populations of viral minichromosomes in PepGMV-infected plants. After further purification using sucrose gradient sedimentation, we also observed that minichromosomes isolated from symptomatic tissue showed a relaxed conformation (based on their sedimentation rate), are associated with a chromatin activation marker (H3K4me3), and present a low level of DNA methylation. The minichromosome population obtained from recovered tissue, on the other hand, sedimented as a compact structure, is associated with a chromatin-repressive marker (H3K9me2), and presents a high level of DNA methylation. IMPORTANCE Viral minichromosomes have been reported in several animal and plant models. However, in the case of geminiviruses, there has been some recent discussion about the importance of this structure and the significance of the epigenetic modifications that it can undergo during the infective cycle. Major problems in this type of studies are the low concentration of these complexes in an infected plant and the asynchronicity of infected cells along the process; therefore, the complexes isolated in a given moment usually represent a mixture of cells at different infection stages. The recovery process observed in PepGMV-infected plants and the isolation procedure described here provide two distinct populations of minichromosomes that will allow a more precise characterization of the modifications of viral DNA and its host proteins associated along the infective cycle. This structure could be also an interesting model to study several processes involving plant chromatin.
Collapse
Affiliation(s)
- Esther Adriana Ceniceros-Ojeda
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Cinvestav-Irapuato, Irapuato, Guanajuato, Mexico
| | | | - Rafael Francisco Rivera-Bustamante
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Cinvestav-Irapuato, Irapuato, Guanajuato, Mexico
| |
Collapse
|
12
|
Two Populations of Viral Minichromosomes Are Present in a Geminivirus-Infected Plant Showing Symptom Remission (Recovery). J Virol 2016; 90:3828-3838. [PMID: 26792752 DOI: 10.1128/jvi.02385-15] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/16/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Geminiviruses are important plant pathogens characterized by circular, single-stranded DNA (ssDNA) genomes. However, in the nuclei of infected cells, viral double-stranded DNA (dsDNA) associates with host histones to form a minichromosome. In phloem-limited geminiviruses, the characterization of viral minichromosomes is hindered by the low concentration of recovered complexes due to the small number of infected cells. Nevertheless, geminiviruses are both inducers and targets of the host posttranscriptional gene silencing (PTGS) and transcriptional gene silencing (TGS) machinery. We have previously characterized a "recovery" phenomenon observed in pepper plants infected with pepper golden mosaic virus (PepGMV) that is associated with a reduction of viral DNA and RNA levels, the presence of virus-related siRNAs, and an increase in the levels of viral DNA methylation. Initial micrococcal nuclease-based assays pinpointed the presence of different viral chromatin complexes in symptomatic and recovered tissues. Using the pepper-PepGMV system, we developed a methodology to obtain a viral minichromosome-enriched fraction that does not disturb the basic chromatin structural integrity, as evaluated by the detection of core histones. Using this procedure, we have further characterized two populations of viral minichromosomes in PepGMV-infected plants. After further purification using sucrose gradient sedimentation, we also observed that minichromosomes isolated from symptomatic tissue showed a relaxed conformation (based on their sedimentation rate), are associated with a chromatin activation marker (H3K4me3), and present a low level of DNA methylation. The minichromosome population obtained from recovered tissue, on the other hand, sedimented as a compact structure, is associated with a chromatin-repressive marker (H3K9me2), and presents a high level of DNA methylation. IMPORTANCE Viral minichromosomes have been reported in several animal and plant models. However, in the case of geminiviruses, there has been some recent discussion about the importance of this structure and the significance of the epigenetic modifications that it can undergo during the infective cycle. Major problems in this type of studies are the low concentration of these complexes in an infected plant and the asynchronicity of infected cells along the process; therefore, the complexes isolated in a given moment usually represent a mixture of cells at different infection stages. The recovery process observed in PepGMV-infected plants and the isolation procedure described here provide two distinct populations of minichromosomes that will allow a more precise characterization of the modifications of viral DNA and its host proteins associated along the infective cycle. This structure could be also an interesting model to study several processes involving plant chromatin.
Collapse
|
13
|
Richter KS, Serra H, White CI, Jeske H. The recombination mediator RAD51D promotes geminiviral infection. Virology 2016; 493:113-27. [PMID: 27018825 DOI: 10.1016/j.virol.2016.03.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 11/28/2022]
Abstract
To study a possible role for homologous recombination in geminivirus replication, we challenged Arabidopsis recombination gene knockouts by Euphorbia yellow mosaic virus infection. Our results show that the RAD51 paralog RAD51D, rather than RAD51 itself, promotes viral replication at early stages of infection. Blot hybridization analyses of replicative intermediates using one- and two-dimensional gels and deep sequencing point to an unexpected facet of recombination-dependent replication, the repair by single-strand annealing (SSA) during complementary strand replication. A significant decrease of both intramolecular, yielding defective DNAs and intermolecular recombinant molecules between the two geminiviral DNA components (A, B) were observed in the absence of RAD51D. By contrast, DNA A and B reacted differentially with the generation of inversions. A model to implicate single-strand annealing recombination in geminiviral recombination-dependent replication is proposed.
