1
|
Chen Y, Chapagain S, Chien J, Pereira HS, Patel TR, Inoue-Nagata AK, Jan E. Factor-Dependent Internal Ribosome Entry Site and -1 Programmed Frameshifting Signal in the Bemisia-Associated Dicistrovirus 2. Viruses 2024; 16:695. [PMID: 38793577 PMCID: PMC11125867 DOI: 10.3390/v16050695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
The dicistrovirus intergenic (IGR) IRES uses the most streamlined translation initiation mechanism: the IRES recruits ribosomes directly without using protein factors and initiates translation from a non-AUG codon. Several subtypes of dicistroviruses IRES have been identified; typically, the IRESs adopt two -to three overlapping pseudoknots with key stem-loop and unpaired regions that interact with specific domains of the ribosomal 40S and 60S subunits to direct translation. We previously predicted an atypical IGR IRES structure and a potential -1 programmed frameshift (-1 FS) signal within the genome of the whitefly Bemisia-associated dicistrovirus 2 (BaDV-2). Here, using bicistronic reporters, we demonstrate that the predicted BaDV-2 -1 FS signal can drive -1 frameshifting in vitro via a slippery sequence and a downstream stem-loop structure that would direct the translation of the viral RNA-dependent RNA polymerase. Moreover, the predicted BaDV-2 IGR can support IRES translation in vitro but does so through a mechanism that is not typical of known factorless dicistrovirus IGR IRES mechanisms. Using deletion and mutational analyses, the BaDV-2 IGR IRES is mapped within a 140-nucleotide element and initiates translation from an AUG codon. Moreover, the IRES does not bind directly to purified ribosomes and is sensitive to eIF2 and eIF4A inhibitors NSC1198983 and hippuristanol, respectively, indicating an IRES-mediated factor-dependent mechanism. Biophysical characterization suggests the BaDV-2 IGR IRES contains several stem-loops; however, mutational analysis suggests a model whereby the IRES is unstructured or adopts distinct conformations for translation initiation. In summary, we have provided evidence of the first -1 FS frameshifting signal and a novel factor-dependent IRES mechanism in this dicistrovirus family, thus highlighting the diversity of viral RNA-structure strategies to direct viral protein synthesis.
Collapse
Affiliation(s)
- Yihang Chen
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (Y.C.); (S.C.); (J.C.)
| | - Subash Chapagain
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (Y.C.); (S.C.); (J.C.)
| | - Jodi Chien
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (Y.C.); (S.C.); (J.C.)
| | - Higor Sette Pereira
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (H.S.P.); (T.R.P.)
| | - Trushar R. Patel
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (H.S.P.); (T.R.P.)
| | | | - Eric Jan
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (Y.C.); (S.C.); (J.C.)
| |
Collapse
|
2
|
Ali M, Shafiq M, Haider MZ, Sami A, Alam P, Albalawi T, Kamran Z, Sadiq S, Hussain M, Shahid MA, Jeridi M, Ashraf GA, Manzoor MA, Sabir IA. Genome-wide analysis of NPR1-like genes in citrus species and expression analysis in response to citrus canker ( Xanthomonas axonopodis pv. citri). FRONTIERS IN PLANT SCIENCE 2024; 15:1333286. [PMID: 38606070 PMCID: PMC11007782 DOI: 10.3389/fpls.2024.1333286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/08/2024] [Indexed: 04/13/2024]
Abstract
Citrus fruits, revered for their nutritional value, face significant threats from diseases like citrus canker, particularly impacting global citrus cultivation, notably in Pakistan. This study delves into the critical role of NPR1-like genes, the true receptors for salicylic acid (SA), in the defense mechanisms of citrus against Xanthomonas axonopodis pv. citri (Xcc). By conducting a comprehensive genome-wide analysis and phylogenetic study, the evolutionary dynamics of Citrus limon genes across diverse citrus cultivars are elucidated. Structural predictions unveil conserved domains, such as the BTB domain and ankyrin repeat domains, crucial for the defense mechanism. Motif analysis reveals essential conserved patterns, while cis-regulatory elements indicate their involvement in transcription, growth, response to phytohormones, and stress. The predominantly cytoplasmic and nuclear localization of NPR1-like genes underscores their pivotal role in conferring resistance to various citrus species. Analysis of the Ks/Ka ratio indicates a purifying selection of NPR1-like genes, emphasizing their importance in different species. Synteny and chromosomal mapping provide insights into duplication events and orthologous links among citrus species. Notably, Xac infection stimulates the expression of NPR1-like genes, revealing their responsiveness to pathogenic challenges. Interestingly, qRT-PCR profiling post-Xac infection reveals cultivar-specific alterations in expression within susceptible and resistant citrus varieties. Beyond genetic factors, physiological parameters like peroxidase, total soluble protein, and secondary metabolites respond to SA-dependent PR genes, influencing plant characteristics. Examining the impact of defense genes (NPR1) and plant characteristics on disease resistance in citrus, this study marks the inaugural investigation into the correlation between NPR1-associated genes and various plant traits in both susceptible and resistant citrus varieties to citrus bacterial canker.
