1
|
Li C, Wu Y, Li X, An H, Fang S, Zhang S, Deng Q. Molecular characterization of a novel gammascleroulivirus from the rice blast fungus Magnaporthe oryzae isolate ES155. Arch Virol 2025; 170:85. [PMID: 40121345 DOI: 10.1007/s00705-025-06267-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/05/2025] [Indexed: 03/25/2025]
Abstract
A novel single-stranded (+ss) RNA mycovirus, designated as "Magnaporthe oryzae botourmiavirus 14" (MoBV14), was identified in the rice blast fungus Magnaporthe oryzae isolate ES155. The viral genome is 2,336 nucleotides in length and contains a single open reading frame (ORF) that is predicted to encode an RNA-dependent RNA polymerase (RdRp). Genome sequence comparisons and phylogenetic analysis indicated that MoBV14 is a new member of the genus Gammascleroulivirus in the family Botourmiaviridae.
Collapse
Affiliation(s)
- Cong Li
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yuxin Wu
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xinyi Li
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Hongliu An
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Shouguo Fang
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Songbai Zhang
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Qingchao Deng
- College of Agriculture, Yangtze University, Jingzhou, 434025, Hubei, China.
- Hubei Engineering Research Center for Pest Forewarning and Management, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
2
|
Fan Y, Zhao W, Tang X, Wang L, Yang M, Yang Y, Cheng B, Zhou E, He Z. Characterization of a novel gammapartitivirus infecting the phytopathogenic fungus Pyricularia oryzae. Arch Virol 2024; 169:105. [PMID: 38637359 DOI: 10.1007/s00705-024-06031-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/16/2024] [Indexed: 04/20/2024]
Abstract
In this study, we identified a novel double-strand RNA (dsRNA) mycovirus in Pyricularia oryzae, designated "Magnaporthe oryzae partitivirus 4" (MoPV4). The genome of MoPV4 consists of a dsRNA-1 segment encoding an RNA-dependent RNA polymerase (RdRP) and a dsRNA-2 segment encoding a capsid protein (CP). Phylogenetic analysis indicated that MoPV4 belongs to the genus Gammapartitivirus within family Partitiviridae. The particles of MoPV4 are isometric with a diameter of about 32.4 nm. Three-dimensional structure predictions indicated that the RdRP of MoPV4 forms a classical right-handed conformation, while the CP has a reclining-V shape.
Collapse
Affiliation(s)
- Yu Fan
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, 510642, Guangzhou, China
| | - Wenhua Zhao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, 510642, Guangzhou, China
| | - XiaoLin Tang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, 510642, Guangzhou, China
| | - Li Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, 510642, Guangzhou, China
| | - Mei Yang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, 510642, Guangzhou, China
| | - Yingqing Yang
- Institute of Plant Protection, Jiangxi Academy of Agricultural Sciences, 330200, Nanchang, China
| | - Baoping Cheng
- Institute of Plant Protection, Guangdong Provincial Key Laboratory of High Technology for Plant Protection/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, 510642, Guangdong, China.
| | - Erxun Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, 510642, Guangzhou, China.
| | - Zhenrui He
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, 510642, Guangzhou, China.
| |
Collapse
|
3
|
Zou C, Cao X, Zhou Q, Yao Z. The Interaction between Hypovirulence-Associated Chrysoviruses and Their Host Fusarium Species. Viruses 2024; 16:253. [PMID: 38400029 PMCID: PMC10891527 DOI: 10.3390/v16020253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/20/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Chrysoviruses are isometric virus particles (35-50 nm in diameter) with a genome composed of double-stranded RNAs (dsRNA). These viruses belonged to the Chrysoviridae family, named after the first member isolated from Penicillium chrysogenum. Phylogenetic classification has divided the chrysoviruses into Alphachrysovirus and Betachrysovirus genera. Currently, these chrysoviruses have been found to infect many fungi, including Fusarium species, and cause changes in the phenotype and decline in the pathogenicity of the host. Thus, it is a microbial resource with great biocontrol potential against Fusarium species, causing destructive plant diseases and substantial economic losses. This review provides a comprehensive overview of three chrysovirus isolates (Fusarium graminearum virus 2 (FgV2), Fusarium graminearum virus-ch9 (FgV-ch9), and Fusarium oxysporum f. sp. dianthi mycovirus 1 (FodV1)) reported to decline the pathogenicity of Fusarium hosts. It also summarizes the recent studies on host response regulation, host RNA interference, and chrysovirus transmission. The information provided in the review will be a reference for analyzing the interaction of Fusarium species with chrysovirus and proposing opportunities for research on the biocontrol of Fusarium diseases. Finally, we present reasons for conducting further studies on exploring the interaction between chrysoviruses and Fusarium and improving the accumulation and transmission efficiency of these chrysoviruses.