Collapse
Affiliation(s)
- Kathrin S Richter
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
| | - Heϊdi Serra
- Génétique, Reproduction et Développement, UMR CNRS 6293-Clermont Université- INSERM U1103 Aubière, France
| | - Charles I White
- Génétique, Reproduction et Développement, UMR CNRS 6293-Clermont Université- INSERM U1103 Aubière, France
| | - Holger Jeske
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany.
| |
Collapse
|
14
|
Becker N, Rimbaud L, Chiroleu F, Reynaud B, Thébaud G, Lett JM. Rapid accumulation and low degradation: key parameters of Tomato yellow leaf curl virus persistence in its insect vector Bemisia tabaci. Sci Rep 2015; 5:17696. [PMID: 26625871 PMCID: PMC4667217 DOI: 10.1038/srep17696] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 11/04/2015] [Indexed: 02/05/2023] Open
Abstract
Of worldwide economic importance, Tomato yellow leaf curl virus (TYLCV, Begomovirus) is responsible for one of the most devastating plant diseases in warm and temperate regions. The DNA begomoviruses (Geminiviridae) are transmitted by the whitefly species complex Bemisia tabaci. Although geminiviruses have long been described as circulative non-propagative viruses, observations such as long persistence of TYLCV in B. tabaci raised the question of their possible replication in the vector. We monitored two major TYLCV strains, Mild (Mld) and Israel (IL), in the invasive B. tabaci Middle East-Asia Minor 1 cryptic species, during and after the viral acquisition, within two timeframes (0-144 hours or 0-20 days). TYLCV DNA was quantified using real-time PCR, and the complementary DNA strand of TYLCV involved in viral replication was specifically quantified using anchored real-time PCR. The DNA of both TYLCV strains accumulated exponentially during acquisition but remained stable after viral acquisition had stopped. Neither replication nor vertical transmission were observed. In conclusion, our quantification of the viral loads and complementary strands of both Mld and IL strains of TYLCV in B. tabaci point to an efficient accumulation and preservation mechanism, rather than to a dynamic equilibrium between replication and degradation.
Collapse
Affiliation(s)
- Nathalie Becker
- Institut de Systématique, Évolution, Biodiversité ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE. Muséum National d’Histoire Naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, F-75005, Paris, France
- CIRAD, UMR PVBMT, Pôle de Protection des Plantes, 7 chemin de l’Irat, F-97410 Saint Pierre, Ile de La Réunion, France
| | - Loup Rimbaud
- CIRAD, UMR PVBMT, Pôle de Protection des Plantes, 7 chemin de l’Irat, F-97410 Saint Pierre, Ile de La Réunion, France
- Montpellier SupAgro, UMR 385 BGPI, F-34398 Montpellier, France
| | - Frédéric Chiroleu
- CIRAD, UMR PVBMT, Pôle de Protection des Plantes, 7 chemin de l’Irat, F-97410 Saint Pierre, Ile de La Réunion, France
| | - Bernard Reynaud
- CIRAD, UMR PVBMT, Pôle de Protection des Plantes, 7 chemin de l’Irat, F-97410 Saint Pierre, Ile de La Réunion, France
| | | | - Jean-Michel Lett
- CIRAD, UMR PVBMT, Pôle de Protection des Plantes, 7 chemin de l’Irat, F-97410 Saint Pierre, Ile de La Réunion, France
| |
Collapse
|
15
|
Richter KS, Jeske H. KU80, a key factor for non-homologous end-joining, retards geminivirus multiplication. J Gen Virol 2015; 96:2913-2918. [PMID: 26297035 DOI: 10.1099/jgv.0.000224] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
KU80 is well-known as a key component of the non-homologous end-joining pathway used to repair DNA double-strand breaks. In addition, the KU80-containing DNA-dependent protein kinase complex in mammals can act as a cytoplasmic sensor for viral DNA to activate innate immune response. We have now, to our knowledge for the first time, demonstrated that the speed of a systemic infection with a plant DNA geminivirus in Arabidopsis thaliana is KU80-dependent. The early emergence of Euphorbia yellow mosaic virus DNA was significantly increased in ku80 knockout mutants compared with wild-type sibling controls. The possible impact of KU80 on geminivirus multiplication by generating non-productive viral DNAs or its role as a pattern-recognition receptor against DNA virus infection is discussed.