Collapse
Affiliation(s)
- Mobeen Ali
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Shafiq
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammad Zeshan Haider
- Department of Plant Breeding & Genetics, Faculty of Agriculture Sciences, University of the Punjab, Lahore, Pakistan
| | - Adnan Sami
- Department of Plant Breeding & Genetics, Faculty of Agriculture Sciences, University of the Punjab, Lahore, Pakistan
| | - Pravej Alam
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Thamir Albalawi
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Zuha Kamran
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Saleh Sadiq
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Mujahid Hussain
- Horticultural Science Department University of Florida-Institute of Food and Agricultural Sciences (IFAS) North Florida Research and Education Center, Gainesville FL, United States
| | - Muhammad Adnan Shahid
- Horticultural Science Department University of Florida-Institute of Food and Agricultural Sciences (IFAS) North Florida Research and Education Center, Gainesville FL, United States
| | - Mouna Jeridi
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | | | | | - Irfan Ali Sabir
- College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Berman TS, Izraeli Y, Lalzar M, Mozes-Daube N, Lepetit D, Tabic A, Varaldi J, Zchori-Fein E. RNA Viruses Are Prevalent and Active Tenants of the Predatory Mite Phytoseiulus persimilis (Acari: Phytoseiidae). MICROBIAL ECOLOGY 2023; 86:2060-2072. [PMID: 37020129 DOI: 10.1007/s00248-023-02210-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Many arthropod species harbor a diverse range of viruses. While much is known about pathogenic viruses of some economically important insects and arthropods involved in disease transmission, viruses associated with mites have rarely been studied. The main objective of this study was to characterize the virome of Phytoseiulus persimilis (Phytoseiidae), a predatory mite commercially used worldwide for the biological control of the key pest Tetranychus urticae (Tetranichidae). A combination of de novo transcriptome assembly and virion sequencing, revealed that RNA viruses are highly prevalent and active tenants of commercial populations of P. persimilis, comprising on average 9% of the mite's total mRNA. Seventeen RNA viruses dominated the mite's virome (i.e., were highly transcribed) with over half (n = 10) belonging to the order Picornavirales, + ssRNA viruses that infect a large range of hosts, including arthropods. Screening of the 17 dominant virus sequences in P. persimilis and T. urticae revealed that three viruses (two Picornavirales of the families Iflaviridae and Dicistroviridae, and one unclassified Riboviria) are unique to P. persimilis and three others (two unclassified Picornavirales and one unclassified Riboviria) are present in both mite species. Most of the sequences were related to viruses previously documented in economically important arthropods, while others have rarely been documented before in arthropods. These findings demonstrate that P. persimilis, like many other arthropods, harbors a diverse RNA virome, which might affect the mite's physiology and consequently its efficiency as a biological control agent.
Collapse
Affiliation(s)
- Tali Sarah Berman
- Department of Entomology, Newe Ya'ar Research Center, ARO, Ramat Yishai, Israel
| | - Yehuda Izraeli
- Department of Entomology, Newe Ya'ar Research Center, ARO, Ramat Yishai, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Haifa, Israel
| | - Maya Lalzar
- Bioinformatics Service Unit, University of Haifa, 3498838, Haifa, Israel
| | - Netta Mozes-Daube
- Department of Entomology, Newe Ya'ar Research Center, ARO, Ramat Yishai, Israel
| | - David Lepetit
- Laboratoire de Biométrie Et Biologie Evolutive, UMR 5558, Université de Lyon Université Lyon 1, CNRS, Villeurbanne, France
| | | | - Julien Varaldi
- Laboratoire de Biométrie Et Biologie Evolutive, UMR 5558, Université de Lyon Université Lyon 1, CNRS, Villeurbanne, France
| | - Einat Zchori-Fein
- Department of Entomology, Newe Ya'ar Research Center, ARO, Ramat Yishai, Israel.
| |
Collapse
|
4
|
Qi YH, Ye ZX, Zhang CX, Chen JP, Li JM. Diversity of RNA viruses in agricultural insects. Comput Struct Biotechnol J 2023; 21:4312-4321. [PMID: 37711182 PMCID: PMC10497914 DOI: 10.1016/j.csbj.2023.08.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
Recent advancements in next-generation sequencing (NGS) technology and bioinformatics tools have revealed a vast array of viral diversity in insects, particularly RNA viruses. However, our current understanding of insect RNA viruses has primarily focused on hematophagous insects due to their medical importance, while research on the viromes of agriculturally relevant insects remains limited. This comprehensive review aims to address the gap by providing an overview of the diversity of RNA viruses in agricultural pests and beneficial insects within the agricultural ecosystem. Based on the NCBI Virus Database, over eight hundred RNA viruses belonging to 39 viral families have been reported in more than three hundred agricultural insect species. These viruses are predominantly found in the insect orders of Hymenoptera, Hemiptera, Thysanoptera, Lepidoptera, Diptera, Coleoptera, and Orthoptera. These findings have significantly enriched our understanding of RNA viral diversity in agricultural insects. While further virome investigations are necessary to expand our knowledge to more insect species, it is crucial to explore the biological roles of these identified RNA viruses within insects in future studies. This review also highlights the limitations and challenges for the effective virus discovery through NGS and their potential solutions, which might facilitate for the development of innovative bioinformatic tools in the future.
Collapse
Affiliation(s)
- Yu-Hua Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhuang-Xin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
5
|
Molecular Characterization of Hovenia Dulcis-Associated Virus 1 (HDaV1) and 2 (HDaV2): New Tentative Species within the Order Picornavirales. Viruses 2020; 12:v12090950. [PMID: 32867192 PMCID: PMC7552035 DOI: 10.3390/v12090950] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/08/2020] [Accepted: 08/15/2020] [Indexed: 01/02/2023] Open
Abstract
In a systematic field survey for plant-infecting viruses, leaf tissues were collected from trees showing virus-like symptoms in Brazil. After viral enrichment, total RNA was extracted and sequenced using the MiSeq platform (Illumina). Two nearly full-length picorna-like genomes of 9534 and 8158 nucleotides were found associated with Hovenia dulcis (Rhamnaceae family). Based upon their genomic information, specific primers were synthetized and used in RT-PCR assays to identify plants hosting the viral sequences. The larger contig was tentatively named as Hovenia dulcis-associated virus 1 (HDaV1), and it exhibited low nucleotide and amino acid identities with Picornavirales species. The smaller contig was related to insect-associated members of the Dicistroviridae family but exhibited a distinct genome organization with three non-overlapping open reading frames (ORFs), and it was tentatively named as Hovenia dulcis-associated virus 2 (HDaV2). Phylogenetic analysis using the amino acid sequence of RNA-dependent RNA polymerase (RdRp) revealed that HDaV1 and HDaV2 clustered in distinct groups, and both viruses were tentatively assigned as new members of the order Picornavirales. HDaV2 was assigned as a novel species in the Dicistroviridae family. The 5′ ends of both viruses are incomplete. In addition, a nucleotide composition analysis (NCA) revealed that HDaV1 and HDaV2 have similarities with invertebrate-infecting viruses, suggesting that the primary host(s) of these novel virus species remains to be discovered.
Collapse
|
6
|
Hedil M, Nakasu EYT, Nagata T, Wen J, Jan E, Michereff-Filho M, Inoue-Nagata AK. New features on the genomic organization of a novel dicistrovirus identified from the sweet potato whitefly Bemisia tabaci. Virus Res 2020; 288:198112. [PMID: 32777388 DOI: 10.1016/j.virusres.2020.198112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 11/26/2022]
Abstract
The whitefly Bemisia tabaci is an agricultural pest causing large economic losses worldwide. We analysed the genomic sequence of a new viral member of the family Dicistroviridae identified by high-throughput sequencing of total RNA extracted from whiteflies. The virus, tentatively named Bemisia-associated dicistrovirus 2 (BaDV-2), has a genome of 8012 nucleotides with a polyadenylated 3' end. In contrast to typical dicistroviruses, BaDV-2 has a genome containing three open reading frames (ORFs) encoding predicted proteins of 1078 (ORF1a), 481 (ORF1b) and 834 (ORF2) amino acids, which correspond to replicase A (containing helicase and cysteine protease domains), replicase B (a domain of an RNA-dependent RNA polymerase - RdRP) and capsid proteins, respectively. The 3' end of ORF1a contains a potential frameshift signal, suggesting that ORF1a and ORF1b may be expressed as a single polyprotein (replicaseFS), corresponding to other dicistroviruses. The BaDV-2 genomic sequence shares the highest nucleotide identity (61.1 %) with Bemisia-associated dicistrovirus 1 (BaDV-1), another dicistrovirus identified from whiteflies. The full BaDV-2 replicaseFS polyprotein clustered with aparaviruses, whereas the capsid polyprotein clustered with cripaviruses in phylogenetic analyses, as with BaDV-1. The intergenic region (IGR) between ORF1b and ORF2 is predicted to adopt a secondary structure with atypical features that resembles the dicistrovirus IGR IRES structure. Our analyses indicate that BaDV-2 is a novel dicistrovirus and that BaDV-2 together with BaDV-1 may not be appropriately grouped in any of the three currently accepted dicistrovirus genera.
Collapse
Affiliation(s)
| | | | - Tatsuya Nagata
- Department of Cell Biology, University of Brasilia, Brasília, Brazil
| | - Jing Wen
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Eric Jan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
7
|
Bourgarel M, Noël V, Pfukenyi D, Michaux J, André A, Becquart P, Cerqueira F, Barrachina C, Boué V, Talignani L, Matope G, Missé D, Morand S, Liégeois F. Next-Generation Sequencing on Insectivorous Bat Guano: An Accurate Tool to Identify Arthropod Viruses of Potential Agricultural Concern. Viruses 2019; 11:v11121102. [PMID: 31795197 PMCID: PMC6950063 DOI: 10.3390/v11121102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/12/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022] Open
Abstract
Viruses belonging to the Dicistroviridae family have attracted a great deal of attention from scientists owing to their negative impact on agricultural economics, as well as their recent identification as potential aetiological agents of febrile illness in human patients. On the other hand, some Dicistroviruses are also studied for their potential biopesticide properties. To date, Dicistrovirus characterized in African mainland remain scarce. By using High-Throughput Sequencing technology on insectivorous bat faeces (Hipposideros Caffer) sampled in a cave used by humans to collect bat guano (bat manure) as fertilizer in Zimbabwe, we characterized the full-length sequences of three Dicistrovirus belonging to the Cripavirus and Aparavirus genus: Big Sioux River Virus-Like (BSRV-Like), Acute Bee Paralysis Virus (ABPV), and Aphid Lethal Paralysis Virus (ALPV). Phylogenetic analyses of ORF-1 and ORF-2 genes showed a complex evolutionary history between BSRV and close viruses, as well as for the Aparavirus genus. Herewith, we provide the first evidence of the presence of Dicistrovirus in Zimbabwe and highlight the need to further document the impact of such viruses on crops, as well as in beekeeping activities in Zimbabwe which represent a crucial source of income for Zimbabwean people.
Collapse
Affiliation(s)
- Mathieu Bourgarel
- Animal Santé Territoire Risque Environnement- Unité Mixe de Recherche 117 (ASTRE) Univ. Montpellier, Centre International de Recherche Agronomique pour le Développement (CIRAD), Institut National de la Recherche Agronomique, 34398 Montpellier, France; (M.B.); (S.M.)