Collapse
Affiliation(s)
- Chengwu Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China; (C.Z.)
| | - Xueying Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China; (C.Z.)
| | - Qiujuan Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China; (C.Z.)
| | - Ziting Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China; (C.Z.)
- Plant Protection Research Institute, Guangxi Academy of Agriculture Science, Nanning 530007, China
| |
Collapse
|
4
|
Sakuta K, Uchida K, Fukuhara T, Komatsu K, Okada R, Moriyama H. Successful full-length genomic cloning and characterization of site-specific nick structures of Phytophthora endornaviruses 2 and 3 in yeast, Saccharomyces cerevisiae. Front Microbiol 2023; 14:1243068. [PMID: 37771702 PMCID: PMC10523305 DOI: 10.3389/fmicb.2023.1243068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
Two endornaviruses, Phytophthora endornavirus 2 (PEV2) and Phytophthora endornavirus 3 (PEV3), have been discovered in pathogens targeting asparagus. In this study, we analyzed the nick structure in the RNA genomes of PEV2 and PEV3 in the host oomycetes. Northern blot hybridization using positive and negative strand-specific RNA probes targeting the 5' and 3' regions of PEV2 and PEV3 RNA genomes revealed approximately 1.0 kilobase (kb) RNA fragments located in the 5' regions of the two genomes. 3' RACE analysis determined that the size of the RNA fragments were 958 nucleotides (nt) for PEV2 and 968 nt for PEV3. We have successfully constructed full-length cDNA clones of the entire RNA genomes of PEV2 and PEV3 using a homologous recombination system in the yeast, Saccharomyces cerevisiae. These full-length cDNA sequences were ligated downstream of a constitutive expression promoter (TDH3) or a galactose-inducing promoter (GAL1) in the shuttle vector to enable the production of the full-length RNA transcripts of PEV2 and PEV3 in yeast cells. Interestingly, a 1.0 kb RNA fragment from the PEV3 positive-strand transcript was also detected with a 5'-region RNA probe, indicating that site-specific cleavage also occurred in yeast cells. Further, when PEV2 or PEV3 mRNA was overexpressed under the GAL1 promoter, yeast cell growth was suppressed. A fusion protein combining EGFP to the N-terminus of the full-length PEV2 ORF or C-terminus of the full-length PEV3 ORF was expressed, and allowed PEV2 and PEV3 ORFs to be successfully visualized in yeast cells. Expression of the fusion protein also revealed presence of heterogeneous bodies in the cells.
Collapse
Affiliation(s)
- Kohei Sakuta
- Laboratory of Molecular and Cellular Biology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Keiko Uchida
- Laboratory of Molecular and Cellular Biology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Toshiyuki Fukuhara
- Laboratory of Molecular and Cellular Biology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Ken Komatsu
- Laboratory of Plant Pathology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Ryo Okada
- Horticultural Research Institute, Agricultural Center, Kasama, Ibaraki, Japan
| | - Hiromitsu Moriyama
- Laboratory of Molecular and Cellular Biology, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
5
|
Kotta-Loizou I. Mycoviruses and their role in fungal pathogenesis. Curr Opin Microbiol 2021; 63:10-18. [PMID: 34102567 DOI: 10.1016/j.mib.2021.05.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/03/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022]
Abstract
Nowadays, the focus of mycovirology research has expanded from plant pathogenic fungi and mycovirus mediated hypovirulence to include insect and human pathogenic fungi together with a range of mycovirus mediated phenotypes, such as hypervirulence, control of endophytic traits, regulation of metabolite production and drug resistance. In fungus-mycovirus-environmental interactions, the environment and both abiotic and biotic factors play crucial roles in whether and how mycovirus mediated phenotypes are manifest. Mycovirus infections result in alterations in the host transcriptome profile, via protein-protein interactions and triggering of antiviral RNA silencing in the fungus. These alterations, in combination with the environmental factors, may result in desirable phenotypic traits for the host, for us and in some cases for both.