Collapse
Affiliation(s)
- Kathrin S Richter
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
| | - Holger Jeske
- Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
| |
Collapse
|
16
|
Krenz B, Deuschle K, Deigner T, Unseld S, Kepp G, Wege C, Kleinow T, Jeske H. Early function of the Abutilon mosaic virus AC2 gene as a replication brake. J Virol 2015; 89:3683-99. [PMID: 25589661 PMCID: PMC4403429 DOI: 10.1128/jvi.03491-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/10/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The C2/AC2 genes of monopartite/bipartite geminiviruses of the genera Begomovirus and Curtovirus encode important pathogenicity factors with multiple functions described so far. A novel function of Abutilon mosaic virus (AbMV) AC2 as a replication brake is described, utilizing transgenic plants with dimeric inserts of DNA B or with a reporter construct to express green fluorescent protein (GFP). Their replicational release upon AbMV superinfection or the individual and combined expression of epitope-tagged AbMV AC1, AC2, and AC3 was studied. In addition, the effects were compared in the presence and in the absence of an unrelated tombusvirus suppressor of silencing (P19). The results show that AC2 suppresses replication reproducibly in all assays and that AC3 counteracts this effect. Examination of the topoisomer distribution of supercoiled DNA, which indicates changes in the viral minichromosome structure, did not support any influence of AC2 on transcriptional gene silencing and DNA methylation. The geminiviral AC2 protein has been detected here for the first time in plants. The experiments revealed an extremely low level of AC2, which was slightly increased if constructs with an intron and a hemagglutinin (HA) tag in addition to P19 expression were used. AbMV AC2 properties are discussed with reference to those of other geminiviruses with respect to charge, modification, and size in order to delimit possible reasons for the different behaviors. IMPORTANCE The (A)C2 genes encode a key pathogenicity factor of begomoviruses and curtoviruses in the plant virus family Geminiviridae. This factor has been implicated in the resistance breaking observed in agricultural cotton production. AC2 is a multifunctional protein involved in transcriptional control, gene silencing, and regulation of basal biosynthesis. Here, a new function of Abutilon mosaic virus AC2 in replication control is added as a feature of this protein in viral multiplication, providing a novel finding on geminiviral molecular biology.
Collapse
Affiliation(s)
- Björn Krenz
- Institut für Biomaterialien und Biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Stuttgart, Germany
| | - Kathrin Deuschle
- Institut für Biomaterialien und Biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Stuttgart, Germany
| | - Tobias Deigner
- Institut für Biomaterialien und Biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Stuttgart, Germany
| | - Sigrid Unseld
- Institut für Biomaterialien und Biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Stuttgart, Germany
| | - Gabi Kepp
- Institut für Biomaterialien und Biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Stuttgart, Germany
| | - Christina Wege
- Institut für Biomaterialien und Biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Stuttgart, Germany
| | - Tatjana Kleinow
- Institut für Biomaterialien und Biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Stuttgart, Germany
| | - Holger Jeske
- Institut für Biomaterialien und Biomolekulare Systeme, Abteilung für Molekularbiologie und Virologie der Pflanzen, Universität Stuttgart, Stuttgart, Germany
| |
Collapse
|
17
|
Richter KS, Ende L, Jeske H. Rad54 is not essential for any geminiviral replication mode in planta. PLANT MOLECULAR BIOLOGY 2015; 87:193-202. [PMID: 25492528 DOI: 10.1007/s11103-014-0270-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/02/2014] [Indexed: 06/04/2023]
Abstract
The circular single-stranded DNA of phytopathogenic geminiviruses is propagated by three modes: complementary strand replication (CSR), rolling circle replication (RCR) and recombination-dependent replication (RDR), which need host plant factors to be carried out. In addition to necessary host polymerases, proteins of the homologous recombination repair pathway may be considered essential, since geminiviruses are particularly prone to recombination. Among several others, Rad54 was suggested to be necessary for the RCR of Mungbean yellow mosaic India virus. This enzyme is a double-stranded DNA-dependent ATPase and chromatin remodeller and was found to bind and modulate the viral replication-initiator protein in vitro and in Saccharomyces cerevisiae. In contrast to the previous report, we scrutinized the requirement of Rad54 in planta for two distinct fully infectious geminiviruses with respect to the three replication modes. Euphorbia yellow mosaic virus and Cleome leaf crumple virus were inoculated into Rad54-deficient and wildtype Arabidopsis thaliana plant lines to compare the occurrence of viral DNA forms. Replication intermediates were displayed in the time course of infection by one and two-dimensional agarose gel electrophoresis and Southern hybridization. The experiments showed that Rad54 was neither essential for CSR, RCR nor RDR, and it had no significant influence on virus titers during systemic infection.
Collapse
Affiliation(s)
- Kathrin S Richter
- Department of Molecular Biology and Plant Virology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70550, Stuttgart, Germany
| | | | | |
Collapse
|