1
|
Spinello A, Lapenta F, De March M. The avidin-theophylline complex: A structural and computational study. Proteins 2023; 91:1437-1443. [PMID: 37318226 DOI: 10.1002/prot.26538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/12/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
The interaction between avidin and its counterpart biotin is one of central importance in biology and has been reproposed and studied at length. However, the binding pocket of avidin is prone to promiscuous binding, able to accommodate even non-biotinylated ligands. Comprehending the factors that distinguish the extremely strong interaction with biotin to other ligands is an important step to fully picture the thermodynamics of these low-affinity complexes. Here, we present the complex between chicken white egg avidin and theophylline (TEP), the xanthine derivative used in the therapy of asthma. In the crystal structure, TEP lies in the biotin-binding pocket with the same orientation and planarity of the aromatic ring of 8-oxodeoxyguanosine. Indeed, its affinity for avidin measured by isothermal titration calorimetry is in the same μM range as those obtained for the previously characterized nucleoside derivatives. By the use of molecular dynamic simulations, we have investigated the most important intermolecular interactions occurring in the avidin-TEP binding pocket and compared them with those obtained for the avidin 8-oxodeoxyguanosine and avidin-biotin complexes. These results testify the capability of avidin to complex purely aromatic molecules.
Collapse
Affiliation(s)
- Angelo Spinello
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Fabio Lapenta
- Department of Environmental and Biological Sciences, University of Nova Gorica, Nova Gorica, Slovenia
| | - Matteo De March
- Department of Environmental and Biological Sciences, University of Nova Gorica, Nova Gorica, Slovenia
- Department of Chemical and Pharmacological Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
2
|
Molecular Mechanism of Adenovirus Late Protein L4-100K Chaperones the Trimerization of Hexon. J Virol 2023; 97:e0146722. [PMID: 36475768 PMCID: PMC9888260 DOI: 10.1128/jvi.01467-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Assembly of the adenovirus capsid protein hexon depends on the assistance of the molecular chaperone L4-100K. However, the chaperone mechanisms remain unclear. In this study, we found that L4-100K was involved in the hexon translation process and could prevent hexon degradation by the proteasome in cotransfected human cells. Two nonadjacent domains, 84-133 and 656-697, at the N-terminal and C-terminal regions of human adenovirus type 5 L4-100K, respectively, were found to be crucial and cooperatively responsible for hexon trimer expression and assembly. These two chaperone-related domains were conserved in the sequence of L4-100K and in the function of hexon assembly across different adenovirus serotypes. Different degrees of cross-activity of hexon trimerization with different serotypes were detected in subgroups B, C, and D, which were proven to be controlled by the interaction between the C-terminal chaperone-related domain of L4-100K and hypervariable regions (HVR) of hexon. Additionally, HVR-chimeric hexon mutants were successfully assembled with the assistance of the 1-697 mutant. Structural analysis of 656-697 by nuclear magnetic resonance and structural prediction of L4-100K using Robetta showed that the two conserved domains are mainly composed of α-helices and are located on the surface of the highly folded core region. Our research provides a more complete understanding of hexon assembly and guidance for the development of hexon-chimeric adenovirus vectors that will be safer, smarter, and more efficient. IMPORTANCE Adenovirus vectors have been widely used in clinical trials of vaccines and gene therapy, although some deficiencies remain. Chimeric modification of the hexon was expected to improve the potency of preexisting immune evasion and targeting, but in many cases, viral packaging is prevented by the inability of the chimeric hexon to assemble correctly. So far, few studies have examined the mechanisms of hexon trimer assembly. Here, we show how the chaperone protein L4-100K contributes to the assembly of the adenovirus capsid protein hexon, and these data will provide a guide for novel adenovirus vector design and development, as we desired.