Collapse
Affiliation(s)
- Ioly Kotta-Loizou
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, South Kensington Campus, SW7 2AZ London, United Kingdom.
| |
Collapse
|
6
|
Shahi S, Chiba S, Kondo H, Suzuki N. Cryphonectria nitschkei chrysovirus 1 with unique molecular features and a very narrow host range. Virology 2020; 554:55-65. [PMID: 33383414 DOI: 10.1016/j.virol.2020.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022]
Abstract
Cryphonectria nitschkei chrysovirus 1 (CnCV1), was described earlier from an ascomycetous fungus, Cryphonectria nitschkei strain OB5/11, collected in Japan; its partial sequence was reported a decade ago. Complete sequencing of the four genomic dsRNA segments revealed molecular features similar to but distinct from previously reported members of the family Chrysoviridae. Unique features include the presence of a mini-cistron preceding the major large open reading frame in each genomic segment. Common features include the presence of CAA repeats in the 5'-untranslated regions and conserved terminal sequences. CnCV1-OB5/11 could be laterally transferred to C. nitschkei and its relatives C. radicalis and C. naterciae via coculturing, virion transfection and protoplast fusion, but not to fungal species other than the three species mentioned above, even within the genus Cryphonectria, suggesting a very narrow host range. Phenotypic comparison of a few sets of CnCV1-infected and -free isogenic strains showed symptomless infection in new hosts.
Collapse
Affiliation(s)
- Sabitree Shahi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Sotaro Chiba
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan.
| |
Collapse
|
7
|
Higashiura T, Katoh Y, Urayama SI, Hayashi O, Aihara M, Fukuhara T, Fuji SI, Kobayashi T, Hase S, Arie T, Teraoka T, Komatsu K, Moriyama H. Magnaporthe oryzae chrysovirus 1 strain D confers growth inhibition to the host fungus and exhibits multiform viral structural proteins. Virology 2019; 535:241-254. [DOI: 10.1016/j.virol.2019.07.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 07/11/2019] [Accepted: 07/14/2019] [Indexed: 10/26/2022]
|
8
|
Chrysoviruses in Magnaporthe oryzae. Viruses 2018; 10:v10120697. [PMID: 30544784 PMCID: PMC6315753 DOI: 10.3390/v10120697] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 01/07/2023] Open
Abstract
Magnaporthe oryzae, the fungus that causes rice blast, is the most destructive pathogen of rice worldwide. A number of M. oryzae mycoviruses have been identified. These include Magnaporthe oryzae. viruses 1, 2, and 3 (MoV1, MoV2, and MoV3) belonging to the genus, Victorivirus, in the family, Totiviridae; Magnaporthe oryzae. partitivirus 1 (MoPV1) in the family, Partitiviridae; Magnaporthe oryzae. chrysovirus 1 strains A and B (MoCV1-A and MoCV1-B) belonging to cluster II of the family, Chrysoviridae; a mycovirus related to plant viruses of the family, Tombusviridae (Magnaporthe oryzae. virus A); and a (+)ssRNA mycovirus closely related to the ourmia-like viruses (Magnaporthe oryzae. ourmia-like virus 1). Among these, MoCV1-A and MoCV1-B were the first reported mycoviruses that cause hypovirulence traits in their host fungus, such as impaired growth, altered colony morphology, and reduced pigmentation. Recently we reported that, although MoCV1-A infection generally confers hypovirulence to fungi, it is also a driving force behind the development of physiological diversity, including pathogenic races. Another example of modulated pathogenicity caused by mycovirus infection is that of Alternaria alternata chrysovirus 1 (AaCV1), which is closely related to MoCV1-A. AaCV1 exhibits two contrasting effects: Impaired growth of the host fungus while rendering the host hypervirulent to the plant, through increased production of the host-specific AK-toxin. It is inferred that these mycoviruses might be epigenetic factors that cause changes in the pathogenicity of phytopathogenic fungi.
Collapse
|
9
|
Expression of a Structural Protein of the Mycovirus FgV-ch9 Negatively Affects the Transcript Level of a Novel Symptom Alleviation Factor and Causes Virus Infection-Like Symptoms in Fusarium graminearum. J Virol 2018; 92:JVI.00326-18. [PMID: 29899100 DOI: 10.1128/jvi.00326-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/30/2018] [Indexed: 11/20/2022] Open
Abstract
Infections of fungi by mycoviruses are often symptomless but sometimes also fatal, as they perturb sporulation, growth, and, if applicable, virulence of the fungal host. Hypovirulence-inducing mycoviruses, therefore, represent a powerful means to defeat fungal epidemics on crop plants. Infection with Fusarium graminearum virus China 9 (FgV-ch9), a double-stranded RNA (dsRNA) chrysovirus-like mycovirus, debilitates Fusarium graminearum, the causal agent of fusarium head blight. In search for potential symptom alleviation or aggravation factors in F. graminearum, we consecutively infected a custom-made F. graminearum mutant collection with FgV-ch9 and found a mutant with constantly elevated expression of a gene coding for a putative mRNA-binding protein that did not show any disease symptoms despite harboring large amounts of virus. Deletion of this gene, named virus response 1 (vr1), resulted in phenotypes identical to those observed in the virus-infected wild type with respect to growth, reproduction, and virulence. Similarly, the viral structural protein coded on segment 3 (P3) caused virus infection-like symptoms when expressed in the wild type but not in the vr1 overexpression mutant. Gene expression analysis revealed a drastic downregulation of vr1 in the presence of virus and in mutants expressing P3. We conclude that symptom development and severity correlate with gene expression levels of vr1 This was confirmed by comparative transcriptome analysis, showing a large transcriptional overlap between the virus-infected wild type, the vr1 deletion mutant, and the P3-expressing mutant. Hence, vr1 represents a fundamental host factor for the expression of virus-related symptoms and helps us understand the underlying mechanism of hypovirulence.IMPORTANCE Virus infections of phytopathogenic fungi occasionally impair growth, reproduction, and virulence, a phenomenon referred to as hypovirulence. Hypovirulence-inducing mycoviruses, therefore, represent a powerful means to defeat fungal epidemics on crop plants. However, the poor understanding of the molecular basis of hypovirulence induction limits their application. Using the devastating fungal pathogen on cereal crops, Fusarium graminearum, we identified an mRNA binding protein (named virus response 1, vr1) which is involved in symptom expression. Downregulation of vr1 in the virus-infected fungus and vr1 deletion evoke virus infection-like symptoms, while constitutive expression overrules the cytopathic effects of the virus infection. Intriguingly, the presence of a specific viral structural protein is sufficient to trigger the fungal response, i.e., vr1 downregulation, and symptom development similar to virus infection. The advancements in understanding fungal infection and response may aid biological pest control approaches using mycoviruses or viral proteins to prevent future Fusarium epidemics.
Collapse
|
10
|
Okada R, Ichinose S, Takeshita K, Urayama SI, Fukuhara T, Komatsu K, Arie T, Ishihara A, Egusa M, Kodama M, Moriyama H. Molecular characterization of a novel mycovirus in Alternaria alternata manifesting two-sided effects: Down-regulation of host growth and up-regulation of host plant pathogenicity. Virology 2018; 519:23-32. [PMID: 29631173 DOI: 10.1016/j.virol.2018.03.027] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/11/2018] [Accepted: 03/30/2018] [Indexed: 11/28/2022]
Abstract
A double-stranded RNA (dsRNA) mycovirus was detected in a strain of Alternaria alternata showing impaired growth phenotypes. The A. alternata strain is the Japanese pear pathotype, which produces a host-specific AK-toxin. Sequence analysis of the viral genome dsRNAs revealed that this mycovirus consists of five dsRNAs and is evolutionarily related to members of the family Chrysoviridae; the virus was named Alternaria alternata chrysovirus 1 (AaCV1). AaCV1-ORF2 protein accumulated in dsRNA-high-titer sub-isolates with severely impaired phenotypes; heterologous AaCV1-ORF2 overexpression in Saccharomyces cerevisiae caused growth inhibition. In contrast to this yeast growth inhibition phenomenon, the dsRNA-high-titer isolates displayed enhanced pathogenicity against Japanese pear plants, in accordance with a 13-fold increase in AK-toxin level in one such isolate. These findings indicated that AaCV1 is a novel mycovirus that exhibits two contrasting effects, impairing growth of the host fungus while rendering the host 'hypervirulent' to the plant.
Collapse
Affiliation(s)
- Ryo Okada
- Laboratory of Molecular and Cellular Biology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Shun Ichinose
- Laboratory of Molecular and Cellular Biology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Kana Takeshita
- Laboratory of Molecular and Cellular Biology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Syun-Ichi Urayama
- Laboratory of Molecular and Cellular Biology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Toshiyuki Fukuhara
- Laboratory of Molecular and Cellular Biology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Ken Komatsu
- Laboratory of Plant Pathology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Tsutomu Arie
- Laboratory of Plant Pathology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Atsushi Ishihara
- Laboratory of Natural Product, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori, Tottori 680-8553, Japan
| | - Mayumi Egusa
- Laboratory of Plant Pathology, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori, Tottori 680-8553, Japan
| | - Motoichiro Kodama
- Laboratory of Plant Pathology, Faculty of Agriculture, Tottori University, 4-101 Koyama-Minami, Tottori, Tottori 680-8553, Japan; Laboratory of Plant Pathology, The United Graduate School of Agricultural Sciences, Tottori University, 4-101 Koyama-Minami, Tottori, Tottori 680-8553, Japan
| | - Hiromitsu Moriyama
- Laboratory of Molecular and Cellular Biology, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|