1
|
Ferreira AL, Ghanim M, Xu Y, Pinheiro PV. Interactions between Common Bean Viruses and Their Whitefly Vector. Viruses 2024; 16:1567. [PMID: 39459901 PMCID: PMC11512337 DOI: 10.3390/v16101567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Common bean (Phaseolus vulgaris L.) is a widely cultivated crop, representing an important protein source in the human diet in developing countries. The production of this crop faces serious challenges, such as virus diseases transmitted by the whitefly Bemisia tabaci. Although there is a lot of information about some of these viruses, most of what we know has been developed using model systems, such as tomato plants and tomato yellow leaf curl virus (TYLCV). There is still very little information on the most relevant common bean viruses, such as bean golden mosaic virus (BGMV), bean golden yellow mosaic virus (BGYMV), bean dwarf mosaic virus (BDMV), cowpea mild mottle virus (CPMMV), and bean yellow disorder virus (BnYDV). In this review, we discuss the available data in the most up-to-date literature and suggest future research avenues to contribute to the development of management tools for preventing or reducing the damage caused by viruses in this important crop.
Collapse
Affiliation(s)
- Amanda L. Ferreira
- Institute of Tropical Pathology and Public Health (IPTSP), Universidade Federal de Goiás (UFG), Goiânia 74605-050, GO, Brazil;
| | - Murad Ghanim
- Department of Entomology, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| | - Yi Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;
| | | |
Collapse
|
2
|
Macedo MA, Melgarejo TA, Vasquez-Mayorga M, Cespedes M, Rojas MR, Turini TA, Batuman O, Wintermantel WM, Gilbertson RL. Squash vein yellowing virus from California emerged in the Middle East via intragenic and intergeneric recombination events in the hypervariable potyvirus P1 and ipomovirus P1a genes. J Gen Virol 2024; 105. [PMID: 39418084 DOI: 10.1099/jgv.0.002033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
We present the complete sequence of the genomic RNA of an isolate of squash vein yellowing virus (Ipomovirus cucurbitavenaflavi) from California (SqVYV-CA) and show it is a recombinant virus with a highly divergent 5' UTR and proximal P1a gene. The evolution of SqVYV-CA involved an intrageneric event between unknown potyviruses, related to isolates of papaya ringspot virus (Potyvirus papayanuli) from the Old World, and an intergeneric event between this recombinant potyvirus (minor parent) and an isolate of SqVYV from Israel (SqVYV-IL) (major parent). These events occurred in mixed infections and in the potyvirus P1 and ipomovirus P1a recombination hotspots and resulted in SqVYV-CA having a potyvirus 5' UTR and chimeric P1-P1a gene/protein and the remainder of the genome from SqVYV-IL. The SqVYV-CA chimeric P1-P1a gene is under positive selection, and the protein is intrinsically disordered and may localize to the nucleus via nuclear localization signals in the P1 part. The C-terminal SqVYV-IL P1a part also diverged but retained the conserved serine protease motif. Furthermore, substantial divergence in SqVYV isolates from the Middle East was associated with genetic drift and a long evolutionary history in this region. The finding that the host range and symptomatology in cucurbits of SqVYV-CA is similar to those of SqVYV from Florida and SqVYV-IL, indicated that the recombinant part of the genome had no obvious effect on the virus-host interaction. A divergent part of the P1 sequence of the SqVYV-CA P1-P1a gene was used to develop a primer pair and RT-PCR test for specific detection of SqVYV-CA. This test was used to detect spread of SqVYV-CA to a new production area of California in 2021 and 2022. Together, these results demonstrate (i) a high level of genetic diversity exists among isolates of SqVYV and involved intra- and intergeneric recombination and genetic drift (mutation), (ii) evidence that SqVYV originated in the Middle East and that there were independent introductions into the New World and (iii) the remarkable genetic flexibility of the 5' proximal genes of these viruses.
Collapse
Affiliation(s)
- M A Macedo
- Federal Institution of Brasília, Brasília, Federal District, Brazil
| | - T A Melgarejo
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - M Vasquez-Mayorga
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - M Cespedes
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - M R Rojas
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - T A Turini
- University of California Agriculture and Natural Resources, Fresno, CA, USA
| | - O Batuman
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, Florida, USA
| | - W M Wintermantel
- United States Department of Agriculture, Agricultural Research Service, Salinas, CA, USA
| | - R L Gilbertson
- Department of Plant Pathology, University of California, Davis, CA, USA
| |
Collapse
|
3
|
Devendran R, Kavalappara SR, Simmons AM, Bag S. Whitefly-Transmitted Viruses of Cucurbits in the Southern United States. Viruses 2023; 15:2278. [PMID: 38005954 PMCID: PMC10675411 DOI: 10.3390/v15112278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Cucurbits are economically important crops that are widely cultivated in many parts of the world, including the southern US. In recent years, higher temperatures have favored the rapid build-up of whiteflies in the fall-grown cucurbits in this region. As a result, whitefly-transmitted viruses (WTVs) have severely impacted the marketable yield of cucurbits. In this review, we discuss three major groups of WTVs negatively impacting cucurbit cultivation in the southern US, including begomoviruses, criniviruses, and ipomoviruses. Here, we discuss the available information on the biology, epidemiology and advances made toward detecting and managing these viruses, including sources of resistance and cultural practices.
Collapse
Affiliation(s)
| | | | - Alvin M. Simmons
- U.S. Vegetable Laboratory, Agricultural Research Service, United States Department of Agriculture, Charleston, SC 29414, USA
| | - Sudeep Bag
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA
| |
Collapse
|
4
|
Mondal S, Hladky LJ, Wintermantel WM. Differential Seasonal Prevalence of Yellowing Viruses Infecting Melon Crops in Southern California and Arizona Determined by Multiplex RT-PCR and RT-qPCR. PLANT DISEASE 2023; 107:2653-2664. [PMID: 36723958 DOI: 10.1094/pdis-06-22-1512-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Viruses transmitted by the whitefly (Bemisia tabaci) are an increasing threat to cucurbit production in the southwestern United States and many other cucurbit production regions of the world. The crinivirus cucurbit yellow stunting disorder virus (CYSDV) has severely impacted melon production in California and Arizona since its 2006 introduction to the region. Within the past few years, another crinivirus, cucurbit chlorotic yellows virus (CCYV), and the whitefly-transmitted ipomovirus squash vein yellowing virus (SqVYV) were found infecting melon plants in California's Imperial Valley. CYSDV, CCYV, and an aphid-transmitted polerovirus, cucurbit aphid-borne yellows virus (CABYV), occur together in the region and produce identical yellowing symptoms on cucurbit plants. Mixed infections of these four viruses in the Sonoran Desert and other regions pose challenges for disease management and efforts to develop resistant varieties. A multiplex single-step RT-PCR method was developed that differentiates among these viruses, and this was used to determine the prevalence and distribution of the viruses in melon samples from fields in the Sonoran Desert melon production region of California and Arizona during the spring and fall melon seasons from 2019 through 2021. TaqMan probes were developed, optimized, and applied in a single-step multiplex RT-qPCR to quantify titers of these four viruses in plant samples, which frequently carry mixed infections. Results of the multiplex RT-PCR analysis demonstrated that CYSDV is the predominant virus during the fall, whereas CCYV was by far the most prevalent virus during the spring each year. Multiplex RT-qPCR was used to evaluate differential accumulation and spatiotemporal distribution of viruses within plants and suggested differences in competitive accumulation of CCYV and CYSDV within melon. This study provides the first official report of SqVYV in Arizona and offers an efficient method for virus detection and quantification for breeding and disease management in areas impacted by cucurbit yellowing viruses.
Collapse
|
5
|
Small RNA Profiling of Cucurbit Yellow Stunting Disorder Virus from Susceptible and Tolerant Squash (Cucurbita pepo) Lines. Viruses 2023; 15:v15030788. [PMID: 36992495 PMCID: PMC10058471 DOI: 10.3390/v15030788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 03/22/2023] Open
Abstract
RNA silencing is a crucial mechanism of the antiviral immunity system in plants. Small RNAs guide Argonaut proteins to target viral RNA or DNA, preventing virus accumulation. Small RNA profiles in Cucurbita pepo line PI 420328 with tolerance to cucurbit yellow stunting disorder virus (CYSDV) were compared with those in Gold Star, a susceptible cultivar. The lower CYSDV symptom severity in PI 420328 correlated with lower virus titers and fewer sRNAs derived from CYSDV (vsRNA) compared to Gold Star. Elevated levels of 21- and 22-nucleotide (nt) size class vsRNAs were observed in PI 420328, indicating more robust and efficient RNA silencing in PI 420328. The distribution of vsRNA hotspots along the CYSDV genome was similar in both PI 420328 and Gold Star. However, the 3’ UTRs, CPm, and p26 were targeted at a higher frequency in PI 420328.
Collapse
|
6
|
Moya-Ruiz CD, Gómez P, Juárez M. Occurrence, Distribution, and Management of Aphid-Transmitted Viruses in Cucurbits in Spain. Pathogens 2023; 12:422. [PMID: 36986344 PMCID: PMC10057868 DOI: 10.3390/pathogens12030422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
The effectiveness of pest and disease management in crops relies on knowledge about their presence and distribution in crop-producing areas. Aphids and whiteflies are among the main threats to vegetable crops since these hemipterans feed on plants, causing severe damage, and are also able to transmit a large number of devastating plant viral diseases. In particular, the widespread occurrence of aphid-transmitted viruses in cucurbit crops, along with the lack of effective control measures, makes surveillance programs and virus epidemiology necessary for providing sound advice and further integration into the management strategies that can ensure sustainable food production. This review describes the current presence and distribution of aphid-transmitted viruses in cucurbits in Spain, providing valuable epidemiological information, including symptom expressions of virus-infected plants for further surveillance and viral detection. We also provide an overview of the current measures for virus infection prevention and control strategies in cucurbits and indicate the need for further research and innovative strategies against aphid pests and their associated viral diseases.
Collapse
Affiliation(s)
- Celia De Moya-Ruiz
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), CSIC, Departamento de Biología del Estrés y Patología Vegetal, 30100 Murcia, Spain
| | - Pedro Gómez
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), CSIC, Departamento de Biología del Estrés y Patología Vegetal, 30100 Murcia, Spain
| | - Miguel Juárez
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO), Universidad Miguel Hernández de Elche, 03312 Orihuela, Spain
| |
Collapse
|
7
|
Kavalappara SR, Milner H, Konakalla NC, Morgan K, Sparks AN, McGregor C, Culbreath AK, Wintermantel WM, Bag S. High Throughput Sequencing-Aided Survey Reveals Widespread Mixed Infections of Whitefly-Transmitted Viruses in Cucurbits in Georgia, USA. Viruses 2021; 13:v13060988. [PMID: 34073397 PMCID: PMC8230054 DOI: 10.3390/v13060988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 01/08/2023] Open
Abstract
Viruses transmitted by the sweet potato whitefly (Bemisia tabaci) have been detrimental to the sustainable production of cucurbits in the southeastern USA. Surveys were conducted in the fall of 2019 and 2020 in Georgia, a major cucurbit-producing state of the USA, to identify the viruses infecting cucurbits and their distribution. Symptomatic samples were collected and small RNA libraries were prepared and sequenced from three cantaloupes, four cucumbers, and two yellow squash samples. An analysis of the sequences revealed the presence of the criniviruses cucurbit chlorotic yellows virus (CCYV), cucurbit yellow stunting disorder virus (CYSDV), and the begomovirus cucurbit leaf crumple virus (CuLCrV). CuLCrV was detected in 76%, CCYV in 60%, and CYSDV in 43% of the total samples (n = 820) tested. The level of mixed infections was high in all the cucurbits, with most plants tested being infected with at least two of these viruses. Near-complete genome sequences of two criniviruses, CCYV and CYSDV, were assembled from the small RNA sequences. An analysis of the coding regions showed low genetic variability among isolates from different hosts. In phylogenetic analysis, the CCYV isolates from Georgia clustered with Asian isolates, while CYSDV isolates clustered with European and USA isolates. This work enhances our understanding of the distribution of viruses on cucurbits in South Georgia and will be useful to develop strategies for managing the complex of whitefly-transmitted viruses in the region.
Collapse
Affiliation(s)
- Saritha Raman Kavalappara
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; (S.R.K.); (H.M.); (N.C.K.); (K.M.); (A.K.C.)
| | - Hayley Milner
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; (S.R.K.); (H.M.); (N.C.K.); (K.M.); (A.K.C.)
| | - Naga Charan Konakalla
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; (S.R.K.); (H.M.); (N.C.K.); (K.M.); (A.K.C.)
| | - Kaelyn Morgan
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; (S.R.K.); (H.M.); (N.C.K.); (K.M.); (A.K.C.)
| | - Alton N. Sparks
- Department of Entomology, University of Georgia, Tifton, GA 31793, USA;
| | - Cecilia McGregor
- Department of Horticulture, University of Georgia, Athens, GA 30602, USA;
| | - Albert K. Culbreath
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; (S.R.K.); (H.M.); (N.C.K.); (K.M.); (A.K.C.)
| | - William M. Wintermantel
- United States Department of Agriculture-Agricultural Research Service, Salinas, CA 93905, USA
- Correspondence: (W.M.W.); (S.B.)
| | - Sudeep Bag
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; (S.R.K.); (H.M.); (N.C.K.); (K.M.); (A.K.C.)
- Correspondence: (W.M.W.); (S.B.)
| |
Collapse
|
8
|
Domingo-Calap ML, Chase O, Estapé M, Moreno AB, López-Moya JJ. The P1 Protein of Watermelon mosaic virus Compromises the Activity as RNA Silencing Suppressor of the P25 Protein of Cucurbit yellow stunting disorder virus. Front Microbiol 2021; 12:645530. [PMID: 33828542 PMCID: PMC8019732 DOI: 10.3389/fmicb.2021.645530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/02/2021] [Indexed: 11/17/2022] Open
Abstract
Mixed viral infections in plants involving a potyvirus and other unrelated virus often result in synergistic effects, with significant increases in accumulation of the non-potyvirus partner, as in the case of melon plants infected by the potyvirus Watermelon mosaic virus (WMV) and the crinivirus Cucurbit yellow stunting disorder virus (CYSDV). To further explore the synergistic interaction between these two viruses, the activity of RNA silencing suppressors (RSSs) was addressed in transiently co-expressed combinations of heterologous viral products in Nicotiana benthamiana leaves. While the strong RSS activity of WMV Helper Component Proteinase (HCPro) was unaltered, including no evident additive effects observed when co-expressed with the weaker CYSDV P25, an unexpected negative effect of WMV P1 was found on the RSS activity of P25. Analysis of protein expression during the assays showed that the amount of P25 was not reduced when co-expressed with P1. The detrimental action of P1 on the activity of P25 was dose-dependent, and the subcellular localization of fluorescently labeled variants of P1 and P25 when transiently co-expressed showed coincidences both in nucleus and cytoplasm. Also, immunoprecipitation experiments showed interaction of tagged versions of the two proteins. This novel interaction, not previously described in other combinations of potyviruses and criniviruses, might play a role in modulating the complexities of the response to multiple viral infections in susceptible plants.
Collapse
Affiliation(s)
- Maria Luisa Domingo-Calap
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain.,Instituto Valencia de Investigaciones Agrarias, IVIA, Valencia, Spain
| | - Ornela Chase
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Mariona Estapé
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain.,Universitair Medisch Centrum, UMC, Utrecht, Netherlands
| | - Ana Beatriz Moreno
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain.,Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
9
|
Orfanidou C, Katsiani A, Papayiannis L, Katis NI, Maliogka VI. Interplay of Cucurbit Yellow Stunting Disorder Virus With Cucurbit Chlorotic Yellows Virus and Transmission Dynamics by Bemisia tabaci MED. PLANT DISEASE 2021; 105:416-424. [PMID: 32706325 DOI: 10.1094/pdis-03-20-0621-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cucurbit chlorotic yellows virus (CCYV) and cucurbit yellow stunting disorder virus (CYSDV) are two closely related criniviruses that often coinfect cucurbits and are associated with cucurbit yellows disease. Both viruses are distributed worldwide and are transmitted in a semipersistent manner by the whitefly vectors Bemisia tabaci MED or MEAM1. The major goal of this study was to provide insight into the interaction of CCYV and CYSDV in cucumber and to study the effect on transmission by B. tabaci MED. The titers of both viruses were estimated in single- and dually infected cucumber plants via reverse transcription PCR assays. In mixed infections, the accumulation of both viruses was significantly decreased. When B. tabaci MED adults were placed on cucumber infected with both viruses, their simultaneous transmission efficiency was significantly higher, whereas transmission efficiency of each individual virus was low. Moreover, nonviruliferous whiteflies preferentially settled on crinivirus-infected cucumber plants, whereas viruliferous whiteflies were attracted by healthy cucumber plants. Finally, the titer of both viruses was calculated in five commercial cucumber hybrids, followed by subsequent transmission experiments. Our results show that although the titers of CYSDV and CCYV were significantly lower in mixed infections in cucumbers, their simultaneous transmission increased.
Collapse
Affiliation(s)
- Chrysoula Orfanidou
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124 Thessaloniki, Greece
| | - Asimina Katsiani
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124 Thessaloniki, Greece
| | | | - Nikolaos I Katis
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124 Thessaloniki, Greece
| | - Varvara I Maliogka
- Laboratory of Plant Pathology, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, 54124 Thessaloniki, Greece
| |
Collapse
|
10
|
Melon Genome Regions Associated with TGR-1551-Derived Resistance to Cucurbit yellow stunting disorder virus. Int J Mol Sci 2020; 21:ijms21175970. [PMID: 32825131 PMCID: PMC7504372 DOI: 10.3390/ijms21175970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 11/24/2022] Open
Abstract
Cucurbit yellow stunting disorder virus (CYSDV) is one of the main limiting factors of melon cultivation worldwide. To date, no commercial melon cultivars resistant to CYSDV are available. The African accession TGR-1551 is resistant to CYSDV. Two major quantitative trait loci (QTLs) have been previously reported, both located near each other in chromosome 5. With the objective of further mapping the gene or genes responsible of the resistance, a recombinant inbred line (RIL) population derived from the cross between TGR-1551 and the susceptible cultivar ‘Bola de Oro’ was evaluated for resistance to CYSDV in five different assays and genotyped in a genotyping by sequencing (GBS) analysis. The major effect of one of the two QTLs located on chromosome 5 was confirmed in the multienvironment RIL assay and additionally verified through the analysis of three segregating BC1S1 populations derived from three resistant RILs. Furthermore, progeny test using the offspring of selected BC3 plants allowed the narrowing of the candidate interval to a 700 kb region. The SNP markers identified in this work will be useful in marker-assisted selection in the context of introgression of CYSDV resistance in elite cultivars.
Collapse
|
11
|
Ruiz Garcia L, Janssen D. Epidemiology and control of emerging criniviruses in bean. Virus Res 2020; 280:197902. [PMID: 32097709 DOI: 10.1016/j.virusres.2020.197902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 01/05/2023]
Abstract
During the last two decades, new criniviruses emerged in green bean crops in the south-east of Spain. Bean yellow disorder virus (BnYDV) was first detected in 2003 and caused major economic damage in crops grown in greenhouses. It was characterized as the first crinivirus to infect a member species of the Leguminosae family. Symptoms induced during BnYDV infection include interveinal chlorosis and yellowing on leaves, and reduced fruit yield and quality. Similar symptoms, although more severe, were observed in bean crops in the same region during the fall of 2011. From that moment on, BnYDV was not detected anymore in diseased plants, but instead lettuce chlorosis virus (LCV) was associated with the diseased plants. Previously, LCV was detected only in California, USA, infecting lettuce and sugarbeets. The host range and partial genomic sequences lead to the description of the new strain, LCV-SP. The complete sequence of its genome revealed the virus as a recombinant of BnYDV and LCV, in which the latter had lost two ORFs in the RNA1 of the bipartite genome and had acquired two homologue ORFs from BnYDV. Both viruses are transmitted by the whitefly Bemisia tabaci. When compared with other crinivirus pathosystems, the transmission efficiency of BnYDV to its primary host bean, is among the highest, and its persistence in the vector among the longest, up to 9 days. The host range of BnYDV s restricted to several crop species of the Leguminosae: common bean (Phaseolus vulgaris), pea (Pisum sativum), tirabeque (P. sativum subsp. sativum var. macrocarpon), lentil (Lens culinaris) and faba bean (Vicia faba). LCV-SP is also able to infect green bean plants but not lettuce, its original host, probably following its recombinant nature. Symptoms and epidemiology of the bean criniviruses are compared with similar pathosystems that occur in the same region and that involve cucurbit yellow stunting disorder virus and tomato chlorosis virus, infecting cucurbitaceous and solanaceous crops, respectively. Control of the criniviruses in bean crops will depend on efficient control of the vector. Physical control with greenhouses that prevent viruliferous whiteflies from gaining access to crops reduces BnYDV infection in plants and loss of production. Integrated pest management in beans would be preferred and the use of natural enemies to reduce secondary spread within greenhouses must be investigated.
Collapse
Affiliation(s)
| | - Dirk Janssen
- IFAPA, Camino de San Nicolas 1, La Mojonera 04745, Spain.
| |
Collapse
|
12
|
Priming Melon Defenses with Acibenzolar- S-methyl Attenuates Infections by Phylogenetically Distinct Viruses and Diminishes Vector Preferences for Infected Hosts. Viruses 2020; 12:v12030257. [PMID: 32111005 PMCID: PMC7150938 DOI: 10.3390/v12030257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/07/2020] [Accepted: 02/21/2020] [Indexed: 02/03/2023] Open
Abstract
Plant virus management is mostly achieved through control of insect vectors using insecticides. However, insecticides are only marginally effective for preventing virus transmission. Furthermore, it is well established that symptoms of virus infections often encourage vector visitation to infected hosts, which exacerbates secondary spread. Plant defense elicitors, phytohormone analogs that prime the plant immune system against attack, may be a viable approach for virus control that complements insecticide use by disrupting pathologies that attract vectors. To explore this, we tested the effect of a commercial plant elicitor, acibenzolar-S-methyl (ASM), on infection rates, virus titers, and symptom development in melon plants inoculated with one of two virus species, Cucumber mosaic virus (CMV) and Cucurbit yellow stunting disorder virus (CYSDV). We also conducted behavioral assays to assess the effect of ASM treatment and virus inoculation on vector behavior. For both pathogens, ASM treatment reduced symptom severity and delayed disease progression. For CYSDV, this resulted in the attenuation of symptoms that encourage vector visitation and virion uptake. We did observe slight trade-offs in growth vs. defense following ASM treatment, but these effects did not translate into reduced yields or plant performance in the field. Our results suggest that immunity priming may be a valuable tool for improving management of insect-transmitted plant viruses.
Collapse
|
13
|
Domingo-Calap ML, Moreno AB, Díaz Pendón JA, Moreno A, Fereres A, López-Moya JJ. Assessing the Impact on Virus Transmission and Insect Vector Behavior of a Viral Mixed Infection in Melon. PHYTOPATHOLOGY 2020; 110:174-186. [PMID: 31502517 DOI: 10.1094/phyto-04-19-0126-fi] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mixed viral infections in plants are common, and can result in synergistic or antagonistic interactions. Except in complex diseases with severe symptoms, mixed infections frequently remain unnoticed, and their impact on insect vector transmission is largely unknown. In this study, we considered mixed infections of two unrelated viruses commonly found in melon plants, the crinivirus cucurbit yellow stunting disorder virus (CYSDV) and the potyvirus watermelon mosaic virus (WMV), and evaluated their vector transmission by whiteflies and aphids, respectively. Their dynamics of accumulation was analyzed until 60 days postinoculation (dpi) in mixed-infected plants, documenting reduced titers of WMV and much higher titers of CYSDV compared with single infections. At 24 dpi, corresponding to the peak of CYSDV accumulation, similar whitefly transmission rates were obtained when comparing either individual or mixed-infected plants as CYSDV sources, although its secondary dissemination was slightly biased toward plants previously infected with WMV, regardless of the source plant. However, at later time points, mixed-infected plants partially recovered from the initially severe symptoms, and CYSDV transmission became significantly higher. Interestingly, aphid transmission rates both at early and late time points were unaltered when WMV was acquired from mixed-infected plants despite its reduced accumulation. This lack of correlation between WMV accumulation and transmission could result from compensatory effects observed in the analysis of the aphid feeding behavior by electrical penetration graphs. Thus, our results showed that mixed-infected plants could provide advantages for both viruses, directly favoring CYSDV dissemination while maintaining WMV transmission.
Collapse
Affiliation(s)
- Maria Luisa Domingo-Calap
- Centre for Research in Agricultural Genomics (CRAG), Consejo Superior de Investigaciones Científicas (CSIC)-IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
| | - Ana Beatriz Moreno
- Centre for Research in Agricultural Genomics (CRAG), Consejo Superior de Investigaciones Científicas (CSIC)-IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
| | - Juan Antonio Díaz Pendón
- Institute for Mediterranean and Subtropical Horticulture "La Mayora" (IHSM-UMA-CSIC), Algarrobo-Costa, Málaga, Spain
| | - Aranzazu Moreno
- Institute of Agricultural Sciences, ICA, CSIC, Madrid, Spain
| | - Alberto Fereres
- Institute of Agricultural Sciences, ICA, CSIC, Madrid, Spain
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics (CRAG), Consejo Superior de Investigaciones Científicas (CSIC)-IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
- CSIC, Barcelona, Spain
| |
Collapse
|
14
|
Kaur N, Chen W, Fei Z, Wintermantel WM. Differences in gene expression in whitefly associated with CYSDV-infected and virus-free melon, and comparison with expression in whiteflies fed on ToCV- and TYLCV-infected tomato. BMC Genomics 2019; 20:654. [PMID: 31416422 PMCID: PMC6694564 DOI: 10.1186/s12864-019-5999-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 07/26/2019] [Indexed: 01/31/2023] Open
Abstract
Background Cucurbit yellow stunting disorder virus (CYSDV; genus Crinivirus, Closteroviridae) is transmitted in a semipersistent manner by the whitefly, Bemisia tabaci, and is efficiently transmitted by the widely prevalent B. tabaci cryptic species, MEAM1. In this study, we compared transcriptome profiles of B. tabaci MEAM1, after 24 h, 72 h and 7 days of acquisition feeding on melon plants infected with CYSDV (CYSDV-whiteflies) with those fed on virus-free melon, using RNA-Seq technology. We also compared transcriptome profiles with whiteflies fed on tomato plants separately infected with Tomato chlorosis virus (ToCV), a crinivirus closely related to CYSDV, and Tomato yellow leaf curl virus (TYLCV), a member of the genus Begomovirus, which has a distinctly different mode of transmission and their respective virus-free controls, to find common gene expression changes among viruliferous whiteflies feeding on different host plants infected with distinct (TYLCV) and related (CYSDV and ToCV) viruses. Results A total of 275 differentially expressed genes (DEGs) were identified in CYSDV-whiteflies, with 3 DEGs at 24 h, 221 DEGs at 72 h, and 51 DEGs at 7 days of virus acquisition. Changes in genes encoding orphan genes (54 genes), phosphatidylethanolamine-binding proteins (PEBP) (20 genes), and AAA-ATPase domain containing proteins (10 genes) were associated with the 72 h time point. Several more orphan genes (20 genes) were differentially expressed at 7 days. A total of 59 common DEGs were found between CYSDV-whiteflies and ToCV-whiteflies, which included 20 orphan genes and 6 lysosomal genes. A comparison of DEGs across the three different virus-host systems revealed 14 common DEGs, among which, eight showed similar and significant up-regulation in CYSDV-whiteflies at 72 h and TYLCV-whiteflies at 24 h, while down-regulation of the same genes was observed in ToCV-whiteflies at 72 h. Conclusions Dynamic gene expression changes occurred in CYSDV-whiteflies after 72 h feeding, with decreased gene expression changes associated with 7 days of CYSDV acquisition. Similarities in gene expression changes among CYSDV-whiteflies, ToCV-whiteflies and TYLCV-whiteflies suggest the possible involvement of common genes or pathways for virus acquisition and transmission by whiteflies, even for viruses with distinctly different modes of transmission. Electronic supplementary material The online version of this article (10.1186/s12864-019-5999-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Navneet Kaur
- USDA-ARS, Crop Improvement and Protection Research, 1636 East Alisal Street, Salinas, CA, 93905, USA.,Present Address: Driscoll's Inc., 151 Silliman Rd., Watsonville, CA, 95076, USA
| | - Wenbo Chen
- Boyce Thompson Institute, 533 Tower Road, Ithaca, New York, 14853-1801, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, 533 Tower Road, Ithaca, New York, 14853-1801, USA.,USDA-ARS, Robert W. Holley Center for Agriculture and Health, 538 Tower Road, Ithaca, New York, 14853-2901, USA
| | - William M Wintermantel
- USDA-ARS, Crop Improvement and Protection Research, 1636 East Alisal Street, Salinas, CA, 93905, USA.
| |
Collapse
|