- Centre International de Recherche Agronomique pour le Développement (CIRAD), Research Platform-Production and Conservation in Partership, Unité Mixe de Recherche ASTRE, Harare, Zimbabwe
| | - Valérie Noël
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle- Unité Mixe de Recherche 224 (MIVEGEC), Institut de Recherche pour le Développement (IRD), Centre National de Recherche Scientifique (CNRS), Univ. Montpellier, 34398 Montpellier, France; (V.N.); (P.B.); (V.B.); (L.T.); (D.M.)
| | - Davies Pfukenyi
- Faculty of Veterinary Science, University of Zimbabwe, P.O. Box MP167, Mt. Pleasant Harare P.O. Box MP167, Zimbabwe; (D.P.); (G.M.)
| | - Johan Michaux
- Animal Santé Territoire Risque Environnement- Unité Mixe de Recherche 117 (ASTRE) Univ. Montpellier, Centre International de Recherche Agronomique pour le Développement (CIRAD), Institut National de la Recherche Agronomique, 34398 Montpellier, France; (M.B.); (S.M.)
- Université de Liège, Laboratoire de Génétique de la Conservation, GeCoLAB, 4000 Liège, Belgium; (J.M.); (A.A.)
| | - Adrien André
- Université de Liège, Laboratoire de Génétique de la Conservation, GeCoLAB, 4000 Liège, Belgium; (J.M.); (A.A.)
| | - Pierre Becquart
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle- Unité Mixe de Recherche 224 (MIVEGEC), Institut de Recherche pour le Développement (IRD), Centre National de Recherche Scientifique (CNRS), Univ. Montpellier, 34398 Montpellier, France; (V.N.); (P.B.); (V.B.); (L.T.); (D.M.)
| | - Frédérique Cerqueira
- Institut des Sciences de l’Evolution de Montpellier (ISEM), Univ Montpellier, Centre National de Recherche Scientifique (CNRS), Ecole Pratique des Hautes Etude (EPHE)s, Institut de Recherche pour le Développement (IRD), 34398 Montpellier, France;
| | - Célia Barrachina
- Montpellier GenomiX (MGX), Biocampus Montpellier, Centre National de Recherche Scientifique (CNRS), Intitut National de la Santé et de la Recherche Médicale (INSERM), Univ Montpellier, 34094 Montpellier, France;
| | - Vanina Boué
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle- Unité Mixe de Recherche 224 (MIVEGEC), Institut de Recherche pour le Développement (IRD), Centre National de Recherche Scientifique (CNRS), Univ. Montpellier, 34398 Montpellier, France; (V.N.); (P.B.); (V.B.); (L.T.); (D.M.)
| | - Loïc Talignani
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle- Unité Mixe de Recherche 224 (MIVEGEC), Institut de Recherche pour le Développement (IRD), Centre National de Recherche Scientifique (CNRS), Univ. Montpellier, 34398 Montpellier, France; (V.N.); (P.B.); (V.B.); (L.T.); (D.M.)
| | - Gift Matope
- Faculty of Veterinary Science, University of Zimbabwe, P.O. Box MP167, Mt. Pleasant Harare P.O. Box MP167, Zimbabwe; (D.P.); (G.M.)
| | - Dorothée Missé
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle- Unité Mixe de Recherche 224 (MIVEGEC), Institut de Recherche pour le Développement (IRD), Centre National de Recherche Scientifique (CNRS), Univ. Montpellier, 34398 Montpellier, France; (V.N.); (P.B.); (V.B.); (L.T.); (D.M.)
| | - Serge Morand
- Animal Santé Territoire Risque Environnement- Unité Mixe de Recherche 117 (ASTRE) Univ. Montpellier, Centre International de Recherche Agronomique pour le Développement (CIRAD), Institut National de la Recherche Agronomique, 34398 Montpellier, France; (M.B.); (S.M.)
- Institut des Sciences de l’Evolution de Montpellier (ISEM) Univ. Montpellier, Centre National de Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD), Centre International de Recherche Agronomique pour le Développement (CIRAD), 34000 Montpellier, France
| | - Florian Liégeois
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle- Unité Mixe de Recherche 224 (MIVEGEC), Institut de Recherche pour le Développement (IRD), Centre National de Recherche Scientifique (CNRS), Univ. Montpellier, 34398 Montpellier, France; (V.N.); (P.B.); (V.B.); (L.T.); (D.M.)
- Correspondence:
| |
Collapse
|