Collapse
|
3
|
Jia Z, Pan X, Zhi W, Chen H, Bai B, Ma C, Ma D. Probiotics Surface-Delivering Fiber2 Protein of Fowl Adenovirus 4 Stimulate Protective Immunity Against Hepatitis-Hydropericardium Syndrome in Chickens. Front Immunol 2022; 13:919100. [PMID: 35837390 PMCID: PMC9273852 DOI: 10.3389/fimmu.2022.919100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/27/2022] [Indexed: 12/19/2022] Open
Abstract
Background and ObjectivesHepatitis-hydropericardium syndrome (HHS) caused by Fowl adenoviruses serotype 4 (FAdV-4) leads to severe economic losses to the poultry industry. Although various vaccines are available, vaccines that effectively stimulate intestinal mucosal immunity are still deficient. In the present study, novel probiotics that surface-deliver Fiber2 protein, the major virulence determiner and efficient immunogen for FAdV-4, were explored to prevent this fecal–oral-transmitted virus, and the induced protective immunity was evaluated after oral immunization.MethodsThe probiotic Enterococcus faecalis strain MDXEF-1 and Lactococcus lactis NZ9000 were used as host strains to deliver surface-anchoring Fiber2 protein of FAdV-4. Then the constructed live recombinant bacteria were orally vaccinated thrice with chickens at intervals of 2 weeks. Following each immunization, immunoglobulin G (IgG) in sera, secretory immunoglobulin A (sIgA) in jejunum lavage, immune-related cytokines, and T-cell proliferation were detected. Following challenge with the highly virulent FAdV-4, the protective effects of the probiotics surface-delivering Fiber2 protein were evaluated by verifying inflammatory factors, viral load, liver function, and survival rate.ResultsThe results demonstrated that probiotics surface-delivering Fiber2 protein stimulated humoral and intestinal mucosal immune responses in chickens, shown by high levels of sIgA and IgG antibodies, substantial rise in mRNA levels of cytokines, increased proliferative ability of T cells in peripheral blood, improved liver function, and reduced viral load in liver. Accordingly, adequate protection against homologous challenges and a significant increase in the overall survival rate were observed. Notably, chickens orally immunized with E. faecalis/DCpep-Fiber2-CWA were completely protected from the FAdV-4 challenge, which is better than L. lactis/DCpep-Fiber2-CWA.ConclusionThe recombinant probiotics surface-expressing Fiber2 protein could evoke remarkable humoral and cellular immune responses, relieve injury, and functionally damage target organs. The current study indicates a promising method used for preventing FAdV-4 infection in chickens.
Collapse
Affiliation(s)
- Zhipeng Jia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xinghui Pan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Wenjing Zhi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hang Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Bingrong Bai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Chunli Ma
- College of Food Science, Northeast Agricultural University, Harbin, China
- *Correspondence: Chunli Ma, ; Dexing Ma,
| | - Dexing Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Experimental Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
- *Correspondence: Chunli Ma, ; Dexing Ma,
| |
Collapse
|
4
|
Zafar M, Shah MA, Shehzad A, Tariq A, Habib M, Muddassar M, Shah MS, Iqbal M, Hemmatzadeh F, Rahman M. Characterization of the highly immunogenic VP2 protrusion domain as a diagnostic antigen for members of Birnaviridae family. Appl Microbiol Biotechnol 2020; 104:3391-3402. [PMID: 32088761 PMCID: PMC7222154 DOI: 10.1007/s00253-020-10458-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/31/2020] [Accepted: 02/10/2020] [Indexed: 11/13/2022]
Abstract
Birnaviridae is a family of viruses (birnaviruses) which consists of four genera, members of which cause diseases in fish, birds, mollusks, and insects. The genome of birnaviruses encodes the highly immunogenic VP2 capsid protein. In order to demonstrate that the VP2 protein can be exploited as a diagnostic antigen for birnaviruses, we developed a lateral flow assay based on the surface-exposed VP2 protrusion domain of a representative birnavirus, infectious bursal disease virus (IBDV) of serotype 1 which causes the highly devastating infectious bursal disease in chickens. The biophysical characterization of the purified domain reveals that the domain predominantly consists of β-sheets, exists in a trimeric form, and remains folded at high temperatures, making it suitable for diagnostic purposes. Owing to its highly immunogenic nature and excellent biophysical properties, we employed the VP2 protrusion domain in a gold nanoparticle-based lateral flow assay for rapid detection of anti-IBDV antibodies in serum samples of infected chickens. Our results indicate that the domain binds anti-IBDV antibodies with high specificity during laboratory testing and on-site testing. The lateral flow assay reported here yields comparable results in a qualitative manner as obtained through a commercial enzyme-linked immunosorbent assay (ELISA). As VP2 is a common capsid protein of birnaviruses, the lateral flow assay can be generalized for other birnaviruses, and members of Tetraviridae and Nodaviridae families which contain homologous VP2 capsid proteins.
Collapse
Affiliation(s)
- Maryam Zafar
- Drug Discovery and Structural Biology Group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad, Pakistan.,School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Roseworthy, South Australia,, 5371, Australia
| | - Majid Ali Shah
- Drug Discovery and Structural Biology Group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad, Pakistan
| | - Aamir Shehzad
- Drug Discovery and Structural Biology Group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad, Pakistan
| | - Anam Tariq
- Drug Discovery and Structural Biology Group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad, Pakistan
| | - Mudasser Habib
- Vaccine Development Group, Animal Sciences Division, NIAB, Faisalabad, Pakistan
| | - Muhammad Muddassar
- Department of Biosciences, COMSATS-University Islamabad, Park Road, Islamabad, Pakistan
| | | | - Mazhar Iqbal
- Drug Discovery and Structural Biology Group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad, Pakistan
| | - Farhid Hemmatzadeh
- School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Roseworthy, South Australia,, 5371, Australia.
| | - Moazur Rahman
- Drug Discovery and Structural Biology Group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan. .,Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad, Pakistan. .,School of Animal and Veterinary Sciences, Roseworthy Campus, The University of Adelaide, Roseworthy, South Australia,, 5371, Australia.
| |
Collapse
|
5
|
Chen Y, Huang R, Qu G, Peng Y, Xu L, Wang C, Huang C, Wang Q. Transcriptome Analysis Reveals New Insight of Fowl Adenovirus Serotype 4 Infection. Front Microbiol 2020; 11:146. [PMID: 32117165 PMCID: PMC7026491 DOI: 10.3389/fmicb.2020.00146] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
Since 2015, Fowl adenovirus serotype 4 (FAdV-4) infection has caused serious economic losses to the poultry industry worldwide. We isolated and identified the FAdV-4 strain NP, from infected chickens on a layer farm, using chicken embryo allantoic cavity inoculation, electron microscopy, viral genome sequencing, and regression analysis. To explore the pathogenesis of FAdV-4 infection, we conducted transcriptome sequencing analysis of the liver in chickens infected with FAdV-4, using the Illumina® HiSeq 2000 system. Two days after infection with the FAdV-4 NP strain, 13,576 differentially expressed genes (DEGs) were screened in the liver, among which, 7,480 were up-regulated and 6,096 were down-regulated. Gene ontology (GO) analysis indicated that these genes were involved in 52 biological functions. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that those DEGs were involved in 33 pathways. We then focused on the KEGG pathway of phagosome and found that mRNA levels of the 25 DEGs in that pathway were up-regulated, and seven DEGs were down-regulated. Real-time quantitative polymerase chain reaction (qPCR) confirmed the accuracy and reliability of these findings. Moreover, 24 h after LMH cells were infected with FAdV-4, the mRNA levels of F-actin, Rab7, TUBA, and DVnein were significantly increased. These four genes were all subsequently silenced by RNA interference, and viral replication of FAdV-4 was then significantly down-regulated. These findings demonstrate the isolation and identification of the FAdV-4 NP strain, and the DEGs in KEGG pathway of phagosome were utilized by FAdV-4 to benefit its infection.
Collapse
Affiliation(s)
- Yuan Chen
- College of Animal Science (College of Fee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ruiling Huang
- College of Animal Science (College of Fee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guishu Qu
- College of Animal Science (College of Fee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yaoshun Peng
- College of Animal Science (College of Fee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lihui Xu
- College of Animal Science (College of Fee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Changkang Wang
- College of Animal Science (College of Fee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Cuiqin Huang
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, China
| | - Quanxi Wang
- College of Animal Science (College of Fee Science), Fujian Agriculture and Forestry University, Fuzhou, China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
6
|
Characterization and pathogenicity of fowl adenovirus serotype 4 isolated from eastern China. BMC Vet Res 2019; 15:373. [PMID: 31660972 PMCID: PMC6816224 DOI: 10.1186/s12917-019-2092-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 09/16/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fowl adenovirus outbreaks have occurred in China since June 2015. This virus is an emerging infectious disease that causes hydropericardium syndrome and inclusion body hepatitis (HPS-IBH), resulting in significant economic loss to poultry farmers. Five fowl adenovirus (FAdV) strains (HN, AQ, AH726, JS07 and AH712) were isolated from Jiangsu and Anhui provinces. RESULTS Phylogenetic analysis revealed that the five isolates belonged to species C fowl adenovirus serotype 4. An 11 amino-acid deletion in ORF29, relative to an older viral isolate, JSJ13, was observed for all five strains described here. In chicken experiments, 80-100% birds died after intramuscular inoculation and displayed lesions characteristic of HPS-IBH. The viral DNA copies were further detected by hexon-probe based real-time polymerase chain reaction (PCR) in the chicken samples. The viral loads and cytokine profiles were recorded in all the organs after infections. Despite minor genetic differences, the 5 strains displayed significantly different tissue tropisms and cytokine profiles. CONCLUSIONS Our data enhance the current understanding some of the factors involved in the pathogenicity and genetic diversity of the FAdV serotype 4 (FAdV-4) in China. Our work provides theoretical support for the prevention and control of HPS-IBH in chickens.
Collapse
|
7
|
Aziz F, Tufail S, Shah MA, Salahuddin Shah M, Habib M, Mirza O, Iqbal M, Rahman M. In silico epitope prediction and immunogenic analysis for penton base epitope-focused vaccine against hydropericardium syndrome in chicken. Virus Res 2019; 273:197750. [PMID: 31509776 DOI: 10.1016/j.virusres.2019.197750] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/20/2019] [Accepted: 09/06/2019] [Indexed: 01/05/2023]
Abstract
Certain strains of fowl adenovirus serotype 4 (FAdV-4) of the family Adenoviridae are recognized to be the causative agents of Hydropericardium Syndrome (HPS) in broiler chicken. Despite the significantly spiking mortality in broilers due to HPS, not much effort has been made to design an effective vaccine against FAdV-4. The combination of immuno- and bioinformatics tools for immunogenic epitope prediction is the most recent concept of vaccine design. It reduces the time and effort required for hunting a potent vaccine candidate and is economical. Previously, we have reported the penton base protein of FAdV-4 to be a candidate for subunit vaccine against HPS. In the present study, we have computationally pre-screened promising B- and T-cell epitopes of the penton base. Multiple methods were employed for linear B-cell epitope identification; BepiPred and five other methods based on physicochemical properties of the amino acids. The penton base was homology modeled by means of Modeller 9.17 and after refinement of the model (by GalaxyRefine web server) ElliPro web tool was used to predict the discontinuous epitopes. NetMHCcons 1.1 and NetMHCIIpan 3.1 servers were used for the likelihood of peptide binding to Major Histocompatibility Complex (MHC) class I & II molecules respectively for T-cell epitope forecast. As a result, we identified the peptide stretch of 1-225 as the most promiscuous B- and T-cell epitope region in penton base Full Length (FL) protein sequence. Escherichia coli based expression vectors were generated containing cloned peptide stretch 1-225 (penton base1-225) and penton base FL gene sequence. The recombinant penton base1-225 and penton base FL proteins were expressed and purified using Escherichia coli-based expression system. Purification yield of penton base1-225 was 3-fold higher compared to penton base FL. These proteins were injected in chickens to determine their competence in protection against HPS. The results showed equal protection level of the two proteins and the commercial inactivated vaccine against FAdV-4 infection. The results suggest the peptide stretch 1-225 of penton base as a valuable candidate for developing an epitope-driven vaccine to combat HPS.
Collapse
Affiliation(s)
- Faiza Aziz
- Drug Discovery and Structural Biology group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Jhang Road, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad, Pakistan
| | - Soban Tufail
- Drug Discovery and Structural Biology group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Jhang Road, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad, Pakistan
| | - Majid Ali Shah
- Drug Discovery and Structural Biology group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Jhang Road, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad, Pakistan
| | | | - Mudasser Habib
- Vaccine Development Group, Animal Sciences Division, NIAB, Faisalabad, Pakistan
| | - Osman Mirza
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Mazhar Iqbal
- Drug Discovery and Structural Biology group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Jhang Road, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad, Pakistan
| | - Moazur Rahman
- Drug Discovery and Structural Biology group, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Jhang Road, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences, P.O. Nilore, Islamabad, Pakistan.
| |
Collapse
|
8
|
Li L, Wang J, Chen P, Zhang S, Sun J, Yuan W. Pathogenicity and molecular characterization of a fowl adenovirus 4 isolated from chicken associated with IBH and HPS in China. BMC Vet Res 2018; 14:400. [PMID: 30547794 PMCID: PMC6295067 DOI: 10.1186/s12917-018-1733-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/03/2018] [Indexed: 11/10/2022] Open
Abstract
Background Since July in 2015, an emerging infectious disease, Fowl adenovirus (FAdV) species C infection with Hepatitis-Hydropericardium syndrome was prevalent in chicken flocks in China. In our study, one FAdV strain was isolated from commercial broiler chickens and was designated as SDSX1.The phylogenetic information, genetic mutations and pathogenicity of SDSX1 were evaluated. Results The phylogenetic analysis indicated that SDSX1 is a strain of serotype 4, FAdV-C. The amino acid analysis of fiber-2 showed that there were more than 20 mutations compared with the non-virulent FAdV-C strains. The pathogenic evaluation of SDSX1 showed that the mortality of one-day-old chickens inoculated SDSX1 was 100%. The typical histopathological changes of SDSX1 were characterized by the presence of basophilic intranuclear inclusion bodies in hepatocytes. The virus copies in different tissues varied from107 to 1011 per 100 mg tissue and liver had the highest virus genome copies. Conclusion In conclusion, the isolate SDSX1, identified as FAdV-4, could cause one-day-old chicks’ typical inclusion body hepatitis (IBH) and hepatitis-hydropericardium syndrome (HHS) with 100% mortality. The virus genome loads were the highest in the liver. Molecular analysis indicated that substitutions in fiber-2 proteins may contribute to the pathogenicity of SDSX1.
Collapse
Affiliation(s)
- Limin Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China.,Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, 071001, Hebei, China.,North China Research Center of Animal Epidemic Pathogen Biology, China Agriculture Ministry, Baoding, 071001, Hebei, China
| | - Jianchang Wang
- Inspection and Quarantine Technical Center of Hebei Entry-Exit Inspection and Quarantine Bureau, 318 Heping West Rd, Xinhua District, Shijiazhuang, 050051, Hebei, China
| | - Ping Chen
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Shan Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Jiguo Sun
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China.,Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, 071001, Hebei, China.,North China Research Center of Animal Epidemic Pathogen Biology, China Agriculture Ministry, Baoding, 071001, Hebei, China
| | - Wanzhe Yuan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, Hebei, China. .,Hebei Engineering and Technology Research Center of Veterinary Biotechnology, Baoding, 071001, Hebei, China. .,North China Research Center of Animal Epidemic Pathogen Biology, China Agriculture Ministry, Baoding, 071001, Hebei, China.
| |
Collapse